JPS6254090A - Device for electrically preventing corrosion of embedded metallic body - Google Patents

Device for electrically preventing corrosion of embedded metallic body

Info

Publication number
JPS6254090A
JPS6254090A JP60193377A JP19337785A JPS6254090A JP S6254090 A JPS6254090 A JP S6254090A JP 60193377 A JP60193377 A JP 60193377A JP 19337785 A JP19337785 A JP 19337785A JP S6254090 A JPS6254090 A JP S6254090A
Authority
JP
Japan
Prior art keywords
solar cell
metal body
anode
metallic body
buried metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60193377A
Other languages
Japanese (ja)
Other versions
JPH0253515B2 (en
Inventor
Kiyoshi Idogaki
井戸垣 清
Kimiyoshi Tanaka
田中 公悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP60193377A priority Critical patent/JPS6254090A/en
Publication of JPS6254090A publication Critical patent/JPS6254090A/en
Publication of JPH0253515B2 publication Critical patent/JPH0253515B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the corrosion of the embedded metallic body at low cost by using a secondary cell-contg. transfer circuit and transferring the electrical protection by the external electric power source system using a solar cell as the power source to the electrical protection by a galvanic anode system in accordance with the quantity of solar radiation and always passing a necessary anticorrosive current through the embedded metallic body. CONSTITUTION:The electromotive force generated in a solar cell is passed from the positive terminal through the anode 3 for the external electric power source, the earth, an embedded metallic body 5 and a negative terminal and a closed circuit is formed Besides, the electromotive force generated between a galvanic anode 4 and the embedded metallic body 5 is passed from the galvanic anode 4 through the earth and the embedded metallic body 5 and a closed circuit is formed. When the solar radiation is avilable in the daytime, a transistor 8 is in the nonconducting state, a relay 7 is not energized, the solar cell 1 is connected to the embedded metallic body 5, and the electromotive force generated in the solar cell 1 is conducted as the anticorrosive current and simultaneously charged in a secondary cell 9 in a transfer circuit 2. When the output voltage of the solar cell 1 is decreased at night or the like, the transistor 8 is conducted, the relay 7 is energized, the terminals are transferred so that the galvanic anode 4 is connected to the embedded metallic body 5 and the anticorrosive current is conducted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地中に埋設される石油、石油化学、化成品、
ガス及び水道等の埋゛設金属体の電気防食装置に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to petroleum, petrochemical, chemical products,
This relates to cathodic protection equipment for embedded metal objects such as gas and water supplies.

〔従来の技術〕[Conventional technology]

水道管、ガス管、石油パイプ等の埋設金属体は、その近
傍に電鉄軌条があると、その軌条から漏れ電流が流入し
再び流出して軌条に帰る際電食作用を受けて損傷する。
When underground metal objects such as water pipes, gas pipes, and oil pipes are located near electric railway rails, leakage current flows from the rails, flows out again, and is damaged by electrolytic corrosion when it returns to the rails.

また、埋設個所の土質の比低抗の差に基づく埋設金属体
表面上の電位差によって局部的な、或いは長大な起電力
が生じ、埋設金属体から大地に向かって電流が流れ出し
て電食作用を受は腐食する危険にさらされる。このよう
な危険から埋設金属体を保護する方法として、一般には
、流電陽極方式や外部電源方式等の電気防食が知られて
いる。
In addition, a local or large electromotive force is generated due to the potential difference on the surface of the buried metal body due to the difference in specific resistivity of the soil at the buried location, and current flows from the buried metal body toward the ground, causing electrolytic corrosion. The receiver is at risk of corrosion. As a method for protecting buried metal bodies from such dangers, cathodic protection methods such as a galvanic anode method and an external power supply method are generally known.

流電陽極方式は、埋設金属体の近傍に例えばマグネシウ
ムのようなイオン化傾向の大なる物質を利用した流電陽
極を埋設するか、又はこの流電陽極に匹敵する流電性を
もつ低接地体を設けると共に、これらと埋設金属体とを
電気的に接続して両者間に生ずる起電力により流電陽極
から大地、埋設金属体に至る閉回路に防食電流を流して
埋設金属体の腐食を防止するものである。この方式は、
施工が簡単で、成る期間管理が不要であること、電源が
得られない場所や小規模なもの等に適用でき、経済的で
ある、というような利点を有する反面、電流流出につれ
て流電陽極が消耗するので、一定期間毎にその取り替え
が必要である、存効電圧が一定であるので、高抵抗の土
壌では発生電流が少なく実用に適しない場合がある、マ
グネシウムは高価な金属であるため発生電流コストが高
い、導体抵抗により発生電流が著しく減少する、等の欠
点を有する。
In the galvanic anode method, a galvanic anode using a material with a strong ionization tendency, such as magnesium, is buried near the buried metal body, or a low-grounding body with a current comparable to this galvanic anode is buried. At the same time, these and the buried metal body are electrically connected, and the electromotive force generated between them causes an anti-corrosion current to flow in a closed circuit from the current anode to the earth and the buried metal body, thereby preventing corrosion of the buried metal body. It is something to do. This method is
Although it has the advantages of being easy to construct, requiring no period control, and being economical as it can be applied to places where power supply is not available or small-scale projects, it has the advantage of being economical. Because it wears out, it needs to be replaced at regular intervals.Since the effective voltage is constant, the current generated in high-resistance soil is small and may not be suitable for practical use.Magnesium is an expensive metal, so it is generated. It has drawbacks such as high current cost and a significant reduction in the generated current due to conductor resistance.

他方、外部電源方式は、地中に埋設した埋設金属体と電
極との間に適当な外部直流電源例えばバッテリー等を接
続して埋設金属体に充分な値の防食電流を供給するもの
である。この方式は、電圧或いは電流を自由に調整でき
、腐食条件の変化に対応できる、陽極の不溶性が充分で
あれば半永久“的な施工ができ、経費を低減できる、等
の利点を有する反面、設置と操作が流電陽極方式より複
雑となり、設置後ある程度の監視、管理を必要とする、
イニシャルコストが高い、常時電力の供給を必要とする
、等の欠点がある。
On the other hand, in the external power supply method, a suitable external DC power source such as a battery is connected between the buried metal body buried underground and the electrode to supply a sufficient value of anti-corrosion current to the buried metal body. This method has the advantages of being able to freely adjust the voltage or current, responding to changes in corrosion conditions, and if the anode is sufficiently insoluble, it can be applied semi-permanently, reducing costs. The operation is more complicated than the galvanic anode method, and a certain amount of monitoring and management is required after installation.
It has drawbacks such as high initial cost and constant power supply.

また、最近では太陽電池を使った外部電源方式も提案さ
れている。その1つは、太陽電池をバッテリーと組み合
わせて使い、日中は太[池より、夜間はバッテリーより
それぞれ防食電流を流すように電源を切り換えるもので
あり、もう1つは、太陽電池のみで防食電流を流すよう
にしたものである。
Recently, an external power supply system using solar cells has also been proposed. One is to use a solar cell in combination with a battery, and switch the power supply so that anti-corrosion current flows from the pond during the day and from the battery at night, and the other uses solar cells alone to prevent corrosion. It is designed to allow current to flow through it.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、消防法により移送取汲所としての規制をうけ
るパイプラインでは、対地電位平均値は硫酸銅電極基準
で一850mV以下になることと定められている。
By the way, in pipelines that are regulated as transfer stations under the Fire Service Act, the average value of potential to the ground is stipulated to be 1850 mV or less based on copper sulfate electrodes.

上述の太陽電池をバッテリーと組み合わせて使う外部電
源方式では、上記の基準に合格ししかも太陽電池の分だ
けバッテリーによる負担を軽減させることはできるが、
先に述べた外部電源方式の欠点によりシステム全体が大
規模化してしまう。
The above-mentioned external power supply system that uses solar cells in combination with a battery can pass the above criteria and reduce the burden on the battery by the amount of solar cells.
Due to the drawbacks of the external power supply method mentioned above, the scale of the entire system increases.

他方、太陽電池のみによる外部電源方式では、完全には
上記基準を維持できないという問題がある。
On the other hand, an external power source system using only solar cells has a problem in that the above standards cannot be completely maintained.

第4図は太陽電池のみを外部電源として使った場合の埋
設金属体の対地電位の変化を示す図である。発明者等の
これまでの実験によると、太陽電池のみによって防食電
流を流した場合、太陽電池−二起電力が得られない期間
、即ち防食電流を中断した期間における対地電位は、埋
設金属体の違いによって防食の観点から大きな差のある
ことが判明している。それは、埋設金属体のコーティン
グの違いによるものである。
FIG. 4 is a diagram showing changes in the ground potential of a buried metal body when only a solar cell is used as an external power source. According to the inventors' previous experiments, when an anti-corrosion current is applied only by the solar cell, the potential to the ground during the period when no solar cell secondary electromotive force is obtained, that is, during the period when the anti-corrosion current is interrupted, is the same as that of the buried metal body. It has been found that there are significant differences in terms of corrosion protection depending on the difference. This is due to the difference in the coating of the buried metal body.

例えば劣化したコーティングや裸管等の場合には、防食
電流を流している間その周囲に分極が生し、防食電流を
中断した後も復極のため暫くの時間(復極時間)を要す
る。そのために、夜間だけの時間では第4図の実線で示
すようにかなりの対地電位が保持できる。従って、この
間の最低対地電位を防食に必要な値(−魚頭vA)を維
持できるように電源容量、日中の防食電流等を設定すれ
ば、太陽電池のみによる防食も可能になる。
For example, in the case of deteriorated coatings or bare tubes, polarization occurs around them while the anticorrosion current is flowing, and even after the anticorrosion current is interrupted, it takes some time (depolarization time) for depolarization. For this reason, a considerable ground potential can be maintained during nighttime only, as shown by the solid line in FIG. Therefore, if the power supply capacity, daytime corrosion protection current, etc. are set so that the lowest ground potential during this period can be maintained at the value required for corrosion protection (-fish head vA), corrosion protection using solar cells alone becomes possible.

しかし、ポリスエレン・ライニングのようなハイレベル
のコーテングを施した埋設金属体では、防食電流を流し
ている間その周囲にほとんど分極が生じないため、第4
図点線に示すように防食電流を中断した後は直ちに自然
電位に戻る。自然電位は、土壌によっても異なるが、大
体−500mV〜−600mV程度になるから、上記の
基準による防食に必要な電位に維持できないことになる
However, in buried metal objects with a high level of coating such as polyethylene lining, little polarization occurs around them while the anticorrosion current is flowing, so the quaternary
As shown by the dotted line in the figure, the potential returns to the natural potential immediately after the anticorrosion current is interrupted. Although the natural potential varies depending on the soil, it is approximately -500 mV to -600 mV, so it is impossible to maintain the potential required for corrosion protection according to the above standards.

本発明は、上記の考察に基づくものであって、ポリエチ
レン・ライニングのようなハイレベルのコーテングを施
した埋設金属体に対しても太陽電池を使って且つ簡単な
構成、低コストで防食に必要な対地電位を維持すること
が可能な埋設金属体の電気防食装置を提供することを目
的とするものである。
The present invention is based on the above considerations, and uses solar cells to provide corrosion protection with a simple configuration and low cost even for buried metal bodies with high-level coatings such as polyethylene lining. The object of the present invention is to provide a cathodic protection device for a buried metal body that can maintain a suitable ground potential.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明の埋設金属体の電気防食装置は、埋設
金属体に切り換え手段を介して太陽電池の陰(負)極及
び地中に埋設した流電陽極を接続すると共に、太陽電池
の陽(正)極を地中に埋設した電極に接続し、太陽電池
の発生電圧を検出して該発生電圧が所定値より低くなっ
たことを条件に太陽電池の陰(負)極から流電陽極へ前
記切り換え手段の接続を切り換えることを特徴とするも
のである。
For this purpose, the cathodic protection device for a buried metal body of the present invention connects the cathode (negative) electrode of the solar cell and the galvanic anode buried underground to the buried metal body through the switching means, and Connect the positive (positive) pole to an electrode buried underground, detect the voltage generated by the solar cell, and switch from the negative (negative) pole of the solar cell to the galvanic anode on the condition that the generated voltage is lower than a predetermined value. The device is characterized in that the connection of the switching means is switched.

〔作用〕[Effect]

本発明の埋設金属体の電気防食装置では、太陽電池によ
り所定の起電力が得られる場合には太陽電池を使った外
部電源法により防食電流を流し、太陽電池により所定の
起電力が得られない場合には流電陽極法により防食電流
を流すので、太陽電池のバックアップとしてのバッテリ
ー等の補助電源が不要であり、また、流電陽極の消費量
も太陽電池により防食電流を流す分少な(なる。
In the electrolytic protection device for buried metal bodies of the present invention, when a predetermined electromotive force can be obtained by the solar cell, a corrosion protection current is passed by an external power supply method using the solar cell, and when the predetermined electromotive force cannot be obtained by the solar cell. In some cases, an anti-corrosion current is passed using the galvanic anode method, so there is no need for an auxiliary power source such as a battery as a backup for the solar cell, and the consumption of the galvanic anode is also reduced by the amount of anti-corrosion current flowing through the solar cell. .

〔実施例〕〔Example〕

以下、図面を参照しつつ実施例を説明する。 Examples will be described below with reference to the drawings.

第1図は本発明に係る埋設金属体の電気防食装置の1実
施例を示す図、第2図は本発明に係る埋設金属体の電気
防食装置に適用される切り換え回路の具体的な構成例を
示す図、第3図は第2図に示す切り換え回路の動作を説
明するためのタイムチャートである。
Fig. 1 is a diagram showing one embodiment of the electrolytic protection device for buried metal bodies according to the present invention, and Fig. 2 is a specific configuration example of a switching circuit applied to the electrolytic protection device for buried metal bodies according to the present invention. FIG. 3 is a time chart for explaining the operation of the switching circuit shown in FIG. 2.

第1図において、1は太陽電池、2は切り換え回路、3
は外部電源用陽極、4は流電陽極、5は埋設金属体、6
はコンパレータ、7はリレー、8はトランジスタ、9は
二次電池、D1〜D3はダイオード、R1−R7は抵抗
、VRは調整抵抗を示す。
In Fig. 1, 1 is a solar cell, 2 is a switching circuit, and 3 is a solar cell.
is an anode for external power supply, 4 is a galvanic anode, 5 is a buried metal body, 6
is a comparator, 7 is a relay, 8 is a transistor, 9 is a secondary battery, D1 to D3 are diodes, R1 to R7 are resistors, and VR is an adjustment resistor.

埋設金属体5は、大地に埋設されたガス管や石油輸送管
等の金属体である。外部電源用陽極3は、埋設金属体5
の近傍に埋設された鉄やグラファイト、白金等よりなる
外部電源方式用の陽極であり、流電陽極4は、同じく埋
設金属体5の近傍に埋設されたマグネシウムやアルミニ
ウム、亜鉛のようなイオン化傾向の大なる物質よりなる
陽極である。
The buried metal body 5 is a metal body such as a gas pipe or an oil transport pipe buried in the ground. The external power supply anode 3 is connected to the buried metal body 5
The current anode 4 is an anode for an external power supply system made of iron, graphite, platinum, etc. buried near the buried metal body 5, and the current anode 4 is an anode for an external power source such as iron, graphite, platinum, etc. buried near the buried metal body 5. It is an anode made of a large substance.

切り換え回路2は、その具体的な構成例は後述するが、
第2図に示すように充電可能な俗称ニソカド電池等の二
次電池9を内蔵し、この二次電池9の出力電圧と太陽電
池1の出力電圧とをコンパレータ6により比較してリレ
ー7を制御するものであり、そのリレー7により太陽電
池lを埋設金属体5に接続するか、流電陽極4を埋設金
属体5に接続するかを切り換えるものである。
The specific configuration example of the switching circuit 2 will be described later, but
As shown in FIG. 2, a rechargeable secondary battery 9 such as a Nisocad battery is built in, and a comparator 6 compares the output voltage of the secondary battery 9 with the output voltage of the solar cell 1 to control a relay 7. The relay 7 is used to switch between connecting the solar cell 1 to the buried metal body 5 or connecting the galvanic anode 4 to the buried metal body 5.

従って、切り換え回路2が図示の如く太陽電池1を埋設
金属体5に接続している場合には、先に述べた外部電源
方式による回路、即ち、太陽電池1によって生ずる起電
力を利用して正の端子から外部電源用陽極3、大地、埋
設金属体5、負の端子に至る閉回路に順方向の防食電流
を流すべく構成している。反対に切り換え回路2が流電
陽極4を埋設金属体5に接続している場合には流電陽極
4と埋設金属体5との間に生ずる起電力により流順方向
の防食電流を流すべく構成している。
Therefore, when the switching circuit 2 connects the solar cell 1 to the buried metal body 5 as shown in the figure, the circuit using the external power supply method described above, that is, the electromotive force generated by the solar cell 1 is used to The structure is such that a forward anticorrosive current flows through a closed circuit from the terminal to the external power supply anode 3, the ground, the buried metal body 5, and the negative terminal. On the other hand, when the switching circuit 2 connects the current anode 4 to the buried metal body 5, it is configured to cause a corrosion protection current in the forward direction to flow due to the electromotive force generated between the current current anode 4 and the buried metal body 5. are doing.

次に切り換え回路2の具体的な構成例を説明する。切り
換え回路2は、第2図に示すようにダイオードDIを介
して太陽電池1と、二次電池9とを接続し、太陽電池1
例の電圧を抵抗R1,R2よりなる分圧回路を介して、
また、二次電池9側の電圧を抵抗R3、R4よりなる分
圧回路を介してそれぞれコンパレータ6に入力している
。コンパレータ6の出力は、前記両者の入力電圧を比較
し、太陽電池1の出力電圧が低いときはハイレベルとな
り、太陽電池1の出力電圧が二次電池の出力電圧より高
くなるとローレベルとなる。従って、第3図に示すよう
に、日中の日射量がある場合には、トランジスタ8は不
導通状態にあってリレー7は付勢されず、その接点によ
り第1図図示の如く太陽電池lを埋設金属体5に接続し
、太陽電池1によって生ずる起電力を利用して防食電流
を流すと共に二次電池9を充電する。そして、夜間或い
は曇天のために太陽電池lの出力電圧が低くなると、ト
ランジスタ8が風通してリレー7を付勢することによっ
て流電陽極4を埋設金属体5に接続するように接点を切
り換える。なお、このオン/オフ動作のチャタリングは
、調整抵抗VRを使いオフセットを設けることによって
防止できるが、太陽電池の出力電圧は、僅かな日射量で
急峻に立ち上がるので、リレー7のオン/オフ・レベル
を低く設定しておくことによってチャタリングを防止す
ることも可能である。また、切り換え電圧値は、抵抗R
1、R2よりなる分圧回路、抵抗R3、R4よりなる分
圧回路の分圧比を変えることによって調整できる。本発
明は、その他種々の変形が可能であり、上記実施例に限
定されるものではない。
Next, a specific example of the configuration of the switching circuit 2 will be explained. The switching circuit 2 connects the solar cell 1 and the secondary battery 9 via the diode DI as shown in FIG.
The example voltage is passed through a voltage divider circuit consisting of resistors R1 and R2,
Further, the voltage on the secondary battery 9 side is inputted to the comparator 6 through a voltage dividing circuit made up of resistors R3 and R4. The output of the comparator 6 compares the two input voltages, and becomes a high level when the output voltage of the solar cell 1 is low, and becomes a low level when the output voltage of the solar cell 1 becomes higher than the output voltage of the secondary battery. Therefore, as shown in FIG. 3, when there is solar radiation during the day, the transistor 8 is in a non-conducting state and the relay 7 is not energized. is connected to the buried metal body 5, and the electromotive force generated by the solar cell 1 is used to flow an anticorrosive current and charge the secondary battery 9. Then, when the output voltage of the solar cell 1 becomes low due to nighttime or cloudy weather, the transistor 8 ventilates and energizes the relay 7, thereby switching the contact so as to connect the current anode 4 to the buried metal body 5. Note that this chattering in the on/off operation can be prevented by providing an offset using the adjustment resistor VR, but since the output voltage of the solar cell rises sharply with a small amount of solar radiation, the on/off level of relay 7 It is also possible to prevent chattering by setting low. Also, the switching voltage value is determined by the resistance R
It can be adjusted by changing the voltage dividing ratio of the voltage dividing circuit made up of R1 and R2 and the voltage dividing circuit made up of resistors R3 and R4. The present invention can be modified in various other ways and is not limited to the above embodiments.

このように、日射量の多い時に二次電池9を充電し、朝
、夕、曇天時等の日射量の少ない時にはその二次電池9
を使って切り換え回路2を動作させて流電陽極4を埋設
金属体5に接続し、流電陽極により防食電流を流すので
、二次電池9を半永久的に使用できる。従って、流電陽
極方式と同様はとんどメンテナンスフリーの装置を提供
できる。
In this way, the secondary battery 9 is charged when the amount of solar radiation is high, and the secondary battery 9 is charged when the amount of solar radiation is low, such as in the morning, evening, and on cloudy days.
The switching circuit 2 is operated using the current anode to connect the current anode 4 to the buried metal body 5, and the anticorrosive current is passed through the current anode, so the secondary battery 9 can be used semi-permanently. Therefore, similar to the galvanic anode method, a nearly maintenance-free device can be provided.

しかも、マグネシウムMg等の高価な流電陽極の使用量
を例えば20年設計では100kg必要であったものが
、本発明によれば50kg程度まで低減することができ
る。
Furthermore, the amount of expensive galvanic anodes such as magnesium Mg required, for example, was 100 kg in the 2020 design, but can be reduced to about 50 kg according to the present invention.

〔発明の効果〕 以上の説明から明らかなように、本発明によれば、二次
電池を内蔵した切り換え回路を設けて日射量に応じて太
陽電池を電源とする外部電源方式による電気防食と流電
陽極方式による電気防食との切り換えを行って常時必要
な防食電流を流すようにするので、ポリエチレン・ライ
ニングのようなハイレベルのコーテングを施した埋設金
属体でも充分な防食電位に維持することができる。しか
も、流電陽極方式による電気防食の時間が短縮されるの
で、流電陽極のコストの低減を図ることができ、また、
外部電源は太陽電池のみに依存するので、全体としての
コストの低減と共にメンテナンスを容易にすることがで
きる。
[Effects of the Invention] As is clear from the above description, according to the present invention, a switching circuit with a built-in secondary battery is provided to provide cathodic protection and flow control using an external power source system using a solar cell as a power source according to the amount of solar radiation. Since the system switches between cathodic protection using the electrode anode method and constantly supplies the necessary corrosion protection current, it is possible to maintain a sufficient corrosion protection potential even in buried metal objects with high-level coatings such as polyethylene lining. can. Moreover, since the time for cathodic protection using the galvanic anode method is shortened, it is possible to reduce the cost of the galvanic anode, and
Since the external power source relies only on solar cells, overall costs can be reduced and maintenance can be facilitated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る埋設金属体の電気防食装置の1実
施例を示す図、第2図は本発明に係る埋設金属体の電気
防食装置に適用される切り換え回路の具体的な構成例を
示す図、第3図は第2図に示す切り換え回路の動作を説
明するためのタイムチャート、第4図は太陽電池のみを
外部電源として使った場合の埋設金属体の対地電位の変
化を示す図である。 1・・・太陽電池、2・・・切り換え回路、3・・・外
部電源用陽極、4・・・流電陽極、5・・・埋設金属体
、6・・・コンパレータ、7・・・リレー、8・・・ト
ランジスタ、9・・・二次電池、D1〜D3・・・ダイ
オード、R1−R7・・・抵抗、VR・・・調整抵抗。
Fig. 1 is a diagram showing one embodiment of the electrolytic protection device for buried metal bodies according to the present invention, and Fig. 2 is a specific configuration example of a switching circuit applied to the electrolytic protection device for buried metal bodies according to the present invention. Fig. 3 is a time chart to explain the operation of the switching circuit shown in Fig. 2, and Fig. 4 shows the change in ground potential of the buried metal body when only the solar cell is used as an external power source. It is a diagram. DESCRIPTION OF SYMBOLS 1... Solar cell, 2... Switching circuit, 3... Anode for external power supply, 4... Current anode, 5... Buried metal body, 6... Comparator, 7... Relay , 8...Transistor, 9...Secondary battery, D1-D3...Diode, R1-R7...Resistor, VR...Adjustment resistor.

Claims (3)

【特許請求の範囲】[Claims] (1)地中に埋設した金属管等の埋設金属体に防食電流
を流し腐食を防止する埋設金属体の電気防食装置であっ
て、埋設金属体に切り換え手段を介して太陽電池の陰(
負)極及び地中に埋設した流電陽極を接続すると共に、
太陽電池の陽(正)極を地中に埋設した電極に接続し、
太陽電池の発生電圧を検出して該発生電圧が所定値より
低くなったことを条件に太陽電池の陰(負)極から流電
陽極へ前記切り換え手段の接続を切り換えることを特徴
とする埋設金属体の電気防食装置。
(1) An electrolytic protection device for a buried metal body that prevents corrosion by passing an anticorrosion current to a buried metal body such as a metal pipe buried underground, and which connects the buried metal body to the shade of a solar cell through a switching means.
In addition to connecting the negative) electrode and the galvanic anode buried underground,
Connect the anode (positive) pole of the solar cell to an electrode buried underground,
Embedded metal characterized in that the connection of the switching means is switched from the cathode (negative) electrode of the solar cell to the current anode on the condition that the generated voltage of the solar cell is detected and the generated voltage becomes lower than a predetermined value. Body cathodic protection device.
(2)切り換え手段に補助電源を備えたことを特徴とす
る特許請求の範囲第1項記載の埋設金属体の電気防食装
置。
(2) The cathodic protection device for a buried metal body according to claim 1, characterized in that the switching means is provided with an auxiliary power source.
(3)切り換え手段は、太陽電池の発生電圧が第1の所
定値を越えたことを条件に太陽電池の陰(負)極を埋設
金属体に接続し、第2の所定値以下に低下したことを条
件に流電陽極を埋設金属体に接続することを特徴とする
特許請求の範囲第1項記載の埋設金属体の電気防食装置
(3) The switching means connects the cathode (negative) electrode of the solar cell to the buried metal body on the condition that the voltage generated by the solar cell exceeds a first predetermined value, and the voltage drops below a second predetermined value. 2. The cathodic protection device for a buried metal body according to claim 1, wherein the galvanic anode is connected to the buried metal body under the condition that:
JP60193377A 1985-09-02 1985-09-02 Device for electrically preventing corrosion of embedded metallic body Granted JPS6254090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60193377A JPS6254090A (en) 1985-09-02 1985-09-02 Device for electrically preventing corrosion of embedded metallic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60193377A JPS6254090A (en) 1985-09-02 1985-09-02 Device for electrically preventing corrosion of embedded metallic body

Publications (2)

Publication Number Publication Date
JPS6254090A true JPS6254090A (en) 1987-03-09
JPH0253515B2 JPH0253515B2 (en) 1990-11-16

Family

ID=16306905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60193377A Granted JPS6254090A (en) 1985-09-02 1985-09-02 Device for electrically preventing corrosion of embedded metallic body

Country Status (1)

Country Link
JP (1) JPS6254090A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116790A (en) * 1985-11-18 1987-05-28 Nakagawa Boshoku Kogyo Kk Electrolytic corrosion preventive device
JPH02200787A (en) * 1989-01-30 1990-08-09 Nakagawa Boshoku Kogyo Kk Electric corrosion protection method using together with galvanic anode system and external power source system
JPH03103254U (en) * 1990-02-08 1991-10-28
JP2008121061A (en) * 2006-11-10 2008-05-29 Tokyo Gas Co Ltd Corrosion protection system and method for cathode by galvanic anode system
JP2014173118A (en) * 2013-03-07 2014-09-22 Kajima Corp Method and apparatus for electrolytic protection of structure metal material
JP2020015984A (en) * 2012-07-19 2020-01-30 ベクター コロージョン テクノロジーズ エルティーディー. Corrosion protection using sacrificial anode
RU2713898C1 (en) * 2019-05-27 2020-02-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Морской государственный университет имени адмирала Г.И. Невельского" Device for cathodic protection with autonomous power supply

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177379A (en) * 1983-03-25 1984-10-08 Tokyo Gas Co Ltd Method for carrying out electric protection of article buried in ground
JPS59193283A (en) * 1983-04-14 1984-11-01 Nippon Boshoku Kogyo Kk Device for corrosion prevention using galvanic anode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177379A (en) * 1983-03-25 1984-10-08 Tokyo Gas Co Ltd Method for carrying out electric protection of article buried in ground
JPS59193283A (en) * 1983-04-14 1984-11-01 Nippon Boshoku Kogyo Kk Device for corrosion prevention using galvanic anode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116790A (en) * 1985-11-18 1987-05-28 Nakagawa Boshoku Kogyo Kk Electrolytic corrosion preventive device
JPH02200787A (en) * 1989-01-30 1990-08-09 Nakagawa Boshoku Kogyo Kk Electric corrosion protection method using together with galvanic anode system and external power source system
JPH03103254U (en) * 1990-02-08 1991-10-28
JP2008121061A (en) * 2006-11-10 2008-05-29 Tokyo Gas Co Ltd Corrosion protection system and method for cathode by galvanic anode system
JP2020015984A (en) * 2012-07-19 2020-01-30 ベクター コロージョン テクノロジーズ エルティーディー. Corrosion protection using sacrificial anode
JP2014173118A (en) * 2013-03-07 2014-09-22 Kajima Corp Method and apparatus for electrolytic protection of structure metal material
RU2713898C1 (en) * 2019-05-27 2020-02-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Морской государственный университет имени адмирала Г.И. Невельского" Device for cathodic protection with autonomous power supply

Also Published As

Publication number Publication date
JPH0253515B2 (en) 1990-11-16

Similar Documents

Publication Publication Date Title
US5139634A (en) Method of use of dual bed cathodic protection system with automatic controls
CN108411308B (en) Buried pipeline cathode protection device and method
US5594313A (en) Solar cell system
US5026468A (en) Dual bed cathodic protection system with automatic controls
JPS6254090A (en) Device for electrically preventing corrosion of embedded metallic body
US4381981A (en) Sacrificial cathodic protection system
US4437957A (en) Cathodic or anodic protection system and method for independently protecting different regions of a structure
USH1644H (en) Method and apparatus for providing continuous cathodic protection by solar power
RU2713898C1 (en) Device for cathodic protection with autonomous power supply
JPS6324076B2 (en)
CN109371402A (en) A kind of adjustable cathodic protection by rectifier system
JPH0931675A (en) Electric corrosion protection method using multiple booster type anodic protection and device therefor
Bashi et al. Cathodic protection system
CN209759593U (en) Metal material anti-corrosion device under seawater environment based on magnetic field assistance
Schwalm et al. Stray current--the major cause of underground plant corrosion
CA1038331A (en) Anticorrosive circuit for a buried structure
JPH07316850A (en) Corrosion preventive method by solar battery
Husock The effect of electrical grounding systems on underground corrosion and cathodic protection
Mohammed et al. Design and implementation of an impressed current cathodic protection system for buried metallic pipes (part II)(considering Al-Quds gas station in Baghdad)
JP3135776B2 (en) Galvanic anode method
Sen et al. Corrosion and steel grounding
KR102556808B1 (en) Cathodic protection system and the method thereof
Korupp Photovoltaic Powered Cathodic Corrosion Protection Systems With Advanced System Technologies
JPH07286289A (en) Electric protection method
JPS59177379A (en) Method for carrying out electric protection of article buried in ground

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees