JPS6324076B2 - - Google Patents

Info

Publication number
JPS6324076B2
JPS6324076B2 JP58065949A JP6594983A JPS6324076B2 JP S6324076 B2 JPS6324076 B2 JP S6324076B2 JP 58065949 A JP58065949 A JP 58065949A JP 6594983 A JP6594983 A JP 6594983A JP S6324076 B2 JPS6324076 B2 JP S6324076B2
Authority
JP
Japan
Prior art keywords
solar cell
current
galvanic anode
corrosion
corrosion protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58065949A
Other languages
Japanese (ja)
Other versions
JPS59193283A (en
Inventor
Junkichi Ooyama
Tomoyoshi Chiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Corrosion Engineering Co Ltd
Original Assignee
Nippon Corrosion Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Corrosion Engineering Co Ltd filed Critical Nippon Corrosion Engineering Co Ltd
Priority to JP58065949A priority Critical patent/JPS59193283A/en
Publication of JPS59193283A publication Critical patent/JPS59193283A/en
Publication of JPS6324076B2 publication Critical patent/JPS6324076B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus

Description

【発明の詳細な説明】 この発明は、新規な流電陽極防食装置の提供に
係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the provision of a novel galvanic anodic protection device.

電解質にある金属、主に鋼構造物に対する電気
防食法は流電陽極方式と外部電源方式に大別され
る。それぞれ一長一短あり、環境・条件により使
い分けられている。
Cathodic protection methods for metals in electrolytes, mainly steel structures, are broadly divided into galvanic anode methods and external power supply methods. Each has advantages and disadvantages, and is used depending on the environment and conditions.

すなわち、第1図は流電陽極方式の説明図で、
図示の如く、土壌3中にある防食対象物1に同じ
く土壌3中に埋設の流電陽極2を電気的に接続さ
せるもので、流電陽極2としては、マグネシウム
系、亜鉛系、アルミニウム系の三種類の合金が広
く実用されているが、その大よその固有電位(硫
酸銅電極基準)はそれぞれ―1.6V,―1.0V,―
1.1Vで、これと対象物の電位、例えば、鋼材で
あれば―0.5Vとの差により電流が発生し、これ
が防食電流となる。
In other words, Figure 1 is an explanatory diagram of the galvanic anode method.
As shown in the figure, a galvanic anode 2, which is also buried in the soil 3, is electrically connected to a corrosion protection target 1 in the soil 3, and the galvanic anode 2 is made of magnesium, zinc, or aluminum. Three types of alloys are widely used, and their approximate characteristic potentials (based on copper sulfate electrodes) are -1.6V, -1.0V, and -, respectively.
The voltage is 1.1V, and the difference between this potential and the potential of the object, for example -0.5V in the case of steel, generates a current, which becomes the anti-corrosion current.

これら合金の電位は組成にもとづく固有のもの
で、その値は人為的には殆ど変えられない。例え
ば電気比抵抗の高い土壌では最も電位の大きいマ
グネシウム陽極以外は殆ど実用出来ず、この場合
は条件によつては使用本数や寸法を変えることで
調節することが必要となる。重ねて現行のマグネ
シウム陽極は固有の理論発生電気量のうち約50%
が有効電気量として利用されるに過ぎない。陽極
表面の電流密度が小さくなればこの効率は更に悪
くなる。
The potential of these alloys is unique based on their composition, and its value can hardly be changed artificially. For example, in soils with high electrical resistivity, only magnesium anodes with the highest potential can be used, and in this case, depending on the conditions, it may be necessary to adjust the number and size of the anodes used. Furthermore, current magnesium anodes only produce about 50% of the theoretical amount of electricity generated.
is only used as an effective quantity of electricity. This efficiency becomes worse as the current density on the anode surface becomes smaller.

又、第2図は外部電源方式の説明図で、図中6
は耐久性電極、4は防食対象物1と該耐久性電極
6との間に介装の直流電源装置、5は交流入力を
夫々示す。
Also, Figure 2 is an explanatory diagram of the external power supply system, and 6 in the figure
Reference numeral 4 indicates a durable electrode, 4 indicates a DC power supply device interposed between the corrosion-protected object 1 and the durable electrode 6, and 5 indicates an AC input.

この外部電源方式の場合は直流電源装置4の出
力電圧を任意に変えることにより電流を調整しう
る利点があるが常時電源電力の消費をともない、
比較的頻繁な管理も必要である。
In the case of this external power supply method, there is an advantage that the current can be adjusted by arbitrarily changing the output voltage of the DC power supply device 4, but it always consumes power from the power supply.
Relatively frequent management is also required.

また、交流電源の遠隔な場合はその配線費用が
多額のものとなる。また通例使用される耐久性電
極6(グラフアイト、高珪素鉄、磁性酸化鉄等)
では分解電圧を越えるため約3V以上の電圧が必
要となる。
Furthermore, if the AC power source is remote, the wiring costs will be large. Also commonly used durable electrodes 6 (graphite, high silicon iron, magnetic iron oxide, etc.)
In order to exceed the decomposition voltage, a voltage of approximately 3V or more is required.

本願発明は、上述の事情に鑑み、かくの如き二
つの従来施工例の難点を除き常時有効な防食電流
を供結出来る如くしたもので、その特徴とすると
ころは、ソーラーセルを共用することにより、従
来、土壌中での使用に難点のあつたアルミニウム
合金陽極を使用して土壌又は電解質中の鋼又は金
属構造物を電気防食するとした点にある。
In view of the above-mentioned circumstances, the present invention has been developed to eliminate the drawbacks of the two conventional construction examples and to be able to provide a constantly effective anti-corrosion current. This method uses an aluminum alloy anode, which has conventionally been difficult to use in soil, to provide electrolytic protection for steel or metal structures in soil or electrolyte.

以下、これを実施例図にもとづいて詳細に説明
する。
Hereinafter, this will be explained in detail based on embodiment figures.

すなわち、第3図に示す如く、土壌3中の防食
対象物1の近傍に流電陽極2を埋設する。流電陽
極2はマグネシウム合金系、亜鉛合金系、アルミ
ニウム合金系の何れでもよいが、アルミニウム系
が好ましい。その理由はアルミニウム系のものが
最も電流効率がよく、云いかえれば流出電流によ
る消耗量が3種類の陽極の中で最も少ないからで
ある。1アンペア・年当りの消耗量を参考のため
に記すとマグネシウム8.0Kg/Ay、亜鉛11.2Kg/
Ay、アルミ3.5Kg/Ayとなる。
That is, as shown in FIG. 3, a galvanic anode 2 is buried near the object 1 to be protected from corrosion in the soil 3. The galvanic anode 2 may be made of magnesium alloy, zinc alloy, or aluminum alloy, but aluminum is preferable. The reason for this is that aluminum-based anodes have the highest current efficiency, or in other words, the amount of consumption due to outflow current is the least among the three types of anodes. For reference, the consumption per ampere/year is 8.0Kg/Ay of magnesium, 11.2Kg/Ay of zinc.
Ay, aluminum 3.5Kg/Ay.

これら流電陽極2を設置する場合は、陽極の均
一消耗と接地抵抗の低減のために、陽極の周囲に
ベントナイト、石膏、芒硝等の混合物からなるバ
ツクフイル材による充填を行うのがよい。
When installing these galvanic anodes 2, it is preferable to fill the area around the anode with a backfill material made of a mixture of bentonite, gypsum, mirabilite, etc., in order to uniformly wear out the anode and reduce ground resistance.

次に、この流電陽極2からのリード線を、防食
対象物1の一部に接続する。その回路に直列にソ
ーラーセル7を挿入接続する。この際ソーラーセ
ル7の+側端子を流電陽極2側に、−側端子を対
象物1側とする。ソーラーセル7の設置場所は日
照時間の最も長くなる場所と方向を選定すべきで
ある。ソーラーセル7の出力特性は防食対象物、
環境などを考慮して選定する。さらにソーラーセ
ル7と並列に接点リレー8を接続する。
Next, the lead wire from this galvanic anode 2 is connected to a part of the object 1 to be protected from corrosion. A solar cell 7 is inserted and connected in series to the circuit. At this time, the + side terminal of the solar cell 7 is placed on the galvanic anode 2 side, and the - side terminal is placed on the object 1 side. The installation location of the solar cell 7 should be selected in the location and direction where the sunlight hours are the longest. The output characteristics of the solar cell 7 are as follows:
Make selections taking into account factors such as the environment. Further, a contact relay 8 is connected in parallel with the solar cell 7.

このリレー8はソーラーセル7が作働するとき
開路となり、ソーラーセル7が作働しないとき閉
路となる性能を持つものとする。あるいは接点リ
レー8の代りに正方向に内部抵抗の出来るだけ低
いダイオード9を接続してもよい。
This relay 8 has the ability to be open when the solar cell 7 is activated and closed when the solar cell 7 is not activated. Alternatively, instead of the contact relay 8, a diode 9 having as low an internal resistance as possible may be connected in the positive direction.

しかして、第3図に示した装置において、ソー
ラーセル7に日照を受けると、ソーラーセル7か
らの発電電力は流電陽極2を通じて防食対象物1
表面に流入し、電気防食効果が挙がる。電極面に
おける分解電圧は必要とせず、ソーラーセル7と
流電陽極2双方の起電力の相和が全部、電流を流
すための有効電圧として働くようになる。
Therefore, in the device shown in FIG.
It flows to the surface and has a cathodic protection effect. No decomposition voltage is required at the electrode surface, and the sum of the electromotive forces of both the solar cell 7 and the galvanic anode 2 acts as an effective voltage for current flow.

次に日照のない場合は流電陽極2自体の起電力
に応じた電流が流れ、この電流は日照時より低下
はするが、日照時に挙がつた防食作用の残存効果
もあり防食効果の低下はそれ程大きくはない。日
照のない場合、流電陽極2からの発生電流はソー
ラーセル7に並列に接続されたリレー8あるいは
ダイオード9を通過して流れる。尚、従来、ソー
ラーセル利用に不可欠とされていた電池の併用は
必要ない。
Next, when there is no sunlight, a current flows according to the electromotive force of the galvanic anode 2 itself, and although this current is lower than when there is sunlight, there is also a residual effect of the anticorrosion effect that was mentioned during sunlight, so the anticorrosion effect does not decrease. It's not that big. In the absence of sunlight, the current generated from the galvanic anode 2 flows through a relay 8 or a diode 9 connected in parallel to the solar cell 7. Note that it is not necessary to use a battery in combination, which was conventionally considered indispensable for the use of solar cells.

以上の説明にて明らかな如く、本発明によると
従来土壌或いは比抵抗の高い環境で使用し難かつ
た流電陽極を電流効率よく使用出来、かつ交流電
源も不要となり、経済的にも非常に有利であり、
流電陽極方式のみでは効果の不充分な土中に埋設
されている鋼構造物、例えばガソリンスタンドの
タンク、ガス・水道などの配管の防食、交流電源
の得難い地域例えば山岳地帯・砂漠などにおける
鉄塔脚・配管などの防食に使用されて極めて好適
である。
As is clear from the above explanation, according to the present invention, it is possible to use current current anodes, which were conventionally difficult to use in soil or high resistivity environments, with high current efficiency, and there is no need for an AC power source, which is very economical. advantageous;
Corrosion protection for steel structures buried in the ground where galvanic anode methods alone are insufficiently effective, such as gas station tanks, gas and water pipes, and steel towers in areas where AC power is difficult to obtain, such as mountainous areas and deserts. It is extremely suitable for use in corrosion protection for legs, piping, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来方式による電気防食法の
説明図、第3図は本発明の防食装置の説明図であ
る。 1……防食対象物、2……流電陽極、3……土
壌、7……ソーラーセル、8……リレー、9……
ダイオード。
FIGS. 1 and 2 are explanatory diagrams of a conventional cathodic protection method, and FIG. 3 is an explanatory diagram of a corrosion protection device of the present invention. 1... Corrosion protection target, 2... Galvanic anode, 3... Soil, 7... Solar cell, 8... Relay, 9...
diode.

Claims (1)

【特許請求の範囲】 1 土壌中または電解質中における金属構造物
の、流電陽極方式による防食装置において、該金
属構造物と流電陽極の間に直列に太陽電池を接続
し、流電陽極の発生電流と太陽電池の出力電流と
が重畳して防食効果を向上せしめる防食回路を構
成する太陽電池併用流電陽極防食装置。 2 土壌中または電解質中における金属構造物
の、流電陽極方式による防食装置において、該金
属構造物と流電陽極の間に直列に太陽電池を接続
し、流電陽極の発生電流と太陽電池の出力電流と
が重畳して防食効果を向上せしめる防食回路を構
成し、さらに同上防食回路に太陽電池と並列に逆
流防止継電装置あるいはダイオードを接続し、太
陽電池不動作時には、流電陽極の発生電流のみに
よる防食効果を維持する太陽電池併用流電陽極防
食装置。
[Claims] 1. A galvanic anode corrosion protection device for metal structures in soil or electrolyte, in which a solar cell is connected in series between the metal structure and the galvanic anode, and the galvanic anode is A current galvanic anodic protection device combined with a solar cell that forms a corrosion protection circuit in which the generated current and the output current of the solar cell are superimposed to improve the corrosion protection effect. 2. In a galvanic anode corrosion protection device for metal structures in soil or electrolyte, a solar cell is connected in series between the metal structure and the galvanic anode, and the current generated by the galvanic anode and the solar cell are An anti-corrosion circuit is configured in which the output current is superimposed with the output current to improve the anti-corrosion effect, and a backflow prevention relay or diode is connected in parallel with the solar cell to the same anti-corrosion circuit, and when the solar cell is not operating, a current anode is generated. Galvanic anode corrosion protection equipment combined with solar cells that maintains the corrosion protection effect using only electric current.
JP58065949A 1983-04-14 1983-04-14 Device for corrosion prevention using galvanic anode Granted JPS59193283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58065949A JPS59193283A (en) 1983-04-14 1983-04-14 Device for corrosion prevention using galvanic anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58065949A JPS59193283A (en) 1983-04-14 1983-04-14 Device for corrosion prevention using galvanic anode

Publications (2)

Publication Number Publication Date
JPS59193283A JPS59193283A (en) 1984-11-01
JPS6324076B2 true JPS6324076B2 (en) 1988-05-19

Family

ID=13301732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58065949A Granted JPS59193283A (en) 1983-04-14 1983-04-14 Device for corrosion prevention using galvanic anode

Country Status (1)

Country Link
JP (1) JPS59193283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066655A (en) * 2015-09-29 2017-04-06 デンカ株式会社 Cross-section repair method of concrete structure

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254090A (en) * 1985-09-02 1987-03-09 Showa Shell Sekiyu Kk Device for electrically preventing corrosion of embedded metallic body
JPS62116790A (en) * 1985-11-18 1987-05-28 Nakagawa Boshoku Kogyo Kk Electrolytic corrosion preventive device
JP4638635B2 (en) * 2001-09-25 2011-02-23 新日本製鐵株式会社 Sacrificial electrode and cathodic protection method
GB0409521D0 (en) 2004-04-29 2004-06-02 Fosroc International Ltd Sacrificial anode assembly
CA2488298C (en) 2004-11-23 2008-10-14 Highline Mfg. Inc. Bale processor with grain mixing attachment
JP4796939B2 (en) * 2006-11-10 2011-10-19 東京瓦斯株式会社 Cathodic protection system using cathodic anode method and cathodic protection method
JP5345795B2 (en) * 2008-03-07 2013-11-20 東京瓦斯株式会社 Cathodic protection system, cathodic protection method, and galvanic anode generation current stabilizer
RU2713898C1 (en) * 2019-05-27 2020-02-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Морской государственный университет имени адмирала Г.И. Невельского" Device for cathodic protection with autonomous power supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066655A (en) * 2015-09-29 2017-04-06 デンカ株式会社 Cross-section repair method of concrete structure

Also Published As

Publication number Publication date
JPS59193283A (en) 1984-11-01

Similar Documents

Publication Publication Date Title
USRE46862E1 (en) Sacrificial anode assembly
US2565544A (en) Cathodic protection and underground metallic structure embodying the same
JP2892449B2 (en) Magnesium alloy for galvanic anode
JPS6324076B2 (en)
Levlin Aeration cell corrosion of carbon steel in soil: In situ monitoring cell current and potential
CN106320336B (en) The corrosion protection apparatus and its application method at marine environment steel-pipe pile Tidal zone position
CN205039503U (en) Anticorrosive device of communication pipe
Mobin et al. Corrosion control by cathodic protection
KR100643005B1 (en) Hybrid anode structure for cathodic protection
CN209759593U (en) Metal material anti-corrosion device under seawater environment based on magnetic field assistance
JPH0931675A (en) Electric corrosion protection method using multiple booster type anodic protection and device therefor
CN201587982U (en) Solar bridge steelwork protector
JPS6254090A (en) Device for electrically preventing corrosion of embedded metallic body
Janowski et al. ICCP cathodic protection of tanks with photovoltaic power supply
JPS6319322Y2 (en)
Sen et al. Corrosion and steel grounding
JPH0681178A (en) Electric corrosion protection device for underground buried body
JPS60128272A (en) Electrolytic protection
JPS5852159B2 (en) Cooling water intake equipment for heat exchanger
US3560359A (en) Corrosion protection
JP2773971B2 (en) Magnesium alloy for galvanic anode
WO2022097194A1 (en) Structure management system
KR200263742Y1 (en) To protect caustic apparatus of snap tap with saddle
Karabacak et al. Using solar energy in galvanic anode cathodic protection systems
JP3135777B2 (en) Galvanic anode system, constant voltage type automatic cathodic protection method