JPH06158400A - Descaling method for steel product surface - Google Patents
Descaling method for steel product surfaceInfo
- Publication number
- JPH06158400A JPH06158400A JP33488792A JP33488792A JPH06158400A JP H06158400 A JPH06158400 A JP H06158400A JP 33488792 A JP33488792 A JP 33488792A JP 33488792 A JP33488792 A JP 33488792A JP H06158400 A JPH06158400 A JP H06158400A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- scale
- anode
- steel plate
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Prevention Of Electric Corrosion (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、鋼材表面のスケール除
去方法に関し、詳しくは簡易表面清浄および活性化がで
き、特に海水中に敷設された鋼材に適用される鋼材表面
のスケール除去方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing scales on the surface of a steel material, and more particularly to a method for removing scales on the surface of a steel material which is capable of simple surface cleaning and activation and is particularly applied to a steel material laid in seawater.
【0002】[0002]
【従来の技術】従来、鋼材の表面に生成あるいは付着し
た酸化物や汚れからなるスケールの除去は、塩酸あるい
は硫酸等の鉱酸溶液に浸漬したり、陰極電解またはブラ
ストによる機械的除去等が行なわれている。2. Description of the Related Art Conventionally, scales consisting of oxides and dirt formed or adhered to the surface of steel materials are removed by immersion in a mineral acid solution such as hydrochloric acid or sulfuric acid, or mechanical removal by cathodic electrolysis or blasting. Has been.
【0003】これらの方法は、鋼材表面に塗装、メッ
キ、溶射および接着等の鋼材表面処理を施すための前処
理として行なわれている。従って、鋼材が実用に供する
環境に設置される以前に表面処理が施される。すなわ
ち、供使環境とは別の場所で表面処理されるのが普通で
ある。These methods are carried out as a pretreatment for applying a steel material surface treatment such as painting, plating, thermal spraying and adhesion to the steel material surface. Therefore, the surface treatment is performed before the steel material is placed in a practical environment. That is, the surface treatment is usually performed in a place different from the service environment.
【0004】鋼材の表面処理は、前段としての鋼材表面
の清浄や活性化が不可欠である。脱脂、酸処理あるいは
ブラスト等の前処理は、表面処理仕上げ鋼材の性能に大
きく影響する。For the surface treatment of the steel material, it is essential to clean and activate the surface of the steel material as a first step. Pretreatment such as degreasing, acid treatment or blasting greatly affects the performance of the surface-treated finished steel material.
【0005】前処理と表面処理仕上げが、時間的・工程
的に連続して実施可能の場合には、前述の脱脂・酸処理
あるいはブラスト等の前処理による表面清浄化や活性化
は、後工程の表面処理仕上げや性能に有効に作用させる
ことができる。When the pretreatment and surface treatment finishing can be carried out continuously in terms of time and process, surface cleaning and activation by pretreatment such as degreasing / acid treatment or blasting described above can be performed in a post process. Can be effectively applied to the surface treatment finish and performance of.
【0006】しかし、鋼材表面が清浄、かつ活性化状態
で実用に供する場合には、時間的・工程的に実用供使ま
でにズレを生ずることがある。特に、大面積の処理は、
実施が困難であるばかりではなく、折角清浄・活性化し
ても供使までに再び表面の汚れを避けることは難事であ
る。[0006] However, when the steel material surface is put to practical use in a clean and activated state, there may be a time lag and a process deviation before practical use. Especially for large area processing,
Not only is it difficult to carry out, but it is also difficult to avoid surface contamination again by the time of service even after cleaning and activation.
【0007】例えば、冷却用海水を取り入れる取水管路
や臨海海洋構造物等の海水に浸る部分に付着繁殖する貝
藻類からなる海生物の着生を抑制あるいは防止する手段
に用いる鉄鋼板状陽極においては、大面積の鉄鋼板が使
用される。この海生物着生防止法は、対象となる取水管
路の壁面や該海洋構造物の海水と接する表面に、鉄鋼板
を絶縁材やクッション材(絶縁を兼ねることもある)を
介して取付け、該鉄鋼板を直流電源の正極に接続して陽
極とし、海水を介して対極を設置し該直流電源の負極に
接続して陰極とし、陰陽極間に直流電流を流して陽極で
ある鉄鋼が活性溶解することにより該鉄鋼表面への海生
物の着生を抑制あるいは防止するものである(以下、電
気防汚方法と称する)。[0007] For example, in a steel plate-like anode used as a means for suppressing or preventing the settlement of marine organisms consisting of seaweeds that adhere and propagate in seawater-immersed parts such as water intake pipes and seaside structures that take in cooling seawater. Uses a large area of steel plate. This method of preventing marine organisms attaches steel plates to the wall surface of the target intake pipe or the surface of the marine structure that contacts seawater via an insulating material or cushioning material (which may also serve as insulation), The steel plate is connected to a positive electrode of a DC power source to serve as an anode, a counter electrode is installed via seawater, and the negative electrode of the DC power source is connected to serve as a cathode. The dissolution suppresses or prevents the growth of marine organisms on the surface of the steel (hereinafter referred to as an electric antifouling method).
【0008】この電気防汚方法の対象となる構造物の表
面積は数10m2から数1000m2に及ぶ。このため使
用される鉄鋼板(陽極材)の面積や枚数も同様に大きく
なる。The surface area of the structure which is the subject of this electric antifouling method ranges from several tens m 2 to several 1000 m 2 . For this reason, the area and the number of steel plates (anode materials) used also increase.
【0009】微少な陽極電流で鉄鋼を活性溶解させる必
要があるので、該陽極鉄鋼表面は通電開始時に清浄で均
一活性面であることが要望される。しかしながら、前述
の供使前の化学的・物理的な前処理の採用は現実的に実
施困難である。前以て清浄・活性化処理してもその後の
電極材取付けまでの時間や取扱い施工の点から再び陽極
鉄鋼表面に酸化被膜の形成や汚れの付着といったスケー
ルの生成は避けられない。Since it is necessary to actively dissolve steel with a small anode current, the surface of the anode steel is required to be clean and have a uniform active surface at the start of energization. However, it is practically difficult to adopt the above-mentioned chemical / physical pretreatment before use. Even if the cleaning and activation treatments are performed in advance, it is inevitable that scales such as the formation of an oxide film and the adhesion of dirt are again formed on the surface of the anode steel in terms of the time until the electrode material is attached and the handling work.
【0010】通電開始時に陽極鉄鋼表面が極力清浄で均
一活性であるためには、何等かの前処理が必要である。In order for the surface of the anode steel to be as clean and uniform as possible at the start of energization, some kind of pretreatment is necessary.
【0011】[0011]
【発明が解決する課題】本発明の目的は、鋼材を現地施
工後、表面のスケールを容易かつ二次環境汚染防止対策
の必要がなく除去でき、特に現場環境において、特段の
手段を用いることがない簡易な鋼材表面のスケール除去
方法を提供することにある。SUMMARY OF THE INVENTION The object of the present invention is to remove the scale of the surface easily and without the need for secondary environmental pollution prevention measures after the steel material has been installed on site, and it is possible to use special means especially in the field environment. An object of the present invention is to provide a simple method for removing scales on the surface of steel materials.
【0012】[0012]
【課題を解決するための手段】かかる目的は、鋼材を供
使環境の電解質溶液中で陽極とし、短時間に実用陽極電
流密度の約5倍以上の電流を流すことにより、鋼材を溶
出させ該鋼材表面のスケールを浮き上がらせて鋼材地か
ら剥離させることによって達成される。[Means for Solving the Problems] The purpose is to elute the steel material by using the steel material as an anode in an electrolyte solution in a service environment and passing a current of about 5 times or more the practical anode current density in a short time. It is achieved by lifting the scale on the surface of the steel material and separating it from the steel material.
【0013】すなわち、本発明は、中性の電解質溶液中
で酸化物や汚れ等の付着物からなるスケール付着鋼材を
直流電源の正極に接続して陽極とし、対極として導電性
金属体を該直流電源の負極に接続して陰極とし、両極間
に該中性電解質溶液を介して通電することによって陽極
鉄鋼材表面のスケールを浮上させ剥離させるものであ
る。That is, according to the present invention, a scale-adhered steel material consisting of deposits such as oxides and dirt in a neutral electrolyte solution is connected to a positive electrode of a DC power source to serve as an anode, and a conductive metal body is used as a counter electrode. It is connected to a negative electrode of a power source to serve as a cathode, and current is passed between the both electrodes through the neutral electrolyte solution to float the scale on the surface of the anode steel material and remove it.
【0014】例えば上記したコンクリート製取水路に電
気防汚方法を適用する場合、取水路の壁面(海生物が付
着する部分)に鋼材を貼り巡らせて、相対する該鋼材を
対として直流電源の正極および負極に接続して本発明を
実施するときは、極性変換機能を有する直流電源を用い
ることにより目的が達成される。For example, in the case of applying the electric antifouling method to the above concrete intake channel, a steel material is put around the wall surface of the intake channel (a part where marine life adheres), and the steel materials facing each other are paired to form a positive electrode of a DC power source. When the present invention is carried out by connecting to the negative electrode and the negative electrode, the object is achieved by using a DC power source having a polarity converting function.
【0015】この陽極鋼材表面のスケールを浮上し剥離
させるのに必要な陽極電流密度は、1A/m2以上、通
電量50AH/m2以上である。好ましくは、1.5A
/m2以上、80AH/m2以上である。The anode current density required to float and peel off the scale on the surface of the anode steel material is 1 A / m 2 or more and the energization amount is 50 AH / m 2 or more. Preferably 1.5A
/ M 2 or more and 80 AH / m 2 or more.
【0016】電気防汚方法に用いる鉄鋼電極板は、海
水、ブラキッシウオーター、あるいは電解質を含む淡水
中での水中生物の着生を防止するのが目的であるから、
該電極表面の均一活性化に大電気量の消費は好ましくな
い。100〜150AH/m2/m2の通電量が適正であ
る。The steel electrode plate used for the electric antifouling method is intended to prevent the aquatic organisms from growing in seawater, brackish water, or fresh water containing an electrolyte.
Consumption of a large amount of electricity is not preferable for uniform activation of the electrode surface. An energization amount of 100 to 150 AH / m 2 / m 2 is appropriate.
【0017】本発明の除去方法は、上述の電気防汚方法
の前処理として行なうことができる。この場合には、陽
極電流密度を1A/m2以上でスケール除去を所定時間
行なった後、陽極電流密度を1/5以下にしてそのまま
電気防汚方法を行なえばよい。The removing method of the present invention can be carried out as a pretreatment of the above-mentioned electric antifouling method. In this case, after the scale is removed at an anode current density of 1 A / m 2 or more for a predetermined time, the anode current density may be reduced to ⅕ or less and the electrical antifouling method may be performed as it is.
【0018】[0018]
【実施例】以下、実施例に基づいて本発明を具体的に説
明する。EXAMPLES The present invention will be specifically described below based on examples.
【0019】実施例1 熱間圧延鋼板(SS400)1.6mmTと4.5mmT
および冷間圧延鋼板(SPCC)1.6mmTの海水中
における陽極電解処理を実施した。 Example 1 Hot rolled steel sheet (SS400) 1.6 mm T and 4.5 mm T
And cold-rolled steel plate (SPCC) 1.6 mm T anodically electrolyzed in seawater.
【0020】いずれの鋼板も100W×200Lmmサイ
ズである。SS400は黒皮付で、表面は他の用途に使
用した残材のため油等のスライムが顕著であった。SP
CCはミガキ鋼板であるが供使前に溶剤で表面を清浄に
した。All the steel sheets have a size of 100 W × 200 L mm. SS400 had a black skin, and the surface was a residual material used for other purposes, and slime such as oil was remarkable. SP
Although CC is a polished steel plate, its surface was cleaned with a solvent before use.
