JPH02200787A - Electric corrosion protection method using together with galvanic anode system and external power source system - Google Patents

Electric corrosion protection method using together with galvanic anode system and external power source system

Info

Publication number
JPH02200787A
JPH02200787A JP1020280A JP2028089A JPH02200787A JP H02200787 A JPH02200787 A JP H02200787A JP 1020280 A JP1020280 A JP 1020280A JP 2028089 A JP2028089 A JP 2028089A JP H02200787 A JPH02200787 A JP H02200787A
Authority
JP
Japan
Prior art keywords
anode
potential
galvanic anode
corrosion
corrosion protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1020280A
Other languages
Japanese (ja)
Other versions
JP2601338B2 (en
Inventor
Akinobu Yoshino
吉野 朗宣
Hiroshi Shiraishi
白石 弘
Toru Takahashi
徹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAGAWA BOSHOKU KOGYO KK
Nakagawa Corrosion Protecting Co Ltd
Original Assignee
NAKAGAWA BOSHOKU KOGYO KK
Nakagawa Corrosion Protecting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAGAWA BOSHOKU KOGYO KK, Nakagawa Corrosion Protecting Co Ltd filed Critical NAKAGAWA BOSHOKU KOGYO KK
Priority to JP1020280A priority Critical patent/JP2601338B2/en
Publication of JPH02200787A publication Critical patent/JPH02200787A/en
Application granted granted Critical
Publication of JP2601338B2 publication Critical patent/JP2601338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2213/00Aspects of inhibiting corrosion of metals by anodic or cathodic protection
    • C23F2213/20Constructional parts or assemblies of the anodic or cathodic protection apparatus
    • C23F2213/21Constructional parts or assemblies of the anodic or cathodic protection apparatus combining at least two types of anodic or cathodic protection

Abstract

PURPOSE:To economically provide electric corrosion protection in the electrolyte part of a steel structure by making combination use of an external power source system and a galvanic anode system and decreasing the weight of the galvanic anode to be used. CONSTITUTION:The galvanic anode, insoluble anode and reference electrode are installed to the electrolyte part of the steel structure to be protected. The insoluble anode, the reference electrode and the structure are connected to a DC power source device having a potential control circuit. An interruptor circuit is connected to the DC power source device of such electric corrosion protection device. A corrosion protective current is passed from the galvanic anode to the structure by turning the interruptor circuit off, by which the potential and the corrosion protective current are put into the stationary state and the corrosion protection by galvanic anode system is executed. The corrosion protective current is passed from the insoluble anode to control the potential of the structure to a target potential by turning the interruptor circuit on, by which the supply of the corrosion protective current from the galvanic anode is decreased or stopped and the corrosion protection by the external power source system is executed. The corrosion protection is executed by reducing the weight of the galvanic anode to be used to about 1/3 in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は港湾施設、海洋施設、土中施設等、例えば鋼矢
板、鋼管、鋼管矢板等からなる岸壁、桟橋5石油掘削装
置、海底パイプライン、基礎杭、沈埋函等の鋼もが造物
における電解質部を防食するための電気防食方法に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to port facilities, marine facilities, underground facilities, etc., such as quay walls made of steel sheet piles, steel pipes, steel pipe sheet piles, etc., pier 5 oil drilling equipment, submarine pipelines. , relates to an electrolytic corrosion protection method for preventing corrosion of electrolyte parts in steel structures such as foundation piles and immersed boxes.

〔貨来の技術〕[Traditional technology]

電気防食方法には、商用交流Wi源を整流器で直流に変
換して不溶性陽極から被防食体に電流を供給する外部電
源方式と、AQ合金、Znn合金量Mg合金の犠牲陽極
を用い、これら陽極材料と被防食体との自然電位差を利
用して陽極材料を選択的に海水中に溶出させて被防食体
の防食を行なう流電陽極方式とがある。
The cathodic protection method uses an external power supply method that converts a commercial AC Wi source into DC using a rectifier and supplies current from an insoluble anode to the object to be protected, and a sacrificial anode made of an AQ alloy, a Znn alloy, and a Mg alloy. There is a galvanic anode method that protects the object from corrosion by selectively dissolving the anode material into seawater by utilizing the natural potential difference between the material and the object to be protected.

従来、港湾#ll構造物の電気防食方法は、当初。Conventionally, cathodic protection methods for port #ll structures were initially developed.

外部ffl源方式が多く採用されたが、その後、高性能
のAQ合金IIJ極の開発によって流電陽極方式の経済
性が著しく増したために、現在ではそのほとんどが流W
1陽陽極式に切り換っているといっても過言ではない。
The external ffl source method was widely adopted, but since then, the economic efficiency of the galvanic anode method has increased significantly with the development of high-performance AQ alloy IIJ electrodes, and most of them are now replaced by the galvanic anode method.
It is no exaggeration to say that the system has been switched to a single anode system.

このような流W1陽陽極式によって港湾鋼構造物を防食
する場合は、断面台形の棒状に鋳造された10合金製の
流電陽極を、その両喘部から突き出た鋼製芯金をそれぞ
れ前記構造物の海中部に水中16接するごとによって取
り付けることが一般に行われている。この場合、 10
〜20年寿命の流電陽極(たとえば約60〜110kg
/個、発生電流3 A、 )が前記構造物の防食面積に
応じC取り付けらる。この場合、総数量は防食面積×防
食電流密度÷陽極1個の発生電流となる9〔発明が解決
しようとする問題点〕 最近、港湾II!情造物の電気防食においで、陽極の寿
命を30〜50年にするものが見られるようになってき
た。この場合、に述した従来の流電陽極方式で設計する
と、陽極1個の重量が160〜300kg(発生電流3
A)どなり、従来の約3倍にもなるため、施IJ:、そ
の取り扱いが非常に困難であるばかりでなく、Nl舶の
接岸に邪魔になる恐れが生じてきた。また、大きな精錬
エネルギーを必要どしたり、資源に限度のあるものを犠
牲陽極として大量に用いることは、省資源、省エネルギ
ーの観点からみても望ましくない。
When corrosion-protecting a port steel structure using such a flow W1 anode type, a galvanoelectrode made of 10 alloy cast into a rod shape with a trapezoidal cross section is used, and the steel cores protruding from both of its panes are respectively Generally, it is attached to the underwater part of the structure every 16 times underwater. In this case, 10
Galvanic anode with ~20 year life (e.g. approx. 60-110 kg)
/ piece, generated current 3 A) is installed according to the corrosion-protected area of the structure. In this case, the total quantity is: Corrosion protected area x Corrosion protection current density ÷ Generated current of one anode 9 [Problem to be solved by the invention] Recently, Port II! In cathodic protection products, products with an anode lifespan of 30 to 50 years have begun to be seen. In this case, if designed using the conventional galvanic anode method described in , the weight of one anode would be 160 to 300 kg (generated current 3
A) Since the noise is about three times as loud as before, it is not only extremely difficult to handle, but also poses a risk of interfering with the berthing of Nl vessels. Further, it is undesirable from the viewpoint of resource and energy conservation to require a large amount of refining energy or to use a large amount of a material with limited resources as a sacrificial anode.

本発明は、従来のものがもつ、以1−のような問題点を
解消させるために、外部電源方式と流量陽極方式を併用
することによって流電陽極の使用重量を減量することを
可能にし力電気防食方法を提供することを]1的とする
In order to solve the following problems of the conventional ones, the present invention makes it possible to reduce the weight of the galvanic anode by using both an external power supply method and a flow anode method. An object of the present invention is to provide a cathodic protection method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は被防食鋼構造物の電解質と接する電解質部に5
流電陽極、不溶性陽極および照合電極を設置し、これら
不溶性陽極、照合W1極および前記構造物を電位制御回
路を有する直流電源装置に接続した電気防食装置であっ
て、この直流型WX装随にインターラプター回路を接続
し、インターラプター回路を叶1′の状態とすることに
より、流電陽極から防食電流を前記構造物I3流して電
位と防食電流を定常状態として流電陽極方式により防食
し、インターラプター回路をONの状態とすることによ
り、不溶性陽極から防食電流製流しC前記構造物の電位
を目標電位に制御するごとにより流W1陽極からの防食
電流の供給を減少あるいは停止して外部電源方式により
防食することからなる流な陽極方式と外部電源方式とを
併用した電気防食方法により、前記問題点を解決したも
のであり、前記E1標電位は流ffl陽極の開路電位附
近あるいはそれ以下どするものである。
The present invention provides an electrolyte portion that is in contact with the electrolyte of a steel structure to be protected.
A cathodic protection device in which a galvanic anode, an insoluble anode, and a reference electrode are installed, and these insoluble anodes, the reference W1 electrode, and the structure are connected to a DC power supply device having a potential control circuit, and this DC type WX equipment By connecting the interrupter circuit and bringing the interrupter circuit into the state of leaf 1', an anti-corrosion current is passed through the structure I3 from the galvanic anode to keep the potential and anti-corrosion current in a steady state, and corrosion is prevented by the galvanic anode method. By turning on the interrupter circuit, a corrosion protection current is supplied from the insoluble anode to the target potential. Each time the potential of the structure is controlled to the target potential, the supply of corrosion protection current from the anode is reduced or stopped, and the external power source is The above-mentioned problem has been solved by a cathodic protection method that uses both a simple anode method and an external power source method, and the E1 standard potential is close to or below the open circuit potential of the current ffl anode. It is something to do.

〔作  用〕[For production]

本発明の併用防食は外部電源方式と流電陽極方式のそれ
ぞれの特性を生かして実施される。
The combined corrosion protection of the present invention is carried out by taking advantage of the respective characteristics of the external power source method and the galvanic anode method.

すなわち、外部電源方式は流電陽極方式を補完するよう
に、一定時間毎にインターラプター回路を0N10FF
させることで切換え、 ON状態で外部電源方式を作動
させ、OFF状態で流ffi陽極方式を41:動させる
。なお、外部Wi源方式は具体的には電力費の安い夜間
のみ作動させるように、4を間は流電隔・横方式を作動
させるようにすることが好ましい。
In other words, the external power supply method complements the current anode method by turning the interrupter circuit 0N10FF at regular intervals.
The external power supply method is operated in the ON state, and the flow ffi anode method is operated in the OFF state. Specifically, it is preferable that the external Wi source method be operated only at night when electricity costs are low, and that the current current interval/horizontal method be operated during the period of time.

次に、これら両方式の作動理論につい゛て説明する。Next, the operating theory of both of these types will be explained.

流電陽極方式の場合、防食Wi流(陽極発生電流)と鋼
構造物の電位の経時変化は第1図に示すとおり1時間の
経過とともに鋼構造物の電位は分極し、陽極との電位差
を減少させ、防食電流は低減しCゆき、やがで両名はぽ
ぼ定常状態になる。
In the case of the galvanic anode method, as shown in Figure 1, the potential of the steel structure polarizes over time, and the potential difference with the anode increases. The anti-corrosion current decreases, and eventually both reach a steady state.

この状態におい゛C1外部電源方式により外部から防食
電流を供給して、両老間の電位差を消滅させれば、オー
・ムの法則により流電陽極からの防食電流の供給は停止
することになり、流電陽極の消耗はなくなる。このとき
の電位は、流f[!陽極の開路電位(作動していない状
態)と同じ程度になり1例えば、ΔQ合金陽極では−1
050−−1,lOOmV’ (飽和14こう照合電極
基準)に相当する。
In this state, if an anti-corrosion current is supplied from the outside using the C1 external power supply method to eliminate the potential difference between the two electrodes, the supply of anti-corrosion current from the galvanic anode will stop according to Ohm's law. , consumption of galvanic anodes is eliminated. The potential at this time is the flow f[! It is about the same as the open circuit potential (inactive state) of the anode.For example, -1 for a ΔQ alloy anode.
It corresponds to 050--1,1OOmV' (saturated 14-volt reference electrode reference).

