JPS59193283A - Device for corrosion prevention using galvanic anode - Google Patents

Device for corrosion prevention using galvanic anode

Info

Publication number
JPS59193283A
JPS59193283A JP58065949A JP6594983A JPS59193283A JP S59193283 A JPS59193283 A JP S59193283A JP 58065949 A JP58065949 A JP 58065949A JP 6594983 A JP6594983 A JP 6594983A JP S59193283 A JPS59193283 A JP S59193283A
Authority
JP
Japan
Prior art keywords
corrosion
anode
current
solar cell
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58065949A
Other languages
Japanese (ja)
Other versions
JPS6324076B2 (en
Inventor
Junkichi Ooyama
大山 潤吉
Tomoyoshi Chiba
千葉 智祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Corrosion Engineering Co Ltd
Original Assignee
Nippon Corrosion Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Corrosion Engineering Co Ltd filed Critical Nippon Corrosion Engineering Co Ltd
Priority to JP58065949A priority Critical patent/JPS59193283A/en
Publication of JPS59193283A publication Critical patent/JPS59193283A/en
Publication of JPS6324076B2 publication Critical patent/JPS6324076B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus

Abstract

PURPOSE:To obtain a galvanic anode corrosion preventing device for electrically preventing the corrosion of a steel or metallic structure existent in soil or an electrolyte using an Al alloy which has been difficult to use in soil so far, by conjointly using a solar cell. CONSTITUTION:When a solar cell 7 accepts sunlight, electric power generated by the solar cell 7 flows through a sacrified anode 2 into the surface layer of an object to be corrosion prevented existent in soil 3, to heighten the effect of electric corrosion prevention. Hereon, the lump sum of the electromotive forces of the cell 7 and the anode 2 wholly act as effective voltage for applying an electric current without the need of decomposition voltage on the surface of the electrode. In case without sunshine, an electric current corresponding to the electromotive force of the anode 2 itself is applied. Said electric current is smaller than that during sunshine, but the reduction of the corrosion preventive effect is not too large because of the residual corrosion preventive effect which has been heightened during the sunshine. In addition, in the case without sunshine, an electric current generated by the electrode 2 flows through a relay 3 or a diode 9 connected in parallel with the cell 7. Hence, the conjoint use of a battery which has been considered as indispensable heretofore in using a solar cell is not necessary.

Description

【発明の詳細な説明】 この発明は、新規な流電陽極防食装置の提供に係わる。[Detailed description of the invention] The present invention relates to the provision of a novel galvanic anodic protection device.

電解質にある金属、主に鋼構造物に対する電気防食法は
流電陽極方式と外部電源方式に大別される。それぞれ一
長一短あり、環境・条件により使い分けられている。
Cathodic protection methods for metals in electrolytes, mainly steel structures, are broadly divided into galvanic anode methods and external power supply methods. Each has advantages and disadvantages, and is used depending on the environment and conditions.

すなわち、第1図は流電陽極方式の説明図で。In other words, Figure 1 is an explanatory diagram of the galvanic anode method.

図示の如く、土壌3中にある防食対象物1に同じく土壌
3中に埋設の流電陽極2を電気的に接続させるもので、
流電陽極2としては、マグネシウム系、亜鉛系、アルミ
ニウム系の三種類の合金が広く実用されているが、その
大よその固有電位(硫酸銅電極基準)はそれぞれ−1,
6V、 −1,OV。
As shown in the figure, a galvanic anode 2, which is also buried in the soil 3, is electrically connected to a corrosion protection target 1 in the soil 3.
Three types of alloys, magnesium, zinc, and aluminum, are widely used as the galvanic anode 2, and their approximate characteristic potentials (based on copper sulfate electrodes) are -1 and 1, respectively.
6V, -1,OV.

−1,IVで、これと対象物の電位9例えば、鋼材であ
れば−0,5Vとの差により電流が発生し、これが防食
電流となる。
-1.IV, a current is generated due to the difference between this and the potential 9 of the object, for example, -0.5V in the case of steel, and this becomes a corrosion protection current.

これら合金の電位は組成にもとづく固有のもので、その
値は人為的には殆ど変えられない。 例えば電気比抵抗
の高い土壌では最も電位の大きいマグネシウム陽極以外
は殆ど実用出来ず、この場合は条件によっては使用本数
や寸法を変えることで調節することが必要となる。 重
ねて現行のマグネシウム陽極は固有の理論発生電気量の
うち約50%が有効電気量として利用されるに過ぎない
The potential of these alloys is unique based on their composition, and its value can hardly be changed artificially. For example, in soils with high electrical resistivity, only magnesium anodes with the highest potential can be used, and in this case it may be necessary to adjust the number and size of anodes depending on the conditions. In addition, with the current magnesium anode, only about 50% of the inherent theoretical amount of electricity generated is utilized as an effective amount of electricity.

陽極表面の電流密度が小さくなればこの効率は更に悪く
なる。
This efficiency becomes worse as the current density on the anode surface becomes smaller.

又、第2図は外部電源方式の説明図で2図中6は耐久性
電極、4は防食対象物1と該耐久性電極6との間に介装
の直流電源装置、5は交流入力を夫々示す。
In addition, Fig. 2 is an explanatory diagram of the external power supply system, and in Fig. 2, 6 is a durable electrode, 4 is a DC power supply device interposed between the corrosion protection object 1 and the durable electrode 6, and 5 is an AC input. Show each.

この外部電源方式の場合は直流電源装置4の出力電圧を
任意に変えることにより電流を調整しうる利点があるが
常時電源電力の消費をともない。
This external power supply method has the advantage that the current can be adjusted by arbitrarily changing the output voltage of the DC power supply device 4, but it always consumes power from the power supply.

比較的頻繁な管理も必要である。Relatively frequent management is also required.

また、交流電源の遠隔な場合はその配線費用が多額のも
のとなる。また通例使用される耐久性電極6(グラファ
イト高珪素鉄、磁性酸化鉄等)では分解電圧を越えるた
め約3■以上の電圧が必要となる。
Furthermore, if the AC power source is remote, the wiring costs will be large. In addition, the commonly used durable electrode 6 (graphite high silicon iron, magnetic iron oxide, etc.) requires a voltage of about 3 cm or more to exceed the decomposition voltage.

本願発明は、上述の事情に鑑み、かくの如き二つの従来
施工例の難点を除き常時有効な防食電流を供給出来る如
くしたもので、その特徴とするところは、ソーラーセル
を共用することにより、従来、土壌中での使用に難点の
あったアルミニウム合金陽極を使用して土壌又は電解質
中の鋼又は金属構造物を電気防食するとした点にある。
In view of the above-mentioned circumstances, the present invention has been developed to eliminate the drawbacks of the two conventional construction examples and to be able to supply an effective anti-corrosion current at all times. The purpose of this invention is to use an aluminum alloy anode, which has conventionally been difficult to use in soil, to provide electrolytic protection for steel or metal structures in soil or electrolyte.

以下、これを実施例図にもとづいて詳細に説明する。Hereinafter, this will be explained in detail based on embodiment figures.

すなわち、第3図に示す如く、土壌3中の防食対象物1
の近傍に流電陽極2を埋設する。 流電陽極2はマグネ
シウム合金系、亜鉛合金系、アルミニウム合金系の何れ
でもよいが、アルミニウム系が好ましい。 その理由は
アルミニウム系のものが最も電流効率がよく、云いかえ
れば流出電流による消耗量が3種類の陽極の中で最も少
ないからである。  1アンペア・年当りの消耗量を参
考のために記すとマグネシウム8.0 kg / A 
y 、亜鉛11.2kg/A)’、アルミ3.5kg/
Ayとなる。
That is, as shown in FIG. 3, the corrosion protection object 1 in the soil 3
A galvanic anode 2 is buried near the. The galvanic anode 2 may be made of magnesium alloy, zinc alloy, or aluminum alloy, but aluminum is preferable. The reason for this is that aluminum-based anodes have the highest current efficiency, or in other words, the amount of consumption due to outflow current is the least among the three types of anodes. For reference, the amount of consumption per ampere/year is 8.0 kg/A of magnesium.
y, zinc 11.2 kg/A)', aluminum 3.5 kg/
It becomes Ay.

これら流電陽極2を設置する場合は、陽極の均一消耗と
接地抵抗の低減のために、陽極の周囲にベントナイト石
膏、芒硝等の混合物からなるバンクフィル材による充填
を行うのがよい。
When these galvanic anodes 2 are installed, it is preferable to fill the area around the anode with a bank fill material made of a mixture of bentonite gypsum, mirabilite, etc., in order to uniformly wear out the anode and reduce ground resistance.

次に、この流電陽極2からのリード線を、防食対象物1
の一部に接続する。 その回路に直列にソーラーセルフ
を挿入接続する。 この際ソーラーセルフの+側端子を
流電陽極2側に、−側端子を対象物1例とする。 ソー
ラーセルフの設置場所は日照時間の最も長くなる場所と
方向を選定すべきである。 ソーラーセルフの出力特性
は防食対象物、環境などを考慮して選定する。 さらに
ソーラーセルフと並列に接点リレー8を接続する。
Next, connect the lead wire from this galvanic anode 2 to the corrosion protection target 1.
Connect to some part of. Insert and connect the solar self in series to that circuit. At this time, the + side terminal of the solar self is placed on the galvanic anode 2 side, and the - side terminal is used as an example of an object. The location and direction of solar self-installation should be selected where the sunlight hours are the longest. The output characteristics of the solar self are selected taking into consideration the object to be protected against corrosion, the environment, etc. Furthermore, a contact relay 8 is connected in parallel with the solar self.

このリレー8はソーラーセルフが作動するとき開路とな
り、ソーラーセルフが作動しないとき閉路となる性能を
持つものとする。 あるいは接点リレー8の代りに正方
向に内部抵抗の出来るだけ低いダイオード9を接続して
もよい。
This relay 8 has the ability to open when the solar self operates and close when the solar self does not operate. Alternatively, instead of the contact relay 8, a diode 9 having as low an internal resistance as possible may be connected in the positive direction.

しかして、第3図に示した装置において、ソーラーセル
フに日照を受けると、ソーラーセルフからの発電電力は
流電陽極2を通じて防食対象物1表面に流入し、電気防
食効果が挙がる。 電極面における分解電圧は必要とせ
ず、ソーラーセルフと流電陽極2双方の起電力の相和が
全部、電流を流すための有効電圧として働くようになる
In the apparatus shown in FIG. 3, when the solar self receives sunlight, the electric power generated by the solar self flows into the surface of the object 1 to be protected from corrosion through the galvanic anode 2, thereby increasing the electrolytic protection effect. No decomposition voltage is required at the electrode surface, and the sum of the electromotive forces of both the solar self and the current anode 2 acts as an effective voltage for current flow.

次に日照のない場合は流電陽極2自体の起電力に応じた
電流が流れ、この電流は日照時より低下はするが9日照
時に挙がった防食作用の残存効果もあり防食効果の低下
はそれ程大きくはない。
Next, when there is no sunlight, a current flows according to the electromotive force of the galvanic anode 2 itself, and although this current is lower than when there is sunlight, there is also a residual effect of the anticorrosion effect that was mentioned during sunlight, so the decrease in the anticorrosion effect is not that much. It's not big.

日照のない場合、流電陽極2からの発生電流はソーラー
セルフに並列に接続されたリレー8あるいはダイオード
9を通過して流れる。 尚5従来。
In the absence of sunlight, the current generated from the galvanic anode 2 flows through the relay 8 or diode 9 connected in parallel to the solar self. 5 Conventional.

ソーラーセル利用に不可欠とされていた電池の併用は必
要ない。
There is no need to use batteries together, which was considered essential when using solar cells.

以上の説明にて明らかな如く1本発明によると従来土壌
或いは比抵抗の高い環境で使用し難かった流電陽極を電
流効率よく使用出来、かつ交流電源も不要となり、経済
的にも非常に有利であり。
As is clear from the above explanation, 1. According to the present invention, a galvanic anode, which was conventionally difficult to use in soil or a high resistivity environment, can be used with high current efficiency, and an AC power source is not required, which is very economically advantageous. Yes.

流電陽極方式のみでは効果の不充分な土中に埋設されて
いる鋼構造物1例えばガソリンスタンドのタンク、ガス
・水道などの配管の防食、交流電源の得難い地域例えば
山岳地帯・砂漠などにおける鉄塔脚・配管などの防食に
使用されて極めて好適である。
Galvanic anode method alone is not effective enough for steel structures buried in the soil 1 For example, corrosion protection of gas station tanks, gas and water pipes, steel towers in areas where AC power is difficult to obtain, such as mountainous areas and deserts. It is extremely suitable for use in corrosion protection for legs, piping, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来方式による電気防食法の説明図、
第3図は本発明の防食装置の説明図である。 1・・・防食対象物、2・・・流電陽極、3・・・土壌
、7・・・ソーラーセル、8・・・リレー、9・・・ダ
イオード ズ2γ層 グツ“zkの ・−4丁・ 455−
Figures 1 and 2 are explanatory diagrams of conventional cathodic protection methods;
FIG. 3 is an explanatory diagram of the anticorrosion device of the present invention. 1... Corrosion protection target, 2... Galvanic anode, 3... Soil, 7... Solar cell, 8... Relay, 9... Diode's 2γ layer gear "zk's -4" Ding・455-

Claims (1)

【特許請求の範囲】 ω 土壌中または電解質中における金属構造物の2流電
@極方式による防食装置において、該金属構造物と流電
陽極の間に直列に太陽電池を接続し、流電陽極の発生電
流と太陽電池の出力電流とが重畳して防食効果を向上せ
しめる防食回路を構成する太陽電池併用流電陽極防食装
置。 (2)土壌中または電解質中における金属構造物の、流
電陽極方式による防食装置において、該金属構造物と流
電陽極の間に直列に太陽電池を接続し、流電陽極の発生
電流と太陽電池の出力電流とが重畳して防食効果を向上
せしめる防食回路を構成し、さらに同」二防食回路に太
陽電池と並列に逆流防止継電装置あるいはダイオードを
接続し、太陽電池不動作時には、流電陽極の発生電流の
みによる防食効果を維持する太陽電池併用流電陽極防食
装置。
[Claims] ω In a corrosion protection device using a two current current @ electrode method for a metal structure in soil or an electrolyte, a solar cell is connected in series between the metal structure and a current current anode, and the current current anode A galvanic anode corrosion protection device combined with a solar cell that constitutes a corrosion protection circuit in which the generated current and the output current of the solar cell are superimposed to improve the corrosion protection effect. (2) In a galvanic anode corrosion protection device for metal structures in soil or electrolyte, a solar cell is connected in series between the metal structure and the galvanic anode, and the current generated by the galvanic anode is An anti-corrosion circuit is constructed in which the output current of the battery is superimposed to improve the anti-corrosion effect, and a backflow prevention relay or diode is connected in parallel with the solar cell to the same anti-corrosion circuit to prevent current from flowing when the solar cell is not operating. A galvanic anode corrosion protection device combined with solar cells that maintains the corrosion protection effect only by the current generated by the anode.
JP58065949A 1983-04-14 1983-04-14 Device for corrosion prevention using galvanic anode Granted JPS59193283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58065949A JPS59193283A (en) 1983-04-14 1983-04-14 Device for corrosion prevention using galvanic anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58065949A JPS59193283A (en) 1983-04-14 1983-04-14 Device for corrosion prevention using galvanic anode

Publications (2)

Publication Number Publication Date
JPS59193283A true JPS59193283A (en) 1984-11-01
JPS6324076B2 JPS6324076B2 (en) 1988-05-19

Family

ID=13301732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58065949A Granted JPS59193283A (en) 1983-04-14 1983-04-14 Device for corrosion prevention using galvanic anode

Country Status (1)

Country Link
JP (1) JPS59193283A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254090A (en) * 1985-09-02 1987-03-09 Showa Shell Sekiyu Kk Device for electrically preventing corrosion of embedded metallic body
JPS62116790A (en) * 1985-11-18 1987-05-28 Nakagawa Boshoku Kogyo Kk Electrolytic corrosion preventive device
JP2003096582A (en) * 2001-09-25 2003-04-03 Nippon Steel Corp Sacrificial electrode and electrolytic protection method
JP2007534847A (en) * 2004-04-29 2007-11-29 ファスロック.インターナショナル.リミテッド Sacrificial anode assembly
JP2008121061A (en) * 2006-11-10 2008-05-29 Tokyo Gas Co Ltd Corrosion protection system and method for cathode by galvanic anode system
JP2009215579A (en) * 2008-03-07 2009-09-24 Tokyo Gas Co Ltd Cathodic corrosion-preventing system and cathodic corrosion-preventing method using galvanic anode system, and device for stabilizing electric current generated by galvanic anode
USRE45234E1 (en) 2004-11-23 2014-11-11 Vector Corrosion Technologies Ltd Cathodic protection system using impressed current and galvanic action
RU2713898C1 (en) * 2019-05-27 2020-02-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Морской государственный университет имени адмирала Г.И. Невельского" Device for cathodic protection with autonomous power supply

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6636761B2 (en) * 2015-09-29 2020-01-29 デンカ株式会社 Cross-section restoration method for concrete structures

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253515B2 (en) * 1985-09-02 1990-11-16 Showa Shell Sekiyu
JPS6254090A (en) * 1985-09-02 1987-03-09 Showa Shell Sekiyu Kk Device for electrically preventing corrosion of embedded metallic body
JPS62116790A (en) * 1985-11-18 1987-05-28 Nakagawa Boshoku Kogyo Kk Electrolytic corrosion preventive device
JP4638635B2 (en) * 2001-09-25 2011-02-23 新日本製鐵株式会社 Sacrificial electrode and cathodic protection method
JP2003096582A (en) * 2001-09-25 2003-04-03 Nippon Steel Corp Sacrificial electrode and electrolytic protection method
JP4801051B2 (en) * 2004-04-29 2011-10-26 ファスロック.インターナショナル.リミテッド Sacrificial anode assembly
JP2011208284A (en) * 2004-04-29 2011-10-20 Fosroc Internatl Ltd Sacrificial anode assembly
JP2007534847A (en) * 2004-04-29 2007-11-29 ファスロック.インターナショナル.リミテッド Sacrificial anode assembly
EP2267186A3 (en) * 2004-04-29 2013-08-14 Vector Corrosion Technologies Ltd Sacrificial anode assembly
EP1749119B1 (en) * 2004-04-29 2016-06-01 Vector Corrosion Technologies Ltd Sacrificial anode assembly
USRE46862E1 (en) 2004-04-29 2018-05-22 Vector Corrosion Technologies Ltd. Sacrificial anode assembly
USRE45234E1 (en) 2004-11-23 2014-11-11 Vector Corrosion Technologies Ltd Cathodic protection system using impressed current and galvanic action
JP2008121061A (en) * 2006-11-10 2008-05-29 Tokyo Gas Co Ltd Corrosion protection system and method for cathode by galvanic anode system
JP2009215579A (en) * 2008-03-07 2009-09-24 Tokyo Gas Co Ltd Cathodic corrosion-preventing system and cathodic corrosion-preventing method using galvanic anode system, and device for stabilizing electric current generated by galvanic anode
RU2713898C1 (en) * 2019-05-27 2020-02-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Морской государственный университет имени адмирала Г.И. Невельского" Device for cathodic protection with autonomous power supply

Also Published As

Publication number Publication date
JPS6324076B2 (en) 1988-05-19

Similar Documents

Publication Publication Date Title
Doche et al. Characterization of different grades of aluminum anodes for aluminum/air batteries
JP5575062B2 (en) Sacrificial anode assembly
US2565544A (en) Cathodic protection and underground metallic structure embodying the same
JPS59193283A (en) Device for corrosion prevention using galvanic anode
JP2892449B2 (en) Magnesium alloy for galvanic anode
US3368952A (en) Alloy for cathodic protection galvanic anode
CN106320336B (en) The corrosion protection apparatus and its application method at marine environment steel-pipe pile Tidal zone position
USH1644H (en) Method and apparatus for providing continuous cathodic protection by solar power
CN205039503U (en) Anticorrosive device of communication pipe
US2913384A (en) Aluminum anodes
Mobin et al. Corrosion control by cathodic protection
KR100643005B1 (en) Hybrid anode structure for cathodic protection
CN201587982U (en) Solar bridge steelwork protector
CN206110127U (en) Corrosion protection device at marine environment steel -pipe pile tidal range district position
CN209759593U (en) Metal material anti-corrosion device under seawater environment based on magnetic field assistance
Schwalm et al. Stray current--the major cause of underground plant corrosion
Janowski et al. ICCP cathodic protection of tanks with photovoltaic power supply
JPH0681178A (en) Electric corrosion protection device for underground buried body
JPS5852159B2 (en) Cooling water intake equipment for heat exchanger
JPS6319322Y2 (en)
CN217398997U (en) Anti-corrosion protection device
Sen et al. Corrosion and steel grounding
JP3135777B2 (en) Galvanic anode system, constant voltage type automatic cathodic protection method
JPS59177379A (en) Method for carrying out electric protection of article buried in ground
KR102556808B1 (en) Cathodic protection system and the method thereof