【0021】供試鋼板は、表裏が陽極面になるように板
の両側に陰極となる同種鋼板をセットした。定電流電源
の正極に供試鋼板を接続し、対極陰極鋼板は該電源の負
極に接続し、両極間に電流を流した。As the test steel plates, steel plates of the same kind as cathodes were set on both sides of the plate so that the front and back sides were anode surfaces. The test steel plate was connected to the positive electrode of the constant current power source, the counter electrode negative electrode steel plate was connected to the negative electrode of the power source, and a current was passed between both electrodes.
【0022】通電電流は、陽極電流密度で0.2〜3.
0A/m2の9段階と比較のために無通電供試鋼板を追
加した。電解液は、天然海水を用い、撹拌は行なわなか
った。水温は19〜21℃。通電時間は48時間とし、
24時間後および48時間後にミルスケール等の汚れや
付着物の剥離状況を観察し、48時間後に引上げ重量減
少を求めた。The applied current has an anode current density of 0.2 to 3.
A non-energized test steel plate was added for comparison with 9 stages of 0 A / m 2 . The electrolyte used was natural seawater and was not stirred. Water temperature is 19 ~ 21 ℃. The energizing time is 48 hours,
After 24 hours and 48 hours, the peeling state of dirt and deposits such as mill scale was observed, and after 48 hours, the pulling weight reduction was determined.
【0023】観察結果は、24時間通電後では、0.8
A/m2以下の陽極電流密度の場合にはスケールの浮上
がりや剥離が見られなかった。1A/m2を超えるとス
ケールの浮上がりが見られ、1.5A/m2以上で顕著
になり、2A/m2を超えると剥離・脱落が見られたが
全面脱落には達しない。48時間後は、1A/m2以上
で殆どのスケールが剥離・脱落し、1.8A/m2以上
では鋼板の厚みに関係なく美麗な鋼板面を呈していた。The observation result is 0.8
When the anode current density was A / m 2 or less, neither lifting nor peeling of the scale was observed. If it exceeds 1 A / m 2 , the scale will be lifted, and if it exceeds 1.5 A / m 2 , it will be noticeable, and if it exceeds 2 A / m 2 , peeling and falling will be observed, but it will not reach the full drop. After 48 hours, 1A / m 2 or more in most of the scale is peeled off and loss, in 1.8A / m 2 or more was exhibited beautiful steel surface regardless of the thickness of the steel sheet.
【0024】表1は、黒皮鋼板1.6mmT、4.5m
mTおよびミガキ鋼板1.6mmTの48時間通電後にお
ける陽極電流密度毎の鋼板の消耗速度(消耗度)、侵食
度を示す。表2は、表1のデータに基づいて算出した消
耗度差(黒皮鋼板消耗速度−ミガキ鋼板消耗速度=スケ
ール消耗速度に相当)、理論消耗速度との差および推定
スケールの厚さを示す。なお、表2において、推定剥離
スケール厚さは、黒皮鋼板とミガキ鋼板との消耗速度
(消耗度)差から算出した。但し、スケールの密度は
5.21g/cm3とした。Table 1 shows a black leather plate 1.6 mm T , 4.5 m
m T and 1.6 mm T of polished steel plate are shown the wear rate (wear rate) and erosion rate of the steel plate for each anode current density after 48 hours of energization. Table 2 shows the difference in the degree of wear calculated based on the data in Table 1 (corresponding to the consumption rate of black leather steel sheet-the consumption rate of polished steel sheet = the scale consumption rate), the difference from the theoretical consumption rate, and the estimated scale thickness. In Table 2, the estimated peeling scale thickness was calculated from the difference in consumption rate (consumption degree) between the black leather plate and the polished steel plate. However, the density of the scale was 5.21 g / cm 3 .
【0025】[0025]
【表1】 [Table 1]
【0026】[0026]
【表2】 [Table 2]
【0027】図1および図2は、表1および表2を陽極
電流密度との関係で図示したものである。FIGS. 1 and 2 show Tables 1 and 2 in relation to the anode current density.
【0028】図1の消耗速度(g/m2・h)の内、ミ
ガキ鋼板はスケール等の汚れのない鋼板で、当然ではあ
るが陽極電流密度の増大とともに直線的に増加してい
る。理論消耗速度に近似している。黒皮鋼板もほぼ直線
的に推移しているが、ミガキ鋼板に比して0.5〜1g
/m2・h程度高くなっている。Among the consumption rates (g / m 2 · h) shown in FIG. 1, the polished steel plate is a steel plate with no stain such as scale, and naturally, it linearly increases as the anode current density increases. It is close to the theoretical consumption rate. The black leather steel plate also changes almost linearly, but it is 0.5 to 1 g compared to the polished steel plate.
/ M 2 · h is higher.
【0029】黒皮鋼板とミガキ鋼板との差、すなわち消
耗度差で見ると同図(破線)に示すように、陽極電流密
度が1.0〜1.2A/m2に屈曲点が見られ、該電流
密度以下では勾配が急であり、以上では緩慢でほぼ一定
の値を示している。この一定値は、鋼板の板厚1.6m
mに比して4.5mmの方が高く、鋼板表面のスケール
等の汚れの厚さに対応するものと推定される。Looking at the difference between the black leather plate and the polished steel plate, that is, the difference in the degree of wear, as shown in the figure (broken line), there is a bending point at the anode current density of 1.0 to 1.2 A / m 2. The gradient is steep below the current density, and is slow and almost constant above the current density. This constant value is the steel plate thickness of 1.6 m
It is presumed that 4.5 mm is higher than m and corresponds to the thickness of stains such as scale on the surface of the steel sheet.
【0030】スケール等の汚れを鋼板表面に形成されて
いる黒皮(ミルスケール)と見做して厚さを推定してみ
ると表2、図2に示す如く、1.6mmtで5〜6μ
m、4.5mmtで8〜10μmとなる。これらの推定
黒皮の厚さは、公表されている値1.6mmtで5μm
以上、7mmtで10μm以上との値に極めて近似して
おり、消耗度差のほぼ一定値は鋼板のスケールの剥離・
脱落量と見做し得る。When the thickness is estimated by considering the stains such as scales as the black scale (mill scale) formed on the surface of the steel sheet, as shown in Table 2 and FIG.
It becomes 8 to 10 μm at m and 4.5 mmt. The estimated black skin thickness is 5 μm at the published value of 1.6 mmt.
As described above, it is extremely close to the value of 10 μm or more at 7 mmt, and the almost constant value of the difference in the degree of wear is due to the peeling of the scale of the steel sheet.
It can be regarded as the dropout amount.
【0031】前述の48時間通電の観察結果では、1.
0A/m2以上の電流密度で殆どのスケールが剥離し脱
落していたが、これは図1や図2での屈曲点の電流密度
に対応している。According to the above-mentioned observation result of 48-hour energization,
Most of the scale peeled off and fell off at a current density of 0 A / m 2 or more, which corresponds to the current density at the bending point in FIGS. 1 and 2.
【0032】また、24時間通電ではスケールの剥離脱
落は、2A/m2以上の電流が望ましい。すなわち、2
A/m2×24H=48AH/m2以上の通電量が必要で
ある。Further, it is desirable that a current of 2 A / m 2 or more is used for peeling off of the scale when energized for 24 hours. Ie 2
A / m 2 × 24H = 48 AH / m 2 or more is required.
【0033】実施例2 火力発電所のボックスカルバート型取水路側壁面の海生
物付着部分に黒皮付鋼板(SS400)を取付け、本発
明の除去方法を施したものと施さないものとの効果を試
験した。 Example 2 A steel plate with black skin (SS400) was attached to a portion of the side wall of a box culvert type intake channel of a thermal power plant to which marine organisms were attached, and the effects of those with and without the removal method of the present invention were tested. did.
【0034】鋼板は1.6T×918W×1829Lmm
のものを6枚を用い、水路の両側壁面に鋼板裏面に絶縁
材およびクッション材を張合わせた鋼板を取付けた。両
側壁面の向かい合った2枚の鋼板を一組として3組セッ
トした。各セット毎に水路の底面に独立した型鋼材を設
置した。3組のセットはそれぞれ独立した直流定電流電
源の正極に接続し、底面に設置した型鋼材を該直流電源
の負極に接続した。The steel plate is 1.6 T × 918 W × 1829 L mm
6 sheets were used, and a steel plate having an insulating material and a cushion material bonded to the back surface of the steel plate was attached to both side wall surfaces of the water channel. Three sets of two steel plates with opposite wall surfaces facing each other were set as one set. Independent steel materials were installed on the bottom of the waterway for each set. Each of the three sets was connected to an independent positive electrode of a DC constant current power source, and the shaped steel material installed on the bottom was connected to the negative electrode of the DC power source.
【0035】海水中で鋼材を陽極として活性溶解させる
ことにより、陽極鋼材の表面に海生物の着生を抑制する
ための鋼材である。定常的に流す電流は0.2A/m2
程度である。3組の鋼板陽極のうち2組は黒皮付鋼板、
残りの1組はミガキ鋼板である。A steel material for suppressing the growth of marine life on the surface of the anode steel material by actively dissolving the steel material as an anode in seawater. The constant current is 0.2 A / m 2
It is a degree. Of the 3 sets of steel plate anodes, 2 sets are steel plates with black skin,
The remaining one set is a polished steel plate.
【0036】各鋼板は組毎に取水路の側壁面に取付け
た。取付けて約1週間後に水路に海水を注水した。直ち
に1組の黒皮付鋼板を除く他の黒皮付鋼板とミガキ鋼板
の組は、定常電流の0.2A/m2の陽極電流を流し
た。1組の黒皮付鋼板は、定電流の10倍の陽極電流密
度2A/m2で50時間海水中で電解処理を行なった。
該電解処理鋼板は50時間後黒皮(ミルスケール)は完
全に剥離脱落し銀白色の面を呈していた。次いで他の組
同様陽極電流密度を0.2A/m2に下げ定電流通電を
行なった。Each steel plate was attached to the side wall surface of the intake channel for each set. About one week after installation, seawater was poured into the waterway. Immediately, the other set of black steel plate and black steel plate except for one set of black steel plate passed an anode current of 0.2 A / m 2 which was a steady current. One set of steel plates with black skin was subjected to electrolytic treatment in seawater for 50 hours at an anode current density of 2 A / m 2 which was 10 times the constant current.
After 50 hours, the black skin (mil scale) of the electrolytically treated steel sheet was completely peeled off and exhibited a silver-white surface. Then, like the other sets, the anode current density was reduced to 0.2 A / m 2 and constant current energization was performed.
【0037】3月中旬に取付け海生物が最も活動する初
春から秋季にかけて定電流通電を行なった。電解処理鋼
板は、全面鉄のコロイド状の水酸化物で覆われていた
が、貝藻類の付着は殆ど無く量的には0.3kg/m2
と実質的に無視できる。In the middle of March, constant current energization was performed from early spring to autumn when the attached marine life is most active. The electrolytically treated steel plate was entirely covered with colloidal hydroxide of iron, but there was almost no adhesion of shell algae and the quantity was 0.3 kg / m 2.
Can be virtually ignored.
【0038】ミガキ鋼板は海水注水、通電までに水路内
の大気中に晒されその間に自然の赤錆が生成した状態で
定常通電を行なった。顕著な海生物の付着は見られなか
ったが、電解処理鋼板同様ほぼ全面にコロイド状の鉄の
水酸化物で覆われており、水路内大気中に晒されている
間に生成した自然の酸化物が残っていたと思われる一部
に原生動物や藻類の付着が見られた。量的には0.7k
g/m2であり実用上問題になるほどのものではない。The milled steel sheet was exposed to the atmosphere in the waterway before pouring and energizing seawater, and during this time, steady energization was performed in the state where natural red rust was generated. Although no noticeable adhesion of marine organisms was observed, almost all surfaces were covered with colloidal iron hydroxide, similar to the electrolytically treated steel sheet, and the natural oxidation generated during exposure to the atmosphere in the waterway was observed. Adhesion of protozoa and algae was found in some of the areas that were thought to have remained. 0.7k in quantity
It is g / m 2 , which is not a problem in practical use.
【0039】電解処理を施さない黒皮付鋼板は、大半の
黒皮が剥離・脱落しその部分には海生物の付着が抑制・
阻止されていたが、黒皮の取り切れていない部分にはフ
ジツボや少量の原生動物の付着が見られた。鋼板表面の
黒皮(ミルスケール)の生成、厚さおよび鋼地との密着
あるいは電位の違いから小さい定常電流では充分に取り
切れない部分が生じるものと考えられる。流出電流は鋼
板の黒皮の欠陥部や活性部分から集中的に流出し、通電
によって黒皮の剥離・脱落が進行するにつれ活性面が拡
大し強固に鋼板地に付着した黒皮部が最後まで残り、残
留部分からの流出電流が抑制される結果、スライム、有
機物の付着に次いで海生物の着生が始まるものと推察さ
れる。事実、周辺のコンクリート壁面の海生物の付着に
比して、小さく成育初期の段階の生物であった。この結
果、本発明の除去方法は極めて有効な手段であることが
判明した。In the steel sheet with black skin that is not subjected to electrolytic treatment, most of the black skin is peeled off and dropped, and the adhesion of marine organisms is suppressed in that part.
Although blocked, barnacles and small amounts of protozoa were found to be attached to the uncut areas of the black skin. It is considered that due to the formation of black scale (mill scale) on the surface of the steel sheet, the thickness and the close contact with the steel material, or the difference in the electric potential, there are some areas that cannot be cut off sufficiently with a small steady current. The outflow current flows out intensively from the defective parts and active parts of the black skin of the steel plate, and as the peeling and falling of the black skin progresses due to the energization, the active surface expands and the black skin part firmly adhered to the steel plate until the end. As a result, the outflow current from the remaining part is suppressed, and as a result, the adherence of slime and organic matter is assumed to be followed by the growth of marine life. In fact, it was a small organism at the early stage of growth compared to the adhesion of marine organisms on the surrounding concrete wall. As a result, it was found that the removing method of the present invention is an extremely effective means.
【0040】[0040]
【発明の効果】以上説明したように、使用する環境の中
性溶液中で短期間常用電流よりも少なくとも5倍以上の
電流で陽極電解処理する本発明のスケール除去方法によ
り、従来の鉱酸処理やブラスト等の別工程を用いること
なく、また環境公害の煩わしさを配慮することなく、鋼
材表面のスケールが除去できる。さらに、本発明の除去
方法を実施した後、常用の電流に下げるだけで海生物着
生防止のための電気防汚方法を行なうことができるの
で、工程・工事の容易さと短縮に加え性能アップと安定
化が図れる。従って、工業的にも経済的にも大きな価値
を有する方法である。As described above, according to the scale removing method of the present invention, the conventional mineral acid treatment is carried out in the neutral solution of the environment in which it is anodically electrolyzed at a current of at least 5 times the normal current for a short period of time. The scale on the steel surface can be removed without using a separate process such as blasting or blasting, and without considering the troublesomeness of environmental pollution. Furthermore, after carrying out the removal method of the present invention, an electric antifouling method for preventing the growth of marine organisms can be carried out simply by reducing the current to a normal value, so that the process and construction can be shortened and performance can be improved. Stabilization can be achieved. Therefore, it is a method having great industrial and economic value.
【図1】 実施例1における鋼板の消耗量と電流密度と
の関係を示すグラフ。FIG. 1 is a graph showing the relationship between the amount of consumption of steel sheet and the current density in Example 1.
【図2】 図1の消耗量から算出した推定黒皮の厚さを
陽極電流密度との関係で示したグラフ。FIG. 2 is a graph showing the estimated black skin thickness calculated from the amount of wear in FIG. 1 in relation to the anode current density.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年1月21日[Submission date] January 21, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0026[Correction target item name] 0026
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0026】[0026]
【表2】 [Table 2]
Claims (3)
材を直流電源の正極に接続して陽極とし、対極に導電性
金属体を設置して該直流電源の負極に接続し、両極間に
電流を流すことを特徴とする鋼材表面のスケール除去方
法。1. A scale-attached steel material is connected to a positive electrode of a DC power source as a positive electrode in a neutral electrolyte solution, a conductive metal body is installed on a counter electrode and connected to a negative electrode of the DC power source, and between both electrodes. A method for removing scale from a steel surface, which comprises applying an electric current.
通電量が50AH/m2以上である請求項1に記載の鋼
材表面のスケール除去方法。2. The current density of the anode is 1 A / m 2 or more,
The method for removing scale from a steel surface according to claim 1, wherein the amount of electricity applied is 50 AH / m 2 or more.
て行なう請求項1または2に記載の鋼材表面のスケール
除去方法。3. The method for removing scales from the surface of a steel product according to claim 1, which is carried out as a pretreatment for preventing marine organisms from growing on the steel product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33488792A JPH06158400A (en) | 1992-11-24 | 1992-11-24 | Descaling method for steel product surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33488792A JPH06158400A (en) | 1992-11-24 | 1992-11-24 | Descaling method for steel product surface |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06158400A true JPH06158400A (en) | 1994-06-07 |
Family
ID=18282343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33488792A Pending JPH06158400A (en) | 1992-11-24 | 1992-11-24 | Descaling method for steel product surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06158400A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002050344A1 (en) * | 2000-12-18 | 2002-06-27 | Centro Sviluppo Materiali S.P.A. | Continuous electrolytic pickling and descaling of carbon steel and stainless |
-
1992
- 1992-11-24 JP JP33488792A patent/JPH06158400A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002050344A1 (en) * | 2000-12-18 | 2002-06-27 | Centro Sviluppo Materiali S.P.A. | Continuous electrolytic pickling and descaling of carbon steel and stainless |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1107677A (en) | Rejuvenation of the efficiency of seawater electrolysis cells by periodic removal of anodic deposits | |
US2444174A (en) | Galvanic coating process | |
CA2092304C (en) | Prevention method of aquatic attaching fouling organisms and its apparatus | |
CN108396323A (en) | A method of for naked steel construction cathodic protection in seawater | |
CN1451058A (en) | Continuous electrolytic pickling method for metallic products using alternate current suplied cells | |
Arenas et al. | Protection of Zn–Ti–Cu alloy by cerium trichloride as corrosion inhibitor | |
US4356069A (en) | Stripping composition and method for preparing and using same | |
JPH02200787A (en) | Electric corrosion protection method using together with galvanic anode system and external power source system | |
JPH06158400A (en) | Descaling method for steel product surface | |
EP0589996B1 (en) | TREATING Al SHEET | |
JPH10219500A (en) | Finish electrolytic pickling method for descaling of stainless steel strip | |
RU2113544C1 (en) | COMPLEX RUST AND FOULING PROTECTION (Variants) | |
Walsh et al. | Corrosion and protection of metals: II. Types of corrosion and protection methods | |
Fink et al. | The Bullard‐Dunn Electrochemical Metal Descaling Process | |
JP3090187B2 (en) | Room temperature zinc sprayed coating for antifouling and antifouling management method of the sprayed coating | |
CN1113969A (en) | Surface treatment method for titanium matrix metal electrode | |
JP2517353B2 (en) | Descaling method for stainless steel strip | |
JPS6144200A (en) | Production of steel sheet galvanized on one side | |
JPH05193285A (en) | Offset printing plate and preparation thereof | |
JPH10313728A (en) | Corrosion preventing method for marine steel structure | |
EP4353866A1 (en) | Mixed metal oxide coatings for titanium alloys | |
JP2010242161A (en) | Galvanic anode body and galvanic anode method | |
JPH07207645A (en) | Marine creature insertion preventing screen device and insertion preventing method thereof | |
JPH028384A (en) | Stain-proofing method | |
JPS6043499A (en) | Production of steel sheet electroplated with zinc on one surface |