したがって、流電陽極の開路電位以下の電位を外部電源
方式のON時における目w電位にすれば、外部電源方式
が作動している間は流電陽極方式は作動しないことにな
る。
Therefore, if the potential below the open-circuit potential of the galvanic anode is set to the target w potential when the external power supply system is turned on, the galvanic anode system will not operate while the external power supply system is operating.

このように1本発明の併用防食における通電と電位状況
の関係は、第2V4に示すとおり、流電PJ&極方式で
11構造物の基礎電位を作り、外部電源方式でこの基礎
電位を流電陽極の消耗が停止する電位まで上昇させて保
持し、以後、このサイクルを繰り返すものである。この
時、基礎電位は各サイクル毎にわずかに上昇してゆきほ
ぼ定常状態になる。(平均電位) 〔実施例〕 本発明の併用防食を火力発電所の荷揚岸壁(全長122
m)に実施した場合について以下に説明する。
In this way, the relationship between energization and potential status in the combination corrosion protection of the present invention is as shown in Section 2V4. The potential is raised to a level at which consumption of the battery stops and held there, and this cycle is then repeated. At this time, the basal potential increases slightly with each cycle and reaches a nearly steady state. (Average potential) [Example] The combined corrosion protection of the present invention was applied to the unloading quay of a thermal power plant (total length: 122
The case where m) is implemented will be described below.

本発明における防食前売条件および防食設計条件を第1
表に示す。
The anti-corrosion advance conditions and anti-corrosion design conditions in the present invention are
Shown in the table.

(以下余白) 第1表 上記の条件にノルづき、流電陽極方式においては、1個
56.7kgのΔa合金陽極(中用防蝕工業(株)@1
、商品名ALAP・発生電流3A)が上記岸壁に約1.
6mの間隔で72個溶接によって取付けられた。
(Leaving space below) Table 1 Based on the above conditions, in the galvanic anode method, one 56.7 kg Δa alloy anode (Chuyo Anticorrosion Industry Co., Ltd. @1
, product name ALAP, generated current 3A) was approximately 1.
72 pieces were attached by welding at 6m intervals.

−・方、外部電源方式においては、」;記岸らtに5m
の間隔で取付けられた24個の鉛銀合金電礪ど4個所の
排流端子が直流?!!源装置(20V X 160A)
の出力端子に接続され、また、4個の亜鉛照合電極が前
記電源装置の定電位回路に接続された。
-・In the external power supply method, 5 m
Are the 24 lead-silver alloy battery cells installed at intervals of 4 discharge terminals connected to direct current? ! ! Power supply device (20V x 160A)
and four zinc reference electrodes were connected to the constant potential circuit of the power supply.

前記f!!源装置は、第3図に示すように、インク−ラ
ブター回路を有し2、タイマーを用いて一定の時間毎に
前記電源装置をON、OFFできるようになっている。
Said f! ! As shown in FIG. 3, the power source device has an ink-labitor circuit 2, and is capable of turning on and off the power source device at regular intervals using a timer.

(たとえば、 16時間叶F、8時間ONのサイケ19
フ日) なお、第3図ではインターラプター回路を直流電源装置
に予め組み込んだ内蔵回路として示しであるが、このイ
ンターラプター回路は既存の直流電源装置を取り付けた
後、あるいは取り付けられている装置とは別にイ」加回
路として設置してもよい、これらの場合、直流電源装置
にはインターラプター回路とともに定電位制御回路が必
要であり、この定電位制御回路は照合電極と被防食鋼構
造物との電位差を所定電位に制御するものである。また
、光ダイオード等を用いて昼夜の光量の違いによってイ
ンク・−ラブターを作動させても良い。
(For example, 16 hours Kano F, 8 hours ON Psych 19
Note that Figure 3 shows the interrupter circuit as a built-in circuit that is pre-installed in the DC power supply, but this interrupter circuit cannot be installed after installing the existing DC power supply or in conjunction with the installed equipment. In these cases, the DC power supply requires a constant potential control circuit as well as an interrupter circuit, and this constant potential control circuit connects the reference electrode and the steel structure to be corroded. This is to control the potential difference to a predetermined potential. Alternatively, the ink-lubber may be operated using a photodiode or the like depending on the difference in the amount of light between day and night.

次に、これら両方式の作動状態を示す。Next, the operating conditions of both of these types will be shown.

当初、流電陽極適用時における岸壁の基礎電位は−90
0mVに保持された。その後、夜間電力が供給され、岸
壁の電位は定電位回路によって目標電位の一1050m
Vに保持された。夜間電力を8時間通電後、前記電源装
置をOFFにしてALAPによる防食電流の供給が16
時間継続された。このような通電時間のサイクルが繰り
返され、約30日後で岸壁の基礎電位は一975o+V
でほぼ定常状MA(平均電位)になった。
Initially, the basic potential of the quay when the galvanic anode was applied was -90
It was held at 0 mV. After that, night power is supplied, and the potential of the quay is adjusted to 1,050 m below the target potential by a constant potential circuit.
It was held at V. After applying night power for 8 hours, the power supply device was turned off and the anticorrosion current was supplied by ALAP for 16 hours.
continued for hours. This cycle of energization time is repeated, and after about 30 days, the basic potential of the quay reaches 1975o+V.
It became almost steady state MA (average potential).

通常のALAP方式の単独防食の場合は、平均電位が一
般に一900〜950mV程度であり、本発明はこれと
比較しても(−分良好な防食状態にあることがわかる。
In the case of normal ALAP type independent corrosion protection, the average potential is generally about -900 to 950 mV, and it can be seen that the present invention has a good corrosion protection state by (-) compared to this.

以下に、本発明の方法と他の防食法との防食費用の比較
を第2表に示す2 (以下余白) (発明の効果) 以上説明したように、本発明による併用防食は、従来、
最も経済的な防食法とされていた流電陽極方式による単
独防食に比べて、はとんど同等に近い経済性を保持しな
がら、使用される流電陽極の重量を3分の1に軽減する
ことができるので、その取扱いが簡単になるとともに。
Table 2 below shows a comparison of the corrosion prevention costs between the method of the present invention and other corrosion prevention methods.
Compared to the single galvanic anode method, which was considered the most economical corrosion prevention method, the weight of the galvanic anode used was reduced to one-third while maintaining almost the same economical efficiency. Because it can be done, its handling becomes easier.

省資源、省エネルギーに寄与することもできる。It can also contribute to resource and energy conservation.

また、防食状態においても5本発明は鋼構造物の平均電
位を一975+m、Vに保持することができるので、流
電陽極方式単独の場合における平均電位(−900〜−
950mV)に比べではるかに優れている。
In addition, even in the corrosion-protected state, the present invention can maintain the average potential of the steel structure at -975+m, V, so the average potential in the case of the galvanic anode method alone (-900 to -
950mV).

さらに、余剰の夜間電力だけを使用すれば、電力の昼夜
使用バランスの改善になり、経済性第1図は#lll構
造物の電位および防食電流の経時変化を示す関係図であ
る。
Furthermore, if only the surplus nighttime power is used, the balance between daytime and nighttime power usage will be improved.Economical Figure 1 is a relational diagram showing changes over time in the potential and anticorrosion current of the #1ll structure.

第2図は外部電源方法のON、OFF時に伴う電位変化
を示す説明図である。
FIG. 2 is an explanatory diagram showing potential changes accompanying ON and OFF of the external power supply method.

第3図は本発明実施例に用いた直流電源装置の回路説明
図である。
FIG. 3 is a circuit explanatory diagram of a DC power supply device used in an embodiment of the present invention.

第 図 =1門 第 図No. figure =1 gate No. figure

Claims (1)

【特許請求の範囲】 1、被防食鋼構造物の電解質と接する電解質部に、流電
陽極、不溶性陽極および照合電極を設置し、これら不溶
性陽極、照合電極および前記構造物を電位制御回路を有
する直流電源装置に接続した電気防食装置であって、こ
の直流電源装置にインターラプター回路を接続し、イン
ターラプター回路をOFFの状態とすることにより、流
電陽極から防食電流を前記構造物に流して電位と防食電
流を定常状態として流電陽極方式により防食し、インタ
ーラプター回路をONの状態とすることにより、不溶性
陽極から防食電流を流して前記構造物の電位を目標電位
に制御することにより流電陽極からの防食電流の供給を
減少あるいは停止して外部電源方式により防食する、流
電陽極方式と外部電源方式とを併用した電気防食方法。 2、外部電源方式による防食における目標電位が流電陽
極の開路電位である請求項1記載の電気防食方法。
[Scope of Claims] 1. A galvanic anode, an insoluble anode, and a reference electrode are installed in the electrolyte part of the steel structure to be protected that is in contact with the electrolyte, and a potential control circuit is provided to control the insoluble anode, the reference electrode, and the structure. A cathodic protection device connected to a DC power supply, wherein an interrupter circuit is connected to the DC power supply and the interrupter circuit is turned off to cause a corrosion protection current to flow through the structure from the galvanic anode. Corrosion is prevented by a galvanic anode method with the potential and anticorrosive current in a steady state, and by turning on the interrupter circuit, a corrosion preventing current is applied from the insoluble anode to control the potential of the structure to the target potential. A cathodic protection method that uses both a galvanic anode method and an external power supply method to prevent corrosion using an external power supply method by reducing or stopping the supply of corrosion protection current from the electrode anode. 2. The electrolytic corrosion protection method according to claim 1, wherein the target potential in corrosion protection using an external power supply method is an open circuit potential of a galvanic anode.
JP1020280A 1989-01-30 1989-01-30 Cathodic protection method using a galvanic anode system and an external power supply system together Expired - Fee Related JP2601338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1020280A JP2601338B2 (en) 1989-01-30 1989-01-30 Cathodic protection method using a galvanic anode system and an external power supply system together

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1020280A JP2601338B2 (en) 1989-01-30 1989-01-30 Cathodic protection method using a galvanic anode system and an external power supply system together

Publications (2)

Publication Number Publication Date
JPH02200787A true JPH02200787A (en) 1990-08-09
JP2601338B2 JP2601338B2 (en) 1997-04-16

Family

ID=12022756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1020280A Expired - Fee Related JP2601338B2 (en) 1989-01-30 1989-01-30 Cathodic protection method using a galvanic anode system and an external power supply system together

Country Status (1)

