JPH06158333A - Adhesive and printed circuit board - Google Patents

Adhesive and printed circuit board

Info

Publication number
JPH06158333A
JPH06158333A JP31040792A JP31040792A JPH06158333A JP H06158333 A JPH06158333 A JP H06158333A JP 31040792 A JP31040792 A JP 31040792A JP 31040792 A JP31040792 A JP 31040792A JP H06158333 A JPH06158333 A JP H06158333A
Authority
JP
Japan
Prior art keywords
heat
fine powder
adhesive
resin
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31040792A
Other languages
Japanese (ja)
Other versions
JP3115435B2 (en
Inventor
Satoko Tani
聡子 谷
Motoo Asai
元雄 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP04310407A priority Critical patent/JP3115435B2/en
Publication of JPH06158333A publication Critical patent/JPH06158333A/en
Application granted granted Critical
Publication of JP3115435B2 publication Critical patent/JP3115435B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To almost prevent the cracking of the adhesive layer of a printed circuit board and the peeling of the plating even in a cryogenic cycle test by using an adhesive contg. heat resistant fine powder having thermal expansion characteristics close to those of a metal for plating. CONSTITUTION:Inorg. powder is coated with epoxy resin and pulverized to form heat resistant fine powder having <=3mum average particle diameter and 60 pts.wt. phenol-novolak type epoxy resin, 40 pts.wt. bisphenol A type epoxy resin, 4 pts.wt. imidazole curing agent and butyl cellosolve as a solvent are added to 50 pts.wt. of the fine powder. They are kneaded to prepare an adhesive soln. and this soln. is applied to a glass-epoxy substrate and dried to form an adhesive layer having 20mum thickness. The surface of this adhesive layer is activated, subjected to electroless Cu plating in 25mum thickness and further subjected to Cu electroplating in 35mum thickness in a copper sulfate plating bath to obtain the objective printed circuit board.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無電解めっきに使用す
る接着剤、およびこの接着剤を用いたプリント配線板に
関するものであり、特に、熱膨張率が低く、かつ無電解
めっき膜との密着性に優れる接着剤層として好適な無電
解めっき用接着剤、およびこの接着剤を用いた信頼性の
高いプリント配線板ついて提案する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adhesive used for electroless plating, and a printed wiring board using this adhesive, and particularly to a low thermal expansion coefficient and an electroless plated film. We propose an electroless plating adhesive suitable as an adhesive layer having excellent adhesion, and a highly reliable printed wiring board using this adhesive.

【0002】[0002]

【従来の技術】近年、電子工業の進歩に伴い電子機器の
小型化あるいは高速化が進められており、このためプリ
ント配線板やLSIを実装する配線板に対してもファイ
ンパターンによる高密度化および高い信頼性が要求され
ている。
2. Description of the Related Art In recent years, with the progress of the electronic industry, electronic devices have been reduced in size and increased in speed. For this reason, a printed circuit board and a wiring board on which an LSI is mounted have a high density and a fine pattern. High reliability is required.

【0003】従来、プリント配線板に導体回路を形成す
る方法としては、基板に銅箔を積層した後、フォトエッ
チングすることにより、導体回路を形成するエッチドフ
ォイル方法が広く行われている。この方法によれば、基
板との密着性に優れた導体回路を形成することができる
が、コスト高になること、銅箔の厚さが厚いためにエッ
チングにより高精度のファインパターンが得難いという
欠点があり、さらに製造工程も複雑で効率が良くないな
どの問題がある。
Conventionally, as a method for forming a conductor circuit on a printed wiring board, an etched foil method for forming a conductor circuit by laminating a copper foil on a substrate and then photoetching has been widely used. According to this method, it is possible to form a conductor circuit having excellent adhesion to the substrate, but the cost is high, and it is difficult to obtain a highly precise fine pattern by etching because the copper foil is thick. In addition, there is a problem that the manufacturing process is complicated and the efficiency is low.

【0004】このため、最近、配線板に導体を形成する
方法として、ジエン系合成ゴムを含む接着剤を基板表面
に塗布して接着剤層を形成し、この接着剤層の表面を粗
化した後、無電解めっきを施して導体を形成するアディ
ティブ法が採用されている。しかしながら、この方法の
下で使用されている接着剤は、合成ゴムを含むため、例
えば高温時に密着強度が大きく低下したり、ハンダ付け
の際に無電解めっき膜がふくれるなど耐熱性が低いこ
と、表面抵抗などの電気特性が充分でないことなど問題
があり、使用範囲がかなり制限されている。
Therefore, recently, as a method of forming a conductor on a wiring board, an adhesive containing diene-based synthetic rubber was applied to the substrate surface to form an adhesive layer, and the surface of the adhesive layer was roughened. After that, an additive method of applying electroless plating to form a conductor is adopted. However, since the adhesive used under this method contains synthetic rubber, it has a low heat resistance such as a large decrease in adhesion strength at high temperature, or a swelling of the electroless plating film during soldering, There are problems such as insufficient electrical properties such as surface resistance, and the range of use is considerably limited.

【0005】これに対し、発明者らは、先に、無電解め
っきを施すための接着剤が有する前述の如き欠点を解消
し、耐熱性,電気特性および無電解めっき膜との密着性
に優れ、かつ比較的容易に実施できる接着剤およびこの
接着剤を用いた配線板の製造方法を提案した(特開昭61
−276875号公報参照)。すなわち、発明者らが提案した
この従来技術は、酸化剤に対して可溶性の予め硬化処理
された耐熱性樹脂粉末が、硬化処理することにより酸化
剤に対して難溶性となる特性を有する未硬化の耐熱性樹
脂液中に分散されてなる接着剤、およびこの接着剤を基
板に塗布した後、乾燥硬化して接着剤層を形成させ、前
記接着剤層の表面部分に分散している上記微粉末の少な
くとも一部を溶解除去して接着剤層の表面を粗化し、次
いで無電解めっきを施すことを特徴とする配線板の製造
方法である。
On the other hand, the present inventors previously solved the above-mentioned drawbacks of the adhesive for applying electroless plating, and were excellent in heat resistance, electric characteristics and adhesion to the electroless plated film. In addition, an adhesive which is relatively easy to carry out and a method for manufacturing a wiring board using this adhesive have been proposed (Japanese Patent Laid-Open No. Sho 61-61).
-276875 gazette). That is, the conventional technique proposed by the inventors is such that an uncured resin powder having a property that a pre-cured heat-resistant resin powder that is soluble in an oxidant is hardly soluble in the oxidant when subjected to a curing treatment. Of the heat-resistant resin liquid, and after applying the adhesive to a substrate, it is dried and cured to form an adhesive layer, and the above-mentioned fine particles dispersed on the surface portion of the adhesive layer. In this method, at least a part of the powder is dissolved and removed to roughen the surface of the adhesive layer, and then electroless plating is performed.

【0006】この従来技術によれば、上記接着剤は、予
め硬化処理された耐熱性樹脂微粉末が耐熱性樹脂液中に
分散されており、この接着剤を基板に塗布し乾燥硬化さ
せるとマトリックスを形成する耐熱性樹脂中に耐熱性樹
脂微粉末が均一に分散した状態の接着剤層が形成され
る。そして、前記耐熱性樹脂微粉末と耐熱性樹脂マトリ
ックスとは酸化剤に対する溶解性に差異があるため、前
記接着剤層を酸化剤で処理することにより、接着剤層の
表面部分に分散している微粉末が主として溶解除去され
る。その結果、接着剤層の表面には均一なアンカー窪み
が形成され、接着剤層と無電解めっき膜との密着性が向
上する。
According to this prior art, in the above-mentioned adhesive, the heat-resistant resin fine powder which has been preliminarily cured is dispersed in the heat-resistant resin liquid, and when this adhesive is applied to the substrate and dried and cured, the matrix is formed. The heat-resistant resin fine powder is uniformly dispersed in the heat-resistant resin forming the adhesive layer. Since the heat-resistant resin fine powder and the heat-resistant resin matrix have different solubilities with respect to an oxidizing agent, they are dispersed on the surface portion of the adhesive layer by treating the adhesive layer with an oxidizing agent. The fine powder is mainly dissolved and removed. As a result, uniform anchor depressions are formed on the surface of the adhesive layer, and the adhesiveness between the adhesive layer and the electroless plating film is improved.

【0007】[0007]

【発明が解決しようとする課題】ところで、発明者等が
提案した上記接着剤は、酸あるいは酸化剤に可溶性であ
る硬化処理済みの耐熱性樹脂微粉末として、汎用的で容
易に入手でき、しかも、耐薬品性,耐熱性,電気特性お
よび硬度に優れる樹脂であるエポキシ樹脂微粉末を採用
し使用してきた。
By the way, the above-mentioned adhesives proposed by the present inventors are general-purpose and easily available as hardened heat-resistant resin fine powder which is soluble in acid or oxidizing agent, and , Epoxy resin fine powder, which is a resin with excellent chemical resistance, heat resistance, electrical characteristics and hardness, has been used.

【0008】しかしながら、樹脂単体を耐熱性微粉末と
して用いる上記接着剤からなる接着剤層は、無電解めっ
き膜に比べて熱膨張率が高い。そのため、この接着剤層
上にめっき膜を施して導体回路を形成したプリント配線
板を冷熱サイクル試験に供すると、接着剤層にクラック
が生じたり、また、めっき膜が剥がれやすいという未解
決の課題があることが判った。
However, the adhesive layer made of the above-mentioned adhesive using a resin simple substance as the heat resistant fine powder has a higher coefficient of thermal expansion than the electroless plated film. Therefore, when a printed wiring board having a conductor circuit formed by applying a plating film on this adhesive layer is subjected to a thermal cycle test, cracks may occur in the adhesive layer, and the plating film is likely to peel off, which is an unsolved problem. It turns out that there is.

【0009】さらに、樹脂単体を耐熱性微粉末として用
いる上記接着剤からなる接着剤層は、それに分散された
樹脂微粉末が、酸や酸化剤(粗化液)に可溶であること
から、アンカー形成時の樹脂溶出量を多くし、酸や酸化
剤(粗化液)の劣化(酸化力の低下)を助長するという
問題もあった。
Further, since the resin fine powder dispersed therein is soluble in an acid or an oxidizing agent (roughening liquid), the adhesive layer composed of the above-mentioned adhesive using a resin simple substance as the heat resistant fine powder, There is also a problem that the amount of resin eluted during anchor formation is increased, which promotes deterioration of acid and oxidizing agent (roughening liquid) (decrease in oxidizing power).

【0010】本発明の目的は、従来技術が抱える上記問
題を克服することにあり、特に、無電解めっき膜と同程
度の熱膨張率を有し、かつ冷熱サイクル試験の如き環境
下にあっても無電解めっき膜との密着性に優れる,接着
剤、およびこの接着剤を用いたプリント配線板を提供す
ることにある。
An object of the present invention is to overcome the above problems of the prior art, and in particular, it has a coefficient of thermal expansion similar to that of an electroless plating film and is in an environment such as a thermal cycle test. Another object of the present invention is to provide an adhesive having excellent adhesion to an electroless plating film, and a printed wiring board using this adhesive.

【0011】[0011]

【課題を解決するための手段】発明者らは、上記目的の
実現に向け、主として接着剤中の耐熱性微粉末に着目し
鋭意研究を続けた結果、アンカー形成能に優れ、かつめ
っき金属と同程度の熱膨張特性を示す耐熱性微粉末とし
て、無機粉末を酸あるいは酸化剤に対して可溶性である
耐熱性樹脂で被覆したものが有効であることを見出し、
本発明に想到した。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the inventors of the present invention have conducted extensive studies focusing mainly on the heat-resistant fine powder in the adhesive, and as a result, have found that the anchor forming ability is excellent and the plating metal is As a heat-resistant fine powder showing similar thermal expansion characteristics, it was found that an inorganic powder coated with a heat-resistant resin soluble in an acid or an oxidant is effective.
The present invention was conceived.

【0012】すなわち、本発明の特徴は、耐熱性微粉末
を、硬化処理が施された場合には酸あるいは酸化剤に対
して難溶性となる特性を示す未硬化の耐熱性樹脂マトリ
ックス中に分散させてなる接着剤において、上記耐熱性
微粉末として、無機粉末を酸あるいは酸化剤に対して可
溶性である硬化処理済の耐熱性樹脂で被覆してなるもの
を用いることにあり、この接着剤は、シート状またはプ
リプレグ状にて提供されることが好ましい。
That is, a feature of the present invention is that the heat-resistant fine powder is dispersed in an uncured heat-resistant resin matrix which exhibits a property of being hardly soluble in an acid or an oxidizing agent when subjected to a curing treatment. In the adhesive obtained, as the heat resistant fine powder, an inorganic powder coated with a cured heat resistant resin that is soluble in an acid or an oxidizing agent is used. It is preferably provided in the form of a sheet or a prepreg.

【0013】そして、本発明のプリント配線板は、上記
の接着剤を用いる点に特徴を有するものであって、その
要旨とするところは、少なくとも一方の基板表面に、耐
熱性微粉末を、硬化処理された場合に酸あるいは酸化剤
に対して難溶性である特性を示す未硬化の耐熱性樹脂マ
トリックス中に分散させてなる接着剤を塗布して、接着
剤層を設け、その上に導体回路を設けてなるプリント配
線板において、上記耐熱性微粉末として、無機粉末を酸
あるいは酸化剤に対して可溶性である硬化処理済の耐熱
性樹脂で被覆してなるものを用いるところにある。
The printed wiring board of the present invention is characterized in that the above-mentioned adhesive is used. The gist of the printed wiring board is to cure heat-resistant fine powder on at least one substrate surface. An adhesive layer, which is dispersed in an uncured heat-resistant resin matrix that exhibits a property of being sparingly soluble in an acid or an oxidant when treated, is applied to form an adhesive layer on which a conductor circuit is formed. In the printed wiring board provided with, the heat resistant fine powder is obtained by coating the heat resistant fine powder of an inorganic powder with a heat resistant resin that is soluble in an acid or an oxidant.

【0014】[0014]

【作用】本発明の接着剤によれば、樹脂マトリックス中
に分散されている無機粉末を樹脂で被覆してなる耐熱性
微粉末の熱膨張率は、有機樹脂単体からなる耐熱性微粉
末に比べて低く、ほぼめっき金属の熱膨張特性と等しく
なることが判った。そのため、この耐熱性微粉末を所定
量分散させてなる接着剤層は、無電解めっき膜と同程度
の熱膨張率を示すようになる。その結果、プリント配線
板の冷熱サイクル試験を行った場合でも、急熱,急冷時
に起こる接着剤層の収縮差や膨張差が小さくなり、接着
剤層のクラック発生やめっき膜の剥がれが生じにくくな
る。
According to the adhesive of the present invention, the coefficient of thermal expansion of the heat-resistant fine powder obtained by coating the resin with the inorganic powder dispersed in the resin matrix is higher than that of the heat-resistant fine powder made of the organic resin alone. It was found that the thermal expansion characteristics were almost the same as those of the plated metal. Therefore, the adhesive layer in which the heat-resistant fine powder is dispersed in a predetermined amount exhibits a thermal expansion coefficient similar to that of the electroless plating film. As a result, even when the thermal cycle test of the printed wiring board is performed, the difference in shrinkage or difference in expansion of the adhesive layer that occurs during rapid heating and rapid cooling becomes small, and cracking of the adhesive layer and peeling of the plating film do not occur easily. .

【0015】また、無電解めっきは高い温度域で行われ
ることから、樹脂単体からなる耐熱性微粉末を分散させ
てなる接着剤の場合、無電解めっきは、熱膨張した状態
の接着剤層上に施されてしまう。その結果、無電解めっ
きの冷却時に、無電解めっき層と接着剤層との間の破壊
が起こりやすくなる。この点、本発明の接着剤によれ
ば、無機粉末を樹脂で被覆した耐熱性微粉末を分散させ
るので、このような接着剤を用いてなる接着剤層は、無
電解めっき膜との熱膨張差を小さくすることができ、ひ
いては上述した熱膨張差に起因する破壊が起こりにくく
なる。
Further, since the electroless plating is carried out in a high temperature range, in the case of an adhesive in which heat resistant fine powder made of a simple resin is dispersed, the electroless plating is performed on the adhesive layer in a thermally expanded state. Will be applied to. As a result, during cooling of the electroless plating, breakage between the electroless plating layer and the adhesive layer is likely to occur. In this respect, according to the adhesive of the present invention, since the heat-resistant fine powder in which the inorganic powder is coated with the resin is dispersed, the adhesive layer using such an adhesive has a thermal expansion coefficient with the electroless plating film. The difference can be reduced, and consequently, the above-mentioned destruction due to the difference in thermal expansion hardly occurs.

【0016】さらに、接着剤層の表面粗化に当たって
は、本発明の耐熱性微粉末を構成する耐熱性樹脂皮膜は
粗化液に可溶であり、一方、無機粉末は粗化液に不溶で
あるので、耐熱性微粉末は、耐熱性樹脂皮膜のみが溶解
して無機微粉末となり、接着剤層から容易に脱落する。
このことから、本発明の接着剤によれば、樹脂単体から
なる耐熱性微粉末を溶解除去してアンカーを形成してい
た従来技術に比べて、溶解除去される樹脂量が大幅に減
少するので、アンカー形成が容易となる。しかも、粗化
液への溶出樹脂量が減少することにより、粗化液の劣化
を抑制でき、粗化液の寿命を大幅に改善することができ
る。
Further, in roughening the surface of the adhesive layer, the heat-resistant resin film constituting the heat-resistant fine powder of the present invention is soluble in the roughening liquid, while the inorganic powder is insoluble in the roughening liquid. Therefore, in the heat-resistant fine powder, only the heat-resistant resin film is dissolved to become the inorganic fine powder, which easily falls off from the adhesive layer.
From this, according to the adhesive of the present invention, the amount of resin to be dissolved and removed is significantly reduced as compared with the prior art in which the heat-resistant fine powder made of a resin alone is dissolved and removed to form the anchor. The anchor formation becomes easy. Moreover, since the amount of resin eluted into the roughening liquid is reduced, deterioration of the roughening liquid can be suppressed, and the life of the roughening liquid can be significantly improved.

【0017】なお、本発明にかかる接着剤については、
シート状またはプリプレグ状にて提供することにより、
無電解めっき性を損なうことなく、プリント配線板を容
易にかつ安価に得ることができるようになる。
Regarding the adhesive according to the present invention,
By providing in sheet or prepreg form,
The printed wiring board can be easily and inexpensively obtained without impairing the electroless plating property.

【0018】このように、本発明の接着剤を配線板に適
用した場合の効果について説明したが、この接着剤は、
他の分野においても適用できるものである。
As described above, the effect of applying the adhesive of the present invention to a wiring board has been described.
It is also applicable in other fields.

【0019】本発明の接着剤において、無機粉末を耐熱
性樹脂にて被覆してなる上記耐熱性微粉末は、熱膨張率
が低く、耐熱性と電気絶縁性に優れ、通常の薬品に対し
て安定であることが要求される。そのためには、無機粉
末を被覆する耐熱性樹脂は、硬化処理した場合に、マト
リックスを構成する耐熱性樹脂液あるいはこの樹脂を溶
解する溶剤には難溶であり、クロム酸酸化剤には易溶で
ある特性を具備する樹脂である必要性から、アミノ樹脂
やエポキシ樹脂などが好ましく、なかでもアミン系硬化
剤で硬化させたエポキシ樹脂やメラミン樹脂は特性的に
も優れており最も好適である。また、無機粉末は、低い
熱膨張率および電気絶縁性の必要性から、アルミナやシ
リカ,ジルコニアなどが好ましく、なかでもシリカが好
適である。また、前記耐熱性樹脂は、予め硬化処理され
ていることが必要である。この理由は、硬化処理されて
いない場合、後述するメチルエチルケトンなどの溶剤を
用いて接着剤を希釈すると溶解してしまうためである。
In the adhesive of the present invention, the above-mentioned heat-resistant fine powder obtained by coating an inorganic powder with a heat-resistant resin has a low coefficient of thermal expansion, is excellent in heat resistance and electric insulation, and is resistant to ordinary chemicals. It is required to be stable. To this end, the heat-resistant resin coating the inorganic powder is hardly soluble in the heat-resistant resin liquid that constitutes the matrix or the solvent that dissolves this resin when it is cured, and is easily soluble in the chromic acid oxidizing agent. From the necessity of being a resin having the following characteristics, amino resins and epoxy resins are preferable, and among them, epoxy resins and melamine resins cured with an amine-based curing agent are the most preferable because they have excellent characteristics. In addition, the inorganic powder is preferably alumina, silica, zirconia, or the like, and silica is particularly preferable because of its low coefficient of thermal expansion and electrical insulation. Further, the heat resistant resin needs to be previously cured. The reason for this is that if the adhesive is not cured, it will dissolve if the adhesive is diluted with a solvent such as methyl ethyl ketone described later.

【0020】なお、前記無機粉末を耐熱性樹脂で被覆し
た耐熱性微粉末は、例えば、無機粉末を耐熱性樹脂溶
液に浸漬する湿式処理により、無機粉末表面に樹脂を付
着させ、その後、この付着樹脂を硬化してなる塊状物を
粉砕し、必要に応じて分級すること、無機粉末および
耐熱性樹脂微粉末を気相中に分散させながら、これらの
粉末に衝撃力を主体とする機械的熱的エネルギーを付与
する乾式処理により、無機粉末表面に耐熱性樹脂微粉末
を付着させ、その後、この付着樹脂を加熱硬化し、成膜
化すること、によって得られる。
The heat-resistant fine powder obtained by coating the inorganic powder with a heat-resistant resin is, for example, a wet process of immersing the inorganic powder in a heat-resistant resin solution to adhere the resin to the surface of the inorganic powder, and then the adhesion. The lumps formed by curing the resin are crushed and classified as necessary, while the inorganic powder and the heat-resistant resin fine powder are dispersed in the gas phase, the mechanical heat mainly caused by impact force is applied to these powders. The heat-resistant resin fine powder is adhered to the surface of the inorganic powder by a dry process that imparts specific energy, and then the adhered resin is heated and cured to form a film.

【0021】ここで、無機粉末と耐熱性樹脂との割合
は、体積率で、無機粉末に耐熱性樹脂を被覆した微粉末
に対する無機粉末の割合が10〜90%であることが望まし
い。この理由は、無機成分の割合が90%より多いと、う
まく溶解せず明確なアンカーが形成されないからであ
る。一方、無機成分の割合が10%より少ないと、無機粉
末によって接着剤の熱膨張率を低下させる効果が十分に
得られないからである。
Here, the ratio of the inorganic powder to the heat resistant resin is preferably a volume ratio, and the ratio of the inorganic powder to the fine powder obtained by coating the inorganic powder with the heat resistant resin is 10 to 90%. The reason for this is that if the proportion of the inorganic component is more than 90%, it will not dissolve well and a clear anchor will not be formed. On the other hand, if the proportion of the inorganic component is less than 10%, the effect of reducing the thermal expansion coefficient of the adhesive by the inorganic powder cannot be sufficiently obtained.

【0022】このようにして得られる耐熱性微粉末の形
状は、図1(a) 〜(d) に示すように、球形だけでなく各
種の複雑な形状を有しており、なかでも(b) の形状で、
上記体積率が大きいほど望ましい。この理由は、無機含
量が多く熱膨張率低下効果が大きいのみならず、アンカ
ーの形成が容易だからである。なお、無機粉末は、少な
くとも酸あるいは酸化剤に可溶性の耐熱性樹脂皮膜で被
覆されていることが必要である。
The shape of the heat-resistant fine powder thus obtained is not only spherical but also various complicated shapes as shown in FIGS. 1 (a) to 1 (d). ) Shape,
The larger the volume ratio, the more desirable. The reason for this is that not only is the inorganic content high and the effect of lowering the coefficient of thermal expansion large, but also the formation of anchors is easy. The inorganic powder needs to be coated with a heat-resistant resin film that is soluble in at least an acid or an oxidizing agent.

【0023】上述の如くして調製された耐熱性微粉末
は、固形分で、耐熱性樹脂マトリックスに対して、10〜
100 重量部を混合することが望ましい。この理由は、こ
の微粉末の配合量が10重量部より少ないと、熱膨張率が
低いとともに溶解除去して形成されるアンカーが明確に
形成されないからである。一方、微粉末の配合量が100
重量部よりも多くなると、接着剤層の熱膨張率が無電解
めっき層のそれと同程度に改善できるものの、接着剤層
表面が多孔質になるため、却って接着剤層と無電解めっ
き膜の密着強度(ピール強度)が低下してしまうからで
ある。
The heat-resistant fine powder prepared as described above has a solid content of 10 to 10 with respect to the heat-resistant resin matrix.
It is desirable to mix 100 parts by weight. The reason for this is that if the amount of the fine powder blended is less than 10 parts by weight, the coefficient of thermal expansion is low and the anchor formed by dissolution and removal is not clearly formed. On the other hand, the amount of fine powder is 100
If the amount is more than the weight part, the coefficient of thermal expansion of the adhesive layer can be improved to the same level as that of the electroless plating layer, but since the adhesive layer surface becomes porous, the adhesion between the adhesive layer and the electroless plating film This is because the strength (peel strength) is reduced.

【0024】また、このような耐熱性微粉末の粒度は、
平均粒径が10μm以下であることが好ましく、特に5μ
m以下であることが好適である。その理由は、平均粒径
が10μmより大きいと、溶解除去して形成されるアンカ
ーの密度が小さくなり、かつ不均一になりやすいため、
密着強度とその信頼性が低下する。しかも、接着剤層表
面の凹凸が激しくなるので、導体の微細パターンが得に
くく、かつ部品などを実装する上でも好ましくないから
である。
The particle size of such heat-resistant fine powder is
The average particle size is preferably 10 μm or less, especially 5 μm
It is preferably m or less. The reason for this is that if the average particle size is larger than 10 μm, the density of the anchors formed by dissolution and removal will be low, and it tends to be non-uniform,
Adhesion strength and its reliability decrease. Moreover, since the unevenness of the surface of the adhesive layer becomes severe, it is difficult to obtain a fine pattern of the conductor, and it is not preferable for mounting components and the like.

【0025】次に、耐熱性微粉末を分散させる耐熱性樹
脂マトリックスとしては、耐熱性,電気絶縁性,化学的
安定性および接着性に優れ、かつ硬化処理することによ
り酸化剤に対して難溶性となる特性を示す樹脂を使用す
ることができる。なかでも、未硬化の多官能性エポキシ
樹脂または未硬化の2官能性エポキシ樹脂のいずれかで
ある熱硬化性耐熱樹脂を用い、固形分で、20〜100 wt%
の未硬化の多官能性エポキシ樹脂と0〜80wt%の未硬化
の2官能性エポキシ樹脂との混合物を用いることが好ま
しい。この理由は、未硬化の多官能性エポキシ樹脂の固
形分が20wt%より少ないと、接着剤の硬度が低下する
他、耐薬品性の低下を招くからである。
Next, the heat-resistant resin matrix in which the heat-resistant fine powder is dispersed has excellent heat resistance, electrical insulation, chemical stability and adhesiveness, and is hardly soluble in an oxidizer when cured. Resins exhibiting the following characteristics can be used. Above all, a thermosetting heat-resistant resin, which is either an uncured polyfunctional epoxy resin or an uncured difunctional epoxy resin, is used, and the solid content is 20 to 100 wt%.
It is preferred to use a mixture of the uncured polyfunctional epoxy resin of 0 to 80 wt% of the uncured difunctional epoxy resin. The reason for this is that if the solid content of the uncured polyfunctional epoxy resin is less than 20 wt%, the hardness of the adhesive will be reduced and the chemical resistance will be reduced.

【0026】また、この耐熱性樹脂マトリックスとして
は、感光性樹脂であってもよい。特に、未硬化の多官
能性エポキシ樹脂,未硬化の多官能性のアクリル基を
有する樹脂,および未硬化の多官能性アクリル樹脂か
ら選ばれる少なくとも1種の感光性耐熱樹脂、もしく
は、これらの樹脂と未硬化の2官能性エポキシ樹脂,
および未硬化の2官能性アクリル樹脂から選ばれる少
なくとも1種の感光性耐熱樹脂との混合樹脂からなるも
のの使用が可能である。上記樹脂の組成は、固形分で、
20〜100 wt%の,未硬化の多官能性エポキシ樹脂,
未硬化の多官能性のアクリル基を有する樹脂,および
未硬化の多官能性アクリル樹脂から選ばれる少なくとも
1種の感光性耐熱樹脂と、0〜80wt%の,未硬化の2
官能性エポキシ樹脂,および未硬化の2官能性アクリ
ル樹脂から選ばれる少なくとも1種の感光性耐熱樹脂と
の混合樹脂とすることが好ましい。
The heat resistant resin matrix may be a photosensitive resin. In particular, at least one photosensitive heat-resistant resin selected from uncured polyfunctional epoxy resin, uncured polyfunctional acrylic group-containing resin, and uncured polyfunctional acrylic resin, or these resins And uncured bifunctional epoxy resin,
It is also possible to use a resin composed of a mixed resin with at least one photosensitive heat-resistant resin selected from an uncured bifunctional acrylic resin. The composition of the resin is solid content,
20 to 100 wt% of uncured polyfunctional epoxy resin,
At least one photosensitive heat-resistant resin selected from uncured polyfunctional acrylic group-containing resin and uncured polyfunctional acrylic resin, and 0 to 80 wt% of uncured 2
It is preferable to use a mixed resin of a functional epoxy resin and at least one photosensitive heat-resistant resin selected from an uncured bifunctional acrylic resin.

【0027】なお、上記耐熱性樹脂マトリックスの硬化
剤としては、DICY, アミン系硬化剤, 酸無水物およびイ
ミダゾール系硬化剤などを使用することができる。特
に、耐熱性樹脂マトリックスがエポキシ樹脂である場合
には、固形分で2〜10wt%の,イミダゾール系硬化剤を
含有させることが好ましい。この理由は、10wt%を超え
ると硬化しすぎて脆くなり、2wt%より少ないと硬化が
不十分になるために充分な樹脂強度が得られないからで
ある。
As the curing agent for the heat-resistant resin matrix, DICY, amine curing agents, acid anhydrides, imidazole curing agents and the like can be used. In particular, when the heat-resistant resin matrix is an epoxy resin, it is preferable to contain an imidazole-based curing agent in a solid content of 2 to 10 wt%. The reason is that if it exceeds 10 wt%, it is too hard and becomes brittle, and if it is less than 2 wt%, the hardening becomes insufficient and sufficient resin strength cannot be obtained.

【0028】また、上記イミダゾール系硬化剤を使う場
合、特に、耐熱性微粉末を,未硬化の多官能性エポキシ
樹脂または2官能性エポキシ樹脂のいずれかである熱硬
化性耐熱樹脂マトリックス中に分散させてなる接着剤に
適用するときは、このイミダゾール系硬化剤と該接着剤
とはそれぞれ分離して保存し、使用の直前にこの両者を
混合して使用することにより、ポットライフ(可使用時
間)を永くすることが望ましい。
When the above imidazole-based curing agent is used, in particular, the heat-resistant fine powder is dispersed in a thermosetting heat-resistant resin matrix which is either an uncured polyfunctional epoxy resin or a bifunctional epoxy resin. When applied to an adhesive that is made to stand, the imidazole-based curing agent and the adhesive are separately stored, and by mixing and using them immediately before use, pot life (usable time ) Is desirable.

【0029】さらに、この耐熱性樹脂マトリックスは、
溶剤を含まない耐熱性樹脂をそのまま使用することもで
きるが、望ましくはこの耐熱性樹脂を溶剤に溶解してな
る耐熱性樹脂液の状態で使用する。この理由は、樹脂液
の方が、粘度調節が容易にでき、微粉末を均一に分散さ
せることができる上、基板に塗布し易いからである。こ
の耐熱性樹脂を溶解するのに使用する溶剤としては、通
常溶剤、例えばメチルエチルケトン,メチルセロソル
ブ,エチルセロソルブ,ブチルセロソルブ,ブチルセロ
ソルブアセテート,ブチルカルビトール,ブチルセルロ
ース,テトラリン,ジメチルホルムアミド,ノルマルメ
チルピロリドンなどが適当である。
Further, this heat resistant resin matrix is
Although a heat-resistant resin containing no solvent can be used as it is, it is preferably used in the state of a heat-resistant resin liquid prepared by dissolving this heat-resistant resin in a solvent. The reason for this is that the resin liquid makes it easier to adjust the viscosity, allows the fine powder to be uniformly dispersed, and is easier to apply to the substrate. As a solvent used for dissolving the heat resistant resin, usually, a solvent such as methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, butyl cellosolve, butyl cellosolve acetate, butyl carbitol, butyl cellulose, tetralin, dimethylformamide, normal methylpyrrolidone is suitable. Is.

【0030】さらに、上記耐熱性樹脂マトリックス中に
は、例えば、フッ素樹脂やポリイミド樹脂,ベンゾグア
ナミン樹脂などの有機質充填剤、あるいはシリカやアル
ミナ,酸化チタン,ジルコニアなどの無機質微粉末から
なる充填剤を適宜配合してもよく、また、着色剤(顔
料)やレベリング剤,消泡剤,紫外線吸収剤,難燃化剤
などの添加剤を配合添加してもよい。
Further, in the heat resistant resin matrix, for example, an organic filler such as a fluororesin, a polyimide resin, a benzoguanamine resin, or a filler made of an inorganic fine powder such as silica, alumina, titanium oxide or zirconia is appropriately used. It may be blended, or additives such as a colorant (pigment), a leveling agent, an antifoaming agent, an ultraviolet absorber and a flame retardant may be blended and added.

【0031】次に、本発明の上記接着剤を用いてプリン
ト配線板を製造する方法について説明する。本発明の接
着剤を用いたプリント配線板の製造に当たっては、ま
ず、耐熱性微粉末を耐熱性樹脂マトリックス中に分散さ
せて得られる前記接着剤を、基板上に、ロールコーター
などを用いて塗布したのち、乾燥硬化させ、接着剤層を
形成する。なお、この接着剤層は、シート状またはプリ
プレグ状に成形した接着剤を、基板上に貼着することに
よっても形成することができる。この接着剤層の厚さは
通常20〜70μm程度であるが、この接着剤層を金属基板
や多層配線板の層間絶縁層を兼ねて使用する場合には、
それ以上に厚く塗布することもできる。
Next, a method for manufacturing a printed wiring board using the above adhesive of the present invention will be described. In the production of a printed wiring board using the adhesive of the present invention, first, the adhesive obtained by dispersing heat-resistant fine powder in a heat-resistant resin matrix is applied onto a substrate using a roll coater or the like. After that, it is dried and cured to form an adhesive layer. The adhesive layer can also be formed by sticking an adhesive formed into a sheet shape or a prepreg shape onto a substrate. The thickness of this adhesive layer is usually about 20 to 70 μm, but when this adhesive layer is also used as an interlayer insulating layer of a metal substrate or a multilayer wiring board,
It can also be applied thicker than that.

【0032】上記基板としては、例えばプラスチック基
板,セラミック基板,金属基板およびフィルム基板など
を使用することができる。例えば、ガラスエポキシ基
板,ガラスポリイミド基板,アルミナ基板,低温焼成セ
ラミック基板,窒化アルミニウム基板,アルミニウム基
板,鉄基板およびポリイミドフィルム基板などである。
そして、これらの基板を用いて、片面配線板,両面スル
ーホール配線板およびCu/ポリイミド多層配線板のよう
な多層配線板などを製作する。なお、上記接着剤そのも
のを板状あるいはフィルム状に成形し無電解めっきを施
すことのできる接着性を有する基体とすることもでき
る。
As the substrate, for example, a plastic substrate, a ceramic substrate, a metal substrate, a film substrate or the like can be used. For example, a glass epoxy substrate, a glass polyimide substrate, an alumina substrate, a low temperature fired ceramic substrate, an aluminum nitride substrate, an aluminum substrate, an iron substrate and a polyimide film substrate.
Then, using these substrates, a single-sided wiring board, a double-sided through-hole wiring board, and a multilayer wiring board such as a Cu / polyimide multilayer wiring board are manufactured. It is also possible to form the adhesive itself into a plate shape or a film shape and use it as a base material having adhesiveness that can be subjected to electroless plating.

【0033】次の工程は、上述のようにして基板上に設
けた接着剤層の表面に分散している耐熱性微粉末の少な
くとも一部を、酸もしくは酸化剤を用いて溶解除去する
処理である。この溶解除去処理は、接着剤層を形成した
基板を前記酸もしくは酸化剤の溶液中に浸漬するか、こ
の基板に酸もしくは酸化剤溶液をスプレーする方法など
によって行う。この処理によって、接着剤層の表面はめ
っきに適した粗化面となる。ここで、接着剤層を粗化す
る酸化剤としては、クロム酸やクロム酸塩,過マンガン
酸塩,オゾンなどがよく、酸としては、塩酸や硫酸,有
機酸などがよい。なお、この耐熱性微粉末の溶解除去を
効果的に行わせることを目的として、前記接着剤層の表
面部分を、例えば微粉研磨剤によるポリシングや液体ホ
ーニングを行うことにより、予め軽く粗化することは極
めて有効である。
The next step is a treatment in which at least a part of the heat-resistant fine powder dispersed on the surface of the adhesive layer provided on the substrate as described above is dissolved and removed using an acid or an oxidizing agent. is there. This dissolution removal treatment is performed by immersing the substrate on which the adhesive layer is formed in the solution of the acid or oxidizing agent, or by spraying the substrate with the acid or oxidizing agent solution. By this treatment, the surface of the adhesive layer becomes a roughened surface suitable for plating. Here, the oxidizing agent for roughening the adhesive layer is preferably chromic acid, chromate salt, permanganate, ozone or the like, and the acid is preferably hydrochloric acid, sulfuric acid, organic acid or the like. For the purpose of effectively dissolving and removing the heat-resistant fine powder, the surface portion of the adhesive layer is lightly roughened in advance by polishing or liquid honing with a fine powder abrasive, for example. Is extremely effective.

【0034】次に、粗化した接着剤層の表面に無電解め
っきを施して、必要な導体パターンを形成し、所望のプ
リント配線板を得る。この無電解めっきとしては、例え
ば無電解銅めっき,無電解ニッケルめっき,無電解スズ
めっき,無電解金めっきおよび無電解銀めっきなどが適
用でき、特に無電解銅めっき,無電解ニッケルめっきお
よび無電解金めっきのいずれか少なくとも1種の方法を
用いることが好適である。なお、上記プリント配線板の
製造方法においては、前記無電解めっきを施した上に、
さらに異なる種類の無電解めっきあるいは電気めっきを
行ったり、ハンダをコートしたりすることもできる。
Next, the surface of the roughened adhesive layer is subjected to electroless plating to form a necessary conductor pattern, and a desired printed wiring board is obtained. As this electroless plating, for example, electroless copper plating, electroless nickel plating, electroless tin plating, electroless gold plating, electroless silver plating, etc. can be applied, in particular electroless copper plating, electroless nickel plating and electroless plating. It is preferable to use at least one method of gold plating. In the method for manufacturing the printed wiring board, after applying the electroless plating,
Furthermore, different types of electroless plating or electroplating can be performed, or solder can be coated.

【0035】また、上記方法において上記の導体回路
は、既知のプリント配線板について実施されている種々
の方法でも導体回路を形成することができる。例えば、
基板に無電解めっきを施してから回路をエッチングする
方法や無電解めっきを施す際に直接回路を形成する方法
などを適用してもよい。
Further, in the above method, the conductor circuit can be formed by various methods which have been carried out for known printed wiring boards. For example,
A method of etching a circuit after applying electroless plating to the substrate or a method of directly forming a circuit when applying electroless plating may be applied.

【0036】次に、上述のようにして得られる本発明の
プリント配線板について説明する。本発明のプリント配
線板は、基板上に前記接着剤層を介してめっきレジスト
および導体回路を形成してなる片面プリント配線板、基
板両面の接着剤層とスルーホールを介して導体回路を形
成してなる両面スルーホールプリント配線板、および第
1導体層を形成させた基板上に、バイアホールを有する
層間絶縁層(接着剤層)を介して導体回路を多層形成さ
せてなるビルドアップ多層配線板において、上記接着剤
層が、いずれの配線板についても、耐熱性微粉末を、硬
化処理された場合に酸あるいは酸化剤に対して難溶性で
ある特性を示す耐熱性樹脂マトリックス中に分散させて
なるもので形成されており、しかも、この耐熱性微粉末
が、無機粉末を酸あるいは酸化剤に対して可溶性である
硬化処理済の耐熱性樹脂で被覆してなるものにて構成さ
れている点に特徴がある。
Next, the printed wiring board of the present invention obtained as described above will be described. The printed wiring board of the present invention is a single-sided printed wiring board formed by forming a plating resist and a conductor circuit on the substrate via the adhesive layer, and forming a conductor circuit via the adhesive layer and through holes on both sides of the substrate. A double-sided through-hole printed wiring board and a build-up multilayer wiring board in which conductor circuits are formed in multiple layers on a substrate on which a first conductor layer is formed with an interlayer insulating layer (adhesive layer) having via holes In the above, the adhesive layer, for any wiring board, has a heat-resistant fine powder dispersed in a heat-resistant resin matrix showing a property of being hardly soluble in an acid or an oxidant when cured. In addition, the heat-resistant fine powder is formed by coating the inorganic powder with a hardened heat-resistant resin that is soluble in acid or oxidant. It is characterized in that.

【0037】[0037]

【実施例】【Example】

(実施例1) (1) エポキシ樹脂(油化シェル製)に対して、8重量部
のジエチレントリアミン硬化剤を添加し、さらに、メチ
ルエチルケトンを添加して、固形分が約20%のエポキシ
樹脂液を調製した。 (2) 次に、このエポキシ樹脂液に無機粉末(日本触媒化
学工業製;SiO2球1.5μmφ)を添加して攪拌すること
により、無機粉末表面にエポキシ樹脂液を付着させ、次
いで、この無機粉末を取り出して80℃で20分間乾燥し、
その後、 100℃で1時間, 130℃で2時間で加熱硬化し
て、無機粉末をエポキシ樹脂で被覆した塊状物を得た。 (3) そして、この塊状物をボールミルを用いて回転数20
00rpm で粗粉砕し、さらに、アルミナボール(5mmφ)
で微粉砕し、平均粒径3μmφの耐熱性微粉末を得た。 (4) フェノールノボラック型エポキシ樹脂(油化シェル
製)60重量部、ビスフェノールA型エポキシ樹脂(油化
シェル製)40重量部、イミダゾール系硬化剤(四国化成
製)4重量部および前記(1) 〜(3) で作成した耐熱性微
粉末50重量部からなるものに、ブチルセロソルブ溶剤を
添加しながらホモディスパー分散機で粘度を120cpsに調
整し、次いで三本ロールで混練して接着剤溶液を得た。 (5) 前記(4) で得られた接着剤溶液を、ローラーコータ
ーを使用して銅箔が貼着されていないガラスエポキシ基
板(日立化成工業製)に塗布した後、100 ℃で1時間、
さらに150 ℃で5時間乾燥硬化させて厚さ20μmの接着
剤層を形成した。 (6) 前記(5) で得られた基板を、クロム酸(CrO3) 500g
/l水溶液からなる酸化剤に70℃で15分間浸漬して接着剤
層の表面を粗化してから、中和溶液(シプレイ社製)に
浸漬し水洗した。 (7) 上記(6) で得られた接着剤層の表面が粗化された基
板に、パラジウム触媒(シプレイ社製)を付与して接着
剤層の表面を活性化させ、下記に示す組成のアディティ
ブ法用無電解めっき液に11時間浸漬して、めっき膜の厚
さ25μmの無電解銅めっきを施した。 硫酸銅(CuSO4・5H2O) : 0.06モル/l ホルマリン(37%) : 0.30モル/l 水酸化ナトリウム : 0.35モル/l EDTA : 0.12モル/l 添加剤 : 少々 めっき温度 : 70〜72℃ pH : 12.4 (8) 上述のようにして製造した配線板に、さらに硫酸銅
めっき浴中で電気めっき厚さ35μmの銅めっきを施し
た。
(Example 1) (1) 8 parts by weight of a diethylenetriamine curing agent was added to an epoxy resin (made by Yuka Shell Co., Ltd.), and further methyl ethyl ketone was added thereto to prepare an epoxy resin solution having a solid content of about 20%. Prepared. (2) Next, by adding inorganic powder (manufactured by Nippon Shokubai Kagaku Kogyo; SiO 2 spheres 1.5 μmφ) to this epoxy resin liquid and stirring it, the epoxy resin liquid is attached to the surface of the inorganic powder, and then this inorganic resin Remove the powder and dry at 80 ° C for 20 minutes,
Then, the mixture was heated and cured at 100 ° C. for 1 hour and 130 ° C. for 2 hours to obtain a lump in which the inorganic powder was coated with an epoxy resin. (3) Then, using a ball mill, rotate the mass 20 times.
Coarse pulverization at 00 rpm, and further alumina balls (5 mmφ)
Was finely pulverized to obtain heat resistant fine powder having an average particle diameter of 3 μmφ. (4) 60 parts by weight of phenol novolac type epoxy resin (made by Yuka Shell), 40 parts by weight of bisphenol A type epoxy resin (made by Yuka Shell), 4 parts by weight of imidazole curing agent (made by Shikoku Kasei) and the above (1) ~ 50 parts by weight of the heat-resistant fine powder prepared in (3), while adding the butyl cellosolve solvent, adjust the viscosity to 120 cps with a homodispers disperser, then knead with a three-roll to obtain an adhesive solution. It was (5) After applying the adhesive solution obtained in (4) above to a glass epoxy substrate (made by Hitachi Chemical Co., Ltd.) on which a copper foil is not attached, using a roller coater, at 100 ° C. for 1 hour,
Further, it was dried and cured at 150 ° C. for 5 hours to form an adhesive layer having a thickness of 20 μm. (6) Chromic acid (CrO 3 ) 500 g was added to the substrate obtained in (5) above.
The surface of the adhesive layer was roughened by immersing it in an oxidizing agent consisting of an aqueous solution of 1 / l at 70 ° C. for 15 minutes, and then immersing it in a neutralizing solution (manufactured by Shipley) and washing with water. (7) The surface of the adhesive layer obtained in (6) above is roughened, and a palladium catalyst (manufactured by Shipley Co.) is applied to activate the surface of the adhesive layer. The film was immersed in an electroless plating solution for additive method for 11 hours to perform electroless copper plating with a plating film thickness of 25 μm. Copper sulfate (CuSO 4 .5H 2 O): 0.06 mol / l formalin (37%): 0.30 mol / l sodium hydroxide: 0.35 mol / l EDTA: 0.12 mol / l Additives: a little Plating temperature: 70 to 72 ° C pH: 12.4 (8) The wiring board produced as described above was further electroplated with copper to a thickness of 35 μm in a copper sulfate plating bath.

【0038】(実施例2) (1) エポキシ樹脂系微粉末(油化シェル製)と無機微粉
末(シリカ)を株式会社奈良機械製作所製の表面改質機
「ハイブリダイゼイションシステム」を利用して、無機
微粉末の表面をエポキシ樹脂で被覆した耐熱性微粉末を
得た。このシステムは、無機粉末および耐熱性樹脂微粉
末を気相中に分散させながら、これらの粉末に衝撃力を
主体とする機械的熱的エネルギーを付与する乾式処理に
より、無機粉末表面に耐熱性樹脂微粉末を付着させ、そ
の後、この付着樹脂を加熱硬化し、成膜化するものであ
る。 (2) 次に、前記(1) で得られた耐熱性微粉末を用いて、
実施例1と同様にしてプリント配線板を製造した。
(Example 2) (1) Epoxy resin-based fine powder (made by Yuka Shell) and inorganic fine powder (silica) were used in a surface reformer "Hybridization System" manufactured by Nara Machinery Co., Ltd. Then, a heat resistant fine powder in which the surface of the inorganic fine powder was coated with an epoxy resin was obtained. This system consists of dispersing inorganic powder and fine powder of heat-resistant resin in the gas phase, and applying dry mechanical treatment to these powders to impart mechanical and thermal energy mainly to the impact force. Fine powder is adhered, and then the adhered resin is heat-cured to form a film. (2) Next, using the heat-resistant fine powder obtained in the above (1),
A printed wiring board was manufactured in the same manner as in Example 1.

【0039】上述した実施例1および2において、無機
粉末に耐熱性樹脂を被覆した微粉末に対する無機粉末の
体積率を種々変化させて得た耐熱性微粉末を用いて製造
したプリント配線板を、有機樹脂単体あるいは無機粉末
単体からなる耐熱性微粉末を用いて製造したプリント配
線板との比較の下に、基板と銅めっき膜との密着強度
(ピール強度,JIS-C-6481)、接着剤層の熱膨張係数お
よび冷熱サイクル試験後の状態を評価した。
A printed wiring board manufactured by using the heat-resistant fine powder obtained by variously changing the volume ratio of the inorganic powder to the fine powder obtained by coating the inorganic powder with the heat-resistant resin in Examples 1 and 2 described above, Adhesion strength (peeling strength, JIS-C-6481) between the substrate and the copper plating film, adhesive, under comparison with a printed wiring board manufactured using heat resistant fine powder consisting of organic resin alone or inorganic powder alone The coefficient of thermal expansion of the layer and the state after the thermal cycling test were evaluated.

【0040】すなわち、プリント配線板のピール強度を
測定することによりアンカー形成能を評価し、さらにプ
リント配線板の冷熱サイクル試験を行うことにより、接
着剤層の熱膨張率がプリント配線板の信頼性に及ぼす影
響について調べた。その結果を表1に示す。
That is, the anchor forming ability is evaluated by measuring the peel strength of the printed wiring board, and further the thermal cycle test of the printed wiring board is carried out, whereby the coefficient of thermal expansion of the adhesive layer is evaluated as the reliability of the printed wiring board. The effect on the The results are shown in Table 1.

【0041】[0041]

【表1】 [Table 1]

【0042】(実施例3) (1) エポキシ樹脂(油化シェル製)に対して、8重量部
のエチレンジアミン硬化剤を添加し、さらに、メチルエ
チルケトンを添加して、固形分が約20%のエポキシ樹脂
液を調製した。 (2) 次に、このエポキシ樹脂液に無機微粉末(アルミナ
0.1 〜0.5 μmφ)50重量部を添加して攪拌することに
より、無機粉末表面にエポキシ樹脂液を付着させ、5〜
10μmtの薄膜を形成し、次いで、この無機粉末を取り
出して80℃で20分間乾燥し、その後、 100℃で1時間,
130℃で3時間で加熱硬化して、無機粉末をエポキシ樹
脂で被覆した塊状物を得た。 (3) そして、この塊状物を粗粉砕し、さらに、ボールミ
ルを用いて、アルミナボール(5mmφ)で回転数60rpm
にて微粉砕し、平均粒径3μmφの耐熱性微粉末を得
た。 (4) 次に、前記(1) 〜(3) で得られた耐熱性微粉末を用
いて、実施例1と同様にしてプリント配線板を製造し
た。
Example 3 (1) To an epoxy resin (made by Yuka Shell Co., Ltd.), 8 parts by weight of an ethylenediamine curing agent was added, and further methyl ethyl ketone was added to the epoxy resin to give an epoxy resin having a solid content of about 20%. A resin solution was prepared. (2) Next, add the inorganic fine powder (alumina) to the epoxy resin liquid.
0.1-0.5 μmφ) 50 parts by weight is added and stirred to attach the epoxy resin solution to the surface of the inorganic powder,
A thin film of 10 μmt was formed, and then this inorganic powder was taken out and dried at 80 ° C. for 20 minutes, and then at 100 ° C. for 1 hour.
It was heat-cured at 130 ° C. for 3 hours to obtain a lump in which an inorganic powder was coated with an epoxy resin. (3) Then, this lump is roughly crushed, and further, using a ball mill, the number of revolutions is 60 rpm with alumina balls (5 mmφ).
Was finely pulverized to obtain heat resistant fine powder having an average particle diameter of 3 μmφ. (4) Next, a printed wiring board was manufactured in the same manner as in Example 1 using the heat-resistant fine powder obtained in (1) to (3) above.

【0043】上述した実施例3において、無機粉末に耐
熱性樹脂を被覆した微粉末に対する無機粉末の体積率を
種々変化させて得た耐熱性微粉末を用いて製造したプリ
ント配線板を、有機樹脂単体あるいは無機粉末単体から
なる耐熱性微粉末を用いて製造したプリント配線板との
比較の下に、基板と銅めっき膜との密着強度(ピール強
度,JIS-C-6481)、接着剤層の熱膨張係数および冷熱サ
イクル試験後の状態を評価した。その結果を表2に示
す。
In the above-described Example 3, a printed wiring board manufactured using heat-resistant fine powder obtained by variously changing the volume ratio of the inorganic powder to the fine powder obtained by coating the inorganic powder with the heat-resistant resin Based on a comparison with a printed wiring board manufactured using a heat-resistant fine powder consisting of a single substance or a single inorganic powder, the adhesion strength (peeling strength, JIS-C-6481) between the substrate and the copper plating film, the adhesive layer The coefficient of thermal expansion and the state after the thermal cycle test were evaluated. The results are shown in Table 2.

【0044】[0044]

【表2】 [Table 2]

【0045】(実施例4) (1) エポキシ樹脂(油化シェル製)に対して、8重量部
のエチレントリアミン硬化剤を添加し、さらに、メチル
エチルケトンを添加して、固形分が約20%のエポキシ樹
脂液を調製した。 (2) 次に、このエポキシ樹脂液に無機微粉末(シリカ粉
砕品;非球状,平均粒径1〜3μmφ)を添加して攪拌
することにより、無機粉末表面にエポキシ樹脂液を付着
させ、次いで、この無機粉末を取り出して80℃で20分間
乾燥し、その後、 100℃で1時間, 130℃で2時間で加
熱硬化して、無機粉末をエポキシ樹脂で被覆した塊状物
を得た。 (3) そして、この塊状物をボールミルを用いて回転数20
00rpm で粗粉砕し、さらに、アルミナボール(10mmφ)
で粉砕し、平均粒径3〜5μmφの耐熱性微粉末を得
た。 (4) 次に、前記(1) 〜(3) で得られた耐熱性微粉末を用
いて、実施例1と同様にしてプリント配線板を製造し
た。
Example 4 (1) To an epoxy resin (made by Yuka Shell Co., Ltd.), 8 parts by weight of an ethylenetriamine curing agent was added, and further methyl ethyl ketone was added to the epoxy resin to give a solid content of about 20%. An epoxy resin solution was prepared. (2) Next, inorganic fine powder (silica pulverized product; non-spherical, average particle size 1 to 3 μmφ) is added to this epoxy resin liquid and stirred to attach the epoxy resin liquid to the surface of the inorganic powder, and then The inorganic powder was taken out and dried at 80 ° C. for 20 minutes, and then heat-cured at 100 ° C. for 1 hour and 130 ° C. for 2 hours to obtain a lump in which the inorganic powder was coated with an epoxy resin. (3) Then, using a ball mill, rotate the mass 20 times.
Coarse crushing at 00 rpm, and further alumina balls (10 mmφ)
Was pulverized to obtain heat-resistant fine powder having an average particle size of 3 to 5 μmφ. (4) Next, a printed wiring board was manufactured in the same manner as in Example 1 using the heat-resistant fine powder obtained in (1) to (3) above.

【0046】上述した実施例4において、無機粉末に耐
熱性樹脂を被覆した微粉末に対する無機粉末の体積率を
種々変化させて得た耐熱性微粉末を用いて製造したプリ
ント配線板を、有機樹脂単体あるいは無機粉末単体から
なる耐熱性微粉末を用いて製造したプリント配線板との
比較の下に、基板と銅めっき膜との密着強度(ピール強
度,JIS-C-6481)、接着剤層の熱膨張係数および冷熱サ
イクル試験後の状態を評価した。その結果を表3に示
す。
A printed wiring board manufactured by using the heat-resistant fine powder obtained by variously changing the volume ratio of the inorganic powder to the fine powder obtained by coating the inorganic powder with the heat-resistant resin in the above-mentioned Example 4 was manufactured by using an organic resin. Based on a comparison with a printed wiring board manufactured using a heat-resistant fine powder consisting of a single substance or a single inorganic powder, the adhesion strength (peeling strength, JIS-C-6481) between the substrate and the copper plating film, the adhesive layer The coefficient of thermal expansion and the state after the thermal cycle test were evaluated. The results are shown in Table 3.

【0047】[0047]

【表3】 [Table 3]

【0048】(実施例5) (1) ビスフェノールA型エポキシ樹脂(油化シェル製)
100 重量部に、ノニオン系界面活性剤(日本油脂製)6
重量部を添加し、さらに、ウィスカー(東海カーボン
製,1μmφ,30μm)40重量部を添加して攪拌混合し
た。 (2) 次に、このエポキシ樹脂液をホモディスパーを用い
て1000rpm で攪拌しながら、水30重量部を3重量部ずつ
ビュレットにて添加し、エポキシエマルジョンを調製し
た。 (3) 次に、このエポキシエマルジョンに、トリエチレン
テトラミン硬化剤9重量部を添加して、常温で50分間攪
拌放置し、耐熱性微粉末を作成した。 (4) 次に、前記(1) 〜(3) で得られた耐熱性微粉末を用
いて、実施例1と同様にしてプリント配線板を製造し
た。
(Example 5) (1) Bisphenol A type epoxy resin (made by Yuka Shell)
100 parts by weight of nonionic surfactant (made by NOF Corporation) 6
40 parts by weight of whiskers (manufactured by Tokai Carbon, 1 μmφ, 30 μm) were added, and the mixture was stirred and mixed. (2) Next, while stirring this epoxy resin solution at 1000 rpm with a homodisper, 3 parts by weight of 30 parts by weight of water were added by a buret to prepare an epoxy emulsion. (3) Next, 9 parts by weight of a triethylenetetramine curing agent was added to this epoxy emulsion, and the mixture was left to stir at room temperature for 50 minutes to prepare a heat resistant fine powder. (4) Next, a printed wiring board was manufactured in the same manner as in Example 1 using the heat-resistant fine powder obtained in (1) to (3) above.

【0049】上述した実施例5において、無機粉末に耐
熱性樹脂を被覆した微粉末に対する無機粉末の体積率を
種々変化させて得た耐熱性微粉末を用いて製造したプリ
ント配線板を、有機樹脂単体あるいは無機粉末単体から
なる耐熱性微粉末を用いて製造したプリント配線板との
比較の下に、基板と銅めっき膜との密着強度(ピール強
度,JIS-C-6481)、接着剤層の熱膨張係数および冷熱サ
イクル試験後の状態を評価した。その結果を表4に示
す。
The printed wiring board manufactured by using the heat-resistant fine powder obtained by variously changing the volume ratio of the inorganic powder to the fine powder obtained by coating the inorganic powder with the heat-resistant resin in the above-mentioned Example 5 was manufactured by using the organic resin. Based on a comparison with a printed wiring board manufactured using a heat-resistant fine powder consisting of a single substance or a single inorganic powder, the adhesion strength (peeling strength, JIS-C-6481) between the substrate and the copper plating film, the adhesive layer The coefficient of thermal expansion and the state after the thermal cycle test were evaluated. The results are shown in Table 4.

【0050】[0050]

【表4】 [Table 4]

【0051】表1〜表4に示す結果から明らかなよう
に、本発明にかかるプリント配線板のピール強度は、有
機樹脂単体あるいは無機粉末単体からなる耐熱性微粉末
を用いた比較例に比べて優れることを確認した。この理
由は、本発明の耐熱性微粉末によれば、接着剤層の表面
にアンカーを形成する際、アンカー内に微粉末の樹脂成
分が残留しにくいためであることが判った。特に、無機
粉末に耐熱性樹脂を被覆した微粉末に対する無機粉末の
体積率を20〜40%とすることが好適であることを確認し
た。さらに、プリント配線板の冷熱サイクル試験後の観
察によれば、本発明のプリント配線板は、接着剤層の熱
膨張率が低いので、1000サイクルまで接着剤層とめっき
膜との熱膨張率差による接着剤層のクラックやめっき膜
の剥がれを生じることがなかった。
As is clear from the results shown in Tables 1 to 4, the peel strength of the printed wiring board according to the present invention is higher than that of the comparative example using the heat resistant fine powder made of the organic resin alone or the inorganic powder alone. It was confirmed to be excellent. It was found that the reason for this is that the heat-resistant fine powder of the present invention makes it difficult for the resin component of the fine powder to remain in the anchor when the anchor is formed on the surface of the adhesive layer. In particular, it has been confirmed that it is preferable that the volume ratio of the inorganic powder to the fine powder obtained by coating the inorganic powder with the heat resistant resin is 20 to 40%. Furthermore, according to the observation after the thermal cycle test of the printed wiring board, the printed wiring board of the present invention has a low coefficient of thermal expansion of the adhesive layer, so that the thermal expansion coefficient difference between the adhesive layer and the plating film is 1000 cycles. The adhesive layer did not crack and the plating film did not peel off.

【0052】そして、上述したような実施例を実施する
に当たって、本発明者等は、アンカー形成用の粗化液の
劣化の状態について調べた。その結果、本発明にかかる
耐熱性微粉末を用いると、粗化液への溶出樹脂量が減少
し、粗化液の寿命を大幅に改善することができることも
判った。
Then, in carrying out the above-described embodiment, the present inventors investigated the state of deterioration of the roughening liquid for anchor formation. As a result, it was also found that when the heat-resistant fine powder according to the present invention is used, the amount of resin eluted into the roughening liquid is reduced, and the life of the roughening liquid can be significantly improved.

【0053】(実施例6) (1)熱可塑性樹脂(ポリエチレン)を加熱プレスして、
取っ手形状に成形した。 (2)次に、この形状物を実施例1で作成した接着剤溶液
に浸漬し、乾燥し、硬化させ、それの表面に接着剤層を
設けた。 (3)次に、実施例1と同様の条件で粗化し、無電解銅め
っきを施した。 (4)そして、上記銅めっきの表面に、常法に従って電解
めっきを行い、ニッケル光沢を有する取っ手を得た。こ
れにより、本発明の接着剤は、配線板以外の分野にも適
用できることを確認した。
(Example 6) (1) A thermoplastic resin (polyethylene) was hot-pressed,
It was formed into a handle shape. (2) Next, this shape was immersed in the adhesive solution prepared in Example 1, dried and cured to form an adhesive layer on the surface thereof. (3) Next, roughening was performed under the same conditions as in Example 1, and electroless copper plating was performed. (4) Then, the surface of the copper plating was subjected to electrolytic plating according to a conventional method to obtain a handle having a nickel luster. This confirmed that the adhesive of the present invention can be applied to fields other than wiring boards.

【0054】[0054]

【発明の効果】以上説明したように本発明にかかる接着
剤は、めっき金属と同程度の熱膨張率を有し、かつ冷熱
サイクル試験の如き環境下にあっても、耐薬品性,耐熱
性,電気特性および硬度を損なうことなく、無電解めっ
き膜との密着性が極めて良好である。しかも、このよう
な接着剤については、樹脂単体からなる耐熱性微粉末を
溶解除去したアンカーを利用した従来プリント配線板に
比べて、溶解除去される樹脂量が大幅に減少するので、
アンカー形成が容易となり、その結果、粗化液への溶出
樹脂量が減少して、粗化液の劣化を抑制でき、粗化液の
寿命を大幅に改善することができる。従って、接着剤層
へのクラックの発生やめっき膜の剥がれのない安価なプ
リント配線板を提供することができる。
As described above, the adhesive according to the present invention has a coefficient of thermal expansion similar to that of plated metal, and has chemical resistance and heat resistance even in an environment such as a thermal cycle test. , Adhesion with electroless plating film is extremely good without impairing the electrical characteristics and hardness. Moreover, with regard to such an adhesive, the amount of resin to be dissolved and removed is significantly reduced, as compared with the conventional printed wiring board using the anchor in which the heat-resistant fine powder made of a resin simple substance is dissolved and removed.
The anchor is easily formed, and as a result, the amount of resin eluted into the roughening liquid is reduced, deterioration of the roughening liquid can be suppressed, and the life of the roughening liquid can be significantly improved. Therefore, it is possible to provide an inexpensive printed wiring board in which cracks are not generated in the adhesive layer and the plating film is not peeled off.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる耐熱性微粉末の形状を示す断面
図である。
FIG. 1 is a cross-sectional view showing the shape of a heat-resistant fine powder according to the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 耐熱性微粉末を、硬化処理が施された場
合には酸あるいは酸化剤に対して難溶性となる特性を示
す未硬化の耐熱性樹脂マトリックス中に分散させてなる
接着剤において、 上記耐熱性微粉末として、無機粉末を酸あるいは酸化剤
に対して可溶性である硬化処理済の耐熱性樹脂で被覆し
てなるものを用いることを特徴とする接着剤。
1. An adhesive obtained by dispersing a heat-resistant fine powder in an uncured heat-resistant resin matrix that exhibits a property of being hardly soluble in an acid or an oxidizing agent when subjected to a curing treatment. An adhesive characterized by using, as the above-mentioned heat-resistant fine powder, an inorganic powder coated with a heat-resistant resin that has been cured and is soluble in an acid or an oxidizing agent.
【請求項2】 請求項1に記載の接着剤が、シート状ま
たはプリプレグ状にて提供されることを特徴とする接着
剤。
2. The adhesive according to claim 1, which is provided in a sheet shape or a prepreg shape.
【請求項3】 少なくとも一方の基板表面に、耐熱性微
粉末を、硬化処理された場合に酸あるいは酸化剤に対し
て難溶性である特性を示す未硬化の耐熱性樹脂マトリッ
クス中に分散させてなる接着剤を塗布して、接着剤層を
設け、その上に導体回路を設けてなるプリント配線板に
おいて、 上記耐熱性微粉末として、無機粉末を酸あるいは酸化剤
に対して可溶性である硬化処理済の耐熱性樹脂で被覆し
てなるものを用いることを特徴とするプリント配線板。
3. A heat-resistant fine powder is dispersed on at least one surface of a substrate in an uncured heat-resistant resin matrix exhibiting a property of being hardly soluble in an acid or an oxidizing agent when it is cured. In a printed wiring board having an adhesive layer provided thereon, an adhesive layer provided thereon, and a conductor circuit provided thereon, a curing treatment in which an inorganic powder is soluble in an acid or an oxidant as the heat-resistant fine powder. A printed wiring board characterized by using a material coated with a heat-resistant resin as described above.
JP04310407A 1992-11-19 1992-11-19 Adhesives and printed wiring boards Expired - Lifetime JP3115435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04310407A JP3115435B2 (en) 1992-11-19 1992-11-19 Adhesives and printed wiring boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04310407A JP3115435B2 (en) 1992-11-19 1992-11-19 Adhesives and printed wiring boards

Publications (2)

Publication Number Publication Date
JPH06158333A true JPH06158333A (en) 1994-06-07
JP3115435B2 JP3115435B2 (en) 2000-12-04

Family

ID=18004891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04310407A Expired - Lifetime JP3115435B2 (en) 1992-11-19 1992-11-19 Adhesives and printed wiring boards

Country Status (1)

Country Link
JP (1) JP3115435B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0909119A2 (en) * 1997-10-06 1999-04-14 Ford Motor Company Method for adhering a metallization to a substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0909119A2 (en) * 1997-10-06 1999-04-14 Ford Motor Company Method for adhering a metallization to a substrate
EP0909119A3 (en) * 1997-10-06 2000-08-23 Ford Motor Company Method for adhering a metallization to a substrate

Also Published As

Publication number Publication date
JP3115435B2 (en) 2000-12-04

Similar Documents

Publication Publication Date Title
US4752499A (en) Adhesive for electroless plating and method of preparation of circuit board using this adhesive
WO1998047328A1 (en) Adhesive for electroless plating, raw material composition for preparing adhesive for electroless plating and printed wiring board
JPH0455555B2 (en)
JPS61276875A (en) Adhesive for electroless plating and production of wiring board using said adhesive
JP3138520B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP3115435B2 (en) Adhesives and printed wiring boards
JP2877993B2 (en) Adhesive for wiring board, method for manufacturing printed wiring board using this adhesive, and printed wiring board
JPH0564714B2 (en)
JP3090973B2 (en) Method of forming adhesive layer for additive printed wiring board
JPH07188935A (en) Adhesive having excellent anchor characteristic and printed circuit board formed by using this adhesive and its production
JP3219827B2 (en) Heat-resistant resin particles for anchor formation, adhesive for electroless plating, method for manufacturing printed wiring board using this adhesive, and printed wiring board
JP3007648B2 (en) Method for manufacturing adhesive printed wiring board for electroless plating and printed wiring board
JPH028283A (en) Adhesive for nonelectrolytic plating
JP3076680B2 (en) Adhesive for wiring board, method for manufacturing printed wiring board using this adhesive, and printed wiring board
JP2877992B2 (en) Adhesive for wiring board, method for manufacturing printed wiring board using this adhesive, and printed wiring board
JPH05299837A (en) Multilayer printed wiring board and manufacture thereof
JPH01166598A (en) Multi-layer printed circuit board and manufacture therefor
JP2834912B2 (en) Adhesive for wiring board, method for manufacturing printed wiring board using this adhesive, and printed wiring board
JPH0632372B2 (en) Printed wiring board, manufacturing method thereof, and adhesive for electroless plating
JPH05222539A (en) Prepreg for circuit board, production of printed circuit board using the same and printed circuit board
JP3002591B2 (en) Adhesive sheet, method for manufacturing printed wiring board using this adhesive sheet, and printed wiring board
JPH0533840B2 (en)
JP3124628B2 (en) Adhesive sheet for wiring board
JPH028281A (en) Adhesive for nonelectrolytic plating
JPH05218638A (en) Manufacture of adhesive for wiring board and printed wiring board using this adhesive, and printed wiring board

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20070929

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080929

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090929

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090929

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100929

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120929

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120929

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20130929

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 13