Country Link
JP (1) JP2601338B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121061A (en) * 2006-11-10 2008-05-29 Tokyo Gas Co Ltd Corrosion protection system and method for cathode by galvanic anode system
US7704372B2 (en) 2004-04-29 2010-04-27 Vector Corrosion Technologies Ltd. Sacrificial anode assembly
US8211289B2 (en) 2005-03-16 2012-07-03 Gareth Kevin Glass Sacrificial anode and treatment of concrete
JP2014173118A (en) * 2013-03-07 2014-09-22 Kajima Corp Method and apparatus for electrolytic protection of structure metal material
USRE45234E1 (en) 2004-11-23 2014-11-11 Vector Corrosion Technologies Ltd Cathodic protection system using impressed current and galvanic action
US8999137B2 (en) 2004-10-20 2015-04-07 Gareth Kevin Glass Sacrificial anode and treatment of concrete
JP2016113631A (en) * 2014-12-11 2016-06-23 株式会社ピーエス三菱 Electric anticorrosion method
US9598778B2 (en) 2005-03-16 2017-03-21 Gareth Glass Treatment process for concrete
JP2020015984A (en) * 2012-07-19 2020-01-30 ベクター コロージョン テクノロジーズ エルティーディー. Corrosion protection using sacrificial anode
KR20220085899A (en) * 2020-12-15 2022-06-23 주식회사 골든타임세이퍼 Cathodic protection system and the method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839346A (en) * 1971-09-27 1973-06-09
JPS5328089U (en) * 1976-08-14 1978-03-10
JPS568923U (en) * 1979-07-02 1981-01-26
JPS6254090A (en) * 1985-09-02 1987-03-09 Showa Shell Sekiyu Kk Device for electrically preventing corrosion of embedded metallic body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839346A (en) * 1971-09-27 1973-06-09
JPS5328089U (en) * 1976-08-14 1978-03-10
JPS568923U (en) * 1979-07-02 1981-01-26
JPS6254090A (en) * 1985-09-02 1987-03-09 Showa Shell Sekiyu Kk Device for electrically preventing corrosion of embedded metallic body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7704372B2 (en) 2004-04-29 2010-04-27 Vector Corrosion Technologies Ltd. Sacrificial anode assembly
USRE46862E1 (en) 2004-04-29 2018-05-22 Vector Corrosion Technologies Ltd. Sacrificial anode assembly
US8999137B2 (en) 2004-10-20 2015-04-07 Gareth Kevin Glass Sacrificial anode and treatment of concrete
USRE45234E1 (en) 2004-11-23 2014-11-11 Vector Corrosion Technologies Ltd Cathodic protection system using impressed current and galvanic action
US8211289B2 (en) 2005-03-16 2012-07-03 Gareth Kevin Glass Sacrificial anode and treatment of concrete
US9598778B2 (en) 2005-03-16 2017-03-21 Gareth Glass Treatment process for concrete
JP2008121061A (en) * 2006-11-10 2008-05-29 Tokyo Gas Co Ltd Corrosion protection system and method for cathode by galvanic anode system
JP2020015984A (en) * 2012-07-19 2020-01-30 ベクター コロージョン テクノロジーズ エルティーディー. Corrosion protection using sacrificial anode
JP2014173118A (en) * 2013-03-07 2014-09-22 Kajima Corp Method and apparatus for electrolytic protection of structure metal material
JP2016113631A (en) * 2014-12-11 2016-06-23 株式会社ピーエス三菱 Electric anticorrosion method
KR20220085899A (en) * 2020-12-15 2022-06-23 주식회사 골든타임세이퍼 Cathodic protection system and the method thereof

Also Published As

Publication number Publication date
JP2601338B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
US10494723B2 (en) System and method for providing corrosion protection of metallic structure using time varying electromagnetic wave
JPH02200787A (en) Electric corrosion protection method using together with galvanic anode system and external power source system
US5344531A (en) Prevention method of aquatic attaching fouling organisms and its apparatus
US4381981A (en) Sacrificial cathodic protection system
Bushman et al. Corrosion and cathodic protection theory
Mobin et al. Corrosion control by cathodic protection
EP3485064B1 (en) Autonomous impressed current cathodic protection device on metal surfaces with a spiral magnesium anode
Hanif et al. Comparison of Sacrificial Anode and Impressed Current Cathodic Protection Methods using Electric Resistance of Mild Steel
JP5402177B2 (en) The galvanic anode body and the galvanic anode method
CN207904371U (en) The impressed current and sacrificial anode Combined Protection device of jacket platform
KR100643005B1 (en) Hybrid anode structure for cathodic protection
JPH06173287A (en) Corrosion resistant structure for offshore steel structure
JPS6473094A (en) Method for preventing corrosion of steel structure in seawater
Ekhasomhi et al. Design of a cathodic protection system for 2,000 barrels crude oil surge tank using zinc anode
Carson Zinc as a self-regulating galvanic anode for ship hulls
CN217839138U (en) Impressed current cathodic protection system for offshore wind power single pile
JP2003286591A (en) Process for protecting corrosion of offshore structure and offshore structure
JPH0681178A (en) Electric corrosion protection device for underground buried body
JPS56119784A (en) Corrosion prevention for steel structure in ocean environment
JPS639022B2 (en)
Critchley et al. Technology Advancements for Electrochemical Protection Systems of Reinforced Concrete Structures, Across Australia
CN201321493Y (en) Large-tonnage magnesium-manganese anode
JPH06158400A (en) Descaling method for steel product surface
JP2001064788A (en) Corrosion-protective method of metal surface in contact with flowing water of water film
JPH04346683A (en) Corrosion prevention method for ocean steel structure

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees