JPH06151905A - Method of junctioning silicon board and metal - Google Patents
Method of junctioning silicon board and metalInfo
- Publication number
- JPH06151905A JPH06151905A JP31655892A JP31655892A JPH06151905A JP H06151905 A JPH06151905 A JP H06151905A JP 31655892 A JP31655892 A JP 31655892A JP 31655892 A JP31655892 A JP 31655892A JP H06151905 A JPH06151905 A JP H06151905A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- silicon
- nickel
- metal
- silicon layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Led Devices (AREA)
- Light Receiving Elements (AREA)
- Led Device Packages (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、赤外線検出素子や発光
素子等の光透過用窓を構成する高純度のシリコン板を金
属キャップに気密構造に接合するシリコン板と金属の接
合方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for joining a silicon plate and a metal in which a high-purity silicon plate constituting a light transmitting window such as an infrared detecting element or a light emitting element is joined to a metal cap in an airtight structure.
【0002】[0002]
【従来の技術】高純度シリコンは、赤外線に対する良好
な透過特性と比較的大きな機械的強度を有することか
ら、赤外線検出素子や発光素子の光透過用窓部品に用い
られている。図6は従来の赤外線検出素子における光透
過用窓部品の高純度のシリコン板の取付構造の一例を示
す。図において、1は高純度のシリコン板、7は金属キ
ャップ、8は金属キャップ7の開口部、14は接合材
料、15は検出素子のペレット、16はステムである。
従来、シリコン板1を金属キャップ7に接合する接合材
料14には樹脂や低融点ガラスが一般的に用いられてき
た。図7は従来の高純度のシリコン板の取付構造の他の
例を示す。図において、図6の符合と同一符合は同一ま
たは相当するものを示し、17はシリコン板1上に付着
させた金属多層膜、18は酸化膜層、6は半田や鉛のよ
うな低融点金属である。この場合、一般に広く用いられ
ている方法はシリコン板1表面上に酸化膜層18を形成
し、その上に酸素と化合し易いクロムを堆積させて酸化
膜と結合させた後、銅やニッケルのように半田と合金を
作り易い金属膜を堆積し、場合によっては、さらに金の
薄膜を堆積し、この金属層と金属キャップ7を半田付け
するものである。また、酸化膜とクロムを使用する代わ
りに、金のようにシリコン中に拡散し易い金属膜をシリ
コン上に形成し、その上に半田付けに必要な金属層を堆
積し、加熱して金をシリコン中に拡散させてシリコン板
との接着強度を高めてから、金属層と金属キャップ7を
半田付けする方法も採られてきた。2. Description of the Related Art High-purity silicon is used as a light transmitting window component of an infrared detecting element or a light emitting element because it has a good transmission characteristic for infrared rays and a relatively large mechanical strength. FIG. 6 shows an example of a mounting structure of a high-purity silicon plate for a window part for light transmission in a conventional infrared detecting element. In the figure, 1 is a high-purity silicon plate, 7 is a metal cap, 8 is an opening of the metal cap 7, 14 is a bonding material, 15 is a pellet of a detection element, and 16 is a stem.
Conventionally, resin or low melting point glass has been generally used as the bonding material 14 for bonding the silicon plate 1 to the metal cap 7. FIG. 7 shows another example of a conventional high-purity silicon plate mounting structure. In the figure, the same reference numerals as those in FIG. 6 indicate the same or corresponding ones, 17 is a metal multilayer film deposited on the silicon plate 1, 18 is an oxide film layer, 6 is a low melting point metal such as solder or lead. Is. In this case, the generally widely used method is to form an oxide film layer 18 on the surface of the silicon plate 1, deposit chromium on the oxide film layer 18 that easily combines with oxygen and bond it to the oxide film, and then remove copper or nickel. As described above, a metal film which is easy to form an alloy with solder is deposited, and in some cases, a gold thin film is further deposited, and the metal layer and the metal cap 7 are soldered. Also, instead of using an oxide film and chromium, a metal film like gold that easily diffuses in silicon is formed on silicon, and a metal layer necessary for soldering is deposited on it and heated to remove gold. A method has also been employed in which the metal layer and the metal cap 7 are soldered after being diffused in silicon to enhance the adhesive strength with the silicon plate.
【0003】[0003]
【発明が解決しようとする課題】従来の高純度のシリコ
ン板を金属キャップに樹脂で接着して接合する方法は、
樹脂の塗りしろが少ない場合やキャップやシリコンの洗
浄が不十分な場合には、気密性、耐湿性の低下が避けら
れず、また、樹脂の塗布作業に多くの工数を要するとと
もに、樹脂がシリコン板表面に食み出して光を遮るた
め、検出素子の出力や指向性のばらつきが大きく外観不
良が多いなどという問題があった。樹脂のかわりに低融
点ガラスを用いる方法は、耐湿性に優れるが、ガラス自
体が脆性材料であるから耐衝撃性に劣る上に、比較的高
温で溶融接合するため、冷却後残留応力が生じ易く、ま
た樹脂と同様にシリコン板表面に食み出し、検出素子の
出力や指向性のばらつきが大きく、外観不良が多いとい
う問題があった。さらに、低融点ガラスは500℃前後
の温度で溶融接合される場合があり、この温度付近では
シリコン中の残留酸素のドナー化という現象を起こし、
自由キャリアを大量に発生させるため、自由キャリアに
よって赤外線が吸収され、透過率が減少するという問題
があった。また、従来の低融点金属を用いる方法は、耐
湿性、耐衝撃性に優れるが、シリコン上に金属層を形成
するのに蒸着やスパッタ装置のように非常に高価な設備
を必要とするとともに、金属層が低融点金属と溶解接合
する際一部が吸収されるため、金属層をある程度厚くす
る必要があり、層形成に長時間を要するという問題があ
った。本発明は、上記の問題を解決するためになされた
もので、安価な設備で比較的短時間に接合でき、かつ、
気密性、耐湿性、耐衝撃性及び外観に優れ、光透過率の
ばらつきの少ないものが得られる接合方法を提供するこ
とを目的とする。A conventional method of bonding a high-purity silicon plate to a metal cap by bonding with a resin is as follows.
If the amount of resin applied is small or if the cap or silicon is not sufficiently washed, the airtightness and moisture resistance will be inevitable. Since the light leaks out onto the surface of the plate to block the light, there is a problem that the output and directivity of the detection element are largely varied and the appearance is often bad. The method of using a low melting point glass instead of a resin has excellent moisture resistance, but since the glass itself is a brittle material, it is inferior in impact resistance, and since it is melt-bonded at a relatively high temperature, residual stress easily occurs after cooling. In addition, there is a problem that, like the resin, it squeezes out on the surface of the silicon plate, the output and directivity of the detection element greatly vary, and there are many defects in appearance. Further, the low-melting glass may be melt-bonded at a temperature of about 500 ° C., and a phenomenon of making residual oxygen in silicon into a donor may occur near this temperature.
Since a large amount of free carriers are generated, there is a problem that infrared rays are absorbed by the free carriers and the transmittance is reduced. Further, the conventional method using a low melting point metal is excellent in moisture resistance and impact resistance, but requires very expensive equipment such as a vapor deposition or sputtering apparatus to form a metal layer on silicon, When the metal layer is melt-bonded to the low melting point metal, a part of the metal layer is absorbed, so that the metal layer needs to be thickened to some extent, and it takes a long time to form the layer. The present invention has been made to solve the above problems, can be joined in a relatively short time with inexpensive equipment, and,
It is an object of the present invention to provide a joining method which is excellent in airtightness, moisture resistance, impact resistance and appearance and has a small variation in light transmittance.
【0004】[0004]
【課題を解決するための手段】本発明は、接合に樹脂や
低融点ガラスを用いる場合に発生する問題を解消するた
め、低融点金属にて溶解接合する方法を採り、シリコン
層表面に金属層を形成するのに高純度シリコンウエハの
表面及び裏面を絶縁膜で覆い、金属キャップに接合する
部分の絶縁膜を除去してシリコン層を露出させ、このシ
リコン層表面を機械加工して粗面状にするか、あるい
は、シリコン層表面に不純物を拡散させて低抵抗層を形
成し、シリコン層表面をメッキ層が付着し易い状態に
し、絶縁膜をマスクに無電解によりシリコン層上にニッ
ケルメッキ層を形成する方法を採った。In order to solve the problems that occur when a resin or low melting point glass is used for bonding, the present invention adopts a method of melting and bonding with a low melting point metal, and a metal layer is formed on the surface of the silicon layer. In order to form the high-purity silicon wafer, the front and back surfaces of the high-purity silicon wafer are covered with an insulating film, the insulating film at the part to be joined to the metal cap is removed to expose the silicon layer, and the surface of this silicon layer is machined to produce a rough surface. Alternatively, a low resistance layer is formed by diffusing impurities on the surface of the silicon layer to make the plating layer easily adhere to the surface of the silicon layer, and the insulating film is used as a mask to electrolessly deposit the nickel plating layer on the silicon layer. The method of forming is adopted.
【0005】[0005]
【実施例】図1は本発明の接合方法の一例を示す。高純
度のシリコンウエハ101の表面及び裏面上に酸化膜や
窒化膜のような絶縁性の高い絶縁膜2を形成し、その上
にホトレジストを塗布して厚膜のレジスト膜3を形成
し、ホトリソグラフィ技術により、該ウエハ101を金
属キャップ7の大きさに合わせて区分した各領域の金属
キャップ7に接合する部分のレジスト層3及び絶縁膜2
を除去してシリコン層を露出させ、サンドブラスト装置
により表面に砂を吹き付け粗面4を形成する。[図1
(a)]。この場合レジスト層3がその下のシリコンウ
エハ101を砂から守る保護膜となっている。サンドブ
ラスト装置を使用する代わりに、超音波カッターと研削
剤を使用して直接絶縁膜の上から研削してウエハ上に粗
面を形成することも可能である。次に、レジスト層3を
除去し、金属素地用に調合された無電解ニッケルメッキ
液中にウエハ101を浸漬し、粗面4上にニッケルメッ
キ層5を析出させる[図1(b)]。一般に、金属素地
用に調合された無電解ニッケルメッキ液中では、高純度
シリコンのように高抵抗のウエハ上には殆どメッキ層が
析出しない。ところが、ウエハ表面に機械的な損傷があ
ると、結晶中に転位が発生し、それがキャリアを放出し
て抵抗が下がるため、損傷部分からメッキ層の析出が始
まり、近傍にメッキ層が成長する。本方法は、上記の性
質を利用し、機械的に加工した粗面4上にニッケルメッ
キ層5を析出させるものである。絶縁膜2は粗面4周辺
にメッキ層が成長するのを防止するためのマスクとな
り、粗面4上にのみ選択的にメッキ層5ができる。ま
た、粗面4はメッキ層を析出させる役目の他に、メッキ
層の付着力を高める効果と、平面に比べ沿面距離が増え
るために気密性を高める効果を持つ。FIG. 1 shows an example of the joining method of the present invention. An insulating film 2 having a high insulating property such as an oxide film or a nitride film is formed on the front surface and the back surface of a high-purity silicon wafer 101, and a photoresist is applied on the insulating film 2 to form a thick resist film 3. The resist layer 3 and the insulating film 2 at the portions to be joined to the metal cap 7 in each region divided by the size of the metal cap 7 by the lithography technique.
Is removed to expose the silicon layer, and sand is blown onto the surface by a sandblasting device to form a rough surface 4. [Figure 1
(A)]. In this case, the resist layer 3 serves as a protective film that protects the silicon wafer 101 thereunder from sand. Instead of using a sandblasting device, it is also possible to grind directly on the insulating film using an ultrasonic cutter and an abrasive to form a rough surface on the wafer. Next, the resist layer 3 is removed, the wafer 101 is immersed in an electroless nickel plating solution prepared for a metal substrate, and a nickel plating layer 5 is deposited on the rough surface 4 [FIG. 1 (b)]. Generally, in an electroless nickel plating solution prepared for a metal substrate, a plating layer hardly deposits on a high-resistance wafer such as high-purity silicon. However, if there is mechanical damage on the wafer surface, dislocations occur in the crystal, which release carriers and reduce the resistance, so that the plating layer begins to precipitate from the damaged portion and grows in the vicinity. . This method utilizes the above properties to deposit the nickel plating layer 5 on the mechanically processed rough surface 4. The insulating film 2 serves as a mask for preventing the plating layer from growing around the rough surface 4, and the plating layer 5 can be selectively formed only on the rough surface 4. In addition to the role of depositing the plating layer, the rough surface 4 also has the effect of increasing the adhesive force of the plating layer and the effect of increasing the airtightness because the creepage distance is increased compared to a flat surface.
【0006】次に、シリコンウエハ101を金属キャッ
プ7の大きさに合わせて区分した各領域ごとのシリコン
板1に切断し、シリコン板1を金属キャップ7にニッケ
ルメッキ層5を半田付けして接合し、絶縁膜2を除去し
てシリコン板1の接合部分以外のシリコン層を露出させ
る[図1(c)]。半田付けは、ニッケルメッキや金メ
ッキを施して半田付着性を高めた金属キャップ7中にフ
ラックスを塗布したリング状の半田や鉛を入れ、続い
て、シリコン板1を入れ、おもりを載せ、加熱炉中に放
置して行なう。フラックスを使用する代わりに、炉中に
水素のような還元性ガスを流して行なう方法を採っても
よい。なお、半田付け後、おもりを外して再加熱する
と、金属キャップ7とシリコン板1の間に半田が流れ込
み、厚い半田層6が形成されるため、衝撃に対する吸収
力が向上する。Next, the silicon wafer 101 is cut into the silicon plates 1 for each area divided according to the size of the metal cap 7, and the silicon plate 1 is joined to the metal cap 7 by soldering the nickel plating layer 5 thereto. Then, the insulating film 2 is removed to expose the silicon layer other than the bonded portion of the silicon plate 1 [FIG. 1 (c)]. For soldering, ring-shaped solder or lead coated with flux is placed in a metal cap 7 having nickel-plated or gold-plated to improve solder adhesion, then the silicon plate 1 is placed, a weight is placed, and a heating furnace is placed. Leave it inside. Instead of using the flux, a method of flowing a reducing gas such as hydrogen in the furnace may be adopted. When the weight is removed and reheated after soldering, the solder flows between the metal cap 7 and the silicon plate 1 to form a thick solder layer 6, so that the shock absorbing power is improved.
【0007】上記には、シリコン板1の表面側にのみニ
ッケルメッキ層5を設ける例を示したが、シリコン板1
の表面及び裏面にニッケルメッキ層を設ける方法を採る
と、より高い接合強度と良好な気密性が得られる。図2
はこの方法による接合構造の一例を示す。In the above, the example in which the nickel plating layer 5 is provided only on the front surface side of the silicon plate 1 has been described.
If a method of providing a nickel plating layer on the front surface and the back surface is adopted, higher bonding strength and good airtightness can be obtained. Figure 2
Shows an example of the joining structure by this method.
【0008】図3は本発明の接合方法の他の例を示す。
シリコンの粗面4上にニッケルメッキ層5を析出させた
だけでは付着強度が弱く、さらに大きな強度が要求され
る場合、高温に加熱してニッケルをシリコン中に拡散さ
せてニッケルシリサイド層を形成すれば、付着強度が飛
躍的に大きくなることが知られている。ところが、ニッ
ケルとシリコンの熱膨張率の差が大きく、ニッケルメッ
キ層の機械的強度も大きいため、従来のように厚膜のメ
ッキ層を形成した後拡散すれば、常温に戻した時点で非
常に大きな応力が生じ、場合によってはメッキ層が剥離
し、下地のシリコンまで破壊する。そこで本発明では、
粗面4を形成した後、表面に50〜300nm程度の極
薄いニッケルメッキ層を形成し、600〜850℃の比
較的高い温度で加熱し、充分に時間をかけてニッケルを
拡散させてニッケルシリサイド層9を形成し、[図3
(a)]、このニッケルシリサイド層9上に厚膜のニッ
ケルメッキ層5を形成する方法を採る[図3(b)]。
この場合、薄いニッケルメッキ層の殆どがシリコン中に
拡散して、ニッケルシリサイド層9を形成し、表面には
わずかにニッケルや酸化物が残留する。この残留物10
を希釈弗酸や王水等で溶解して除去すれば、熱応力を発
生する層は消減してしまう。ニッケルシリサイド層9は
金属に近い低い抵抗率を持つため、メッキ層の成長がシ
リコン層上に比べて非常に速く、また、シリコンに直接
ニッケルを拡散させた場合と同等の大きな付着度が得ら
れる。FIG. 3 shows another example of the joining method of the present invention.
If the nickel plating layer 5 is simply deposited on the rough surface 4 of silicon, the adhesion strength is weak. If higher strength is required, the nickel silicide layer may be formed by heating to high temperature to diffuse nickel into the silicon. For example, it is known that the adhesion strength increases dramatically. However, since the difference in the coefficient of thermal expansion between nickel and silicon is large, and the mechanical strength of the nickel plating layer is also large, if a thick plating layer is formed and then diffused as before, it will be very A large stress is generated, and in some cases, the plating layer peels off and even the underlying silicon is destroyed. Therefore, in the present invention,
After forming the rough surface 4, an extremely thin nickel plating layer of about 50 to 300 nm is formed on the surface and heated at a relatively high temperature of 600 to 850 ° C., and nickel is diffused for a sufficient time to form nickel silicide. Form layer 9 and apply [Fig.
(A)], a method of forming a thick nickel plating layer 5 on the nickel silicide layer 9 is adopted [FIG. 3 (b)].
In this case, most of the thin nickel plating layer diffuses into silicon to form the nickel silicide layer 9, and a small amount of nickel or oxide remains on the surface. This residue 10
Is dissolved in diluted hydrofluoric acid, aqua regia, etc. and removed, the layer that generates thermal stress disappears. Since the nickel silicide layer 9 has a low resistivity close to that of a metal, the growth of the plated layer is much faster than that on the silicon layer, and the same degree of adhesion as when nickel is directly diffused into silicon can be obtained. .
【0009】図4は本発明の接合方法のその他の例を示
す。露出させたシリコン層表面に絶縁膜2をマスクとし
てガス拡散法によりあるいは不純物を含有した溶剤を塗
布して加熱する方法により、不純物をシリコン中に拡散
させて低抵抗層12を形成し、絶縁膜2をマスクとして
表面が低抵抗層のシリコン層上に選択的にニッケルメッ
キ層を析出させる。この場合低抵抗層表面が平坦でメッ
キ層の付着力が弱いため、図3に示す方法による方が望
ましい。表面が低抵抗層のシリコン層上に一旦極薄いニ
ッケルメッキ層5aを形成し[図4(a)]、高温で加
熱してニッケルを拡散させてニッケルシリサイド層9を
形成する[図4(b)]。一般にニッケルシリサイド層
9表面は図4(b)に示すように数100nm程度の凹
凸の発生により粗面13を形成する。なお、図4(b)
には、理解し易いように、低抵抗層12中にニッケルシ
リサイド層9が成長する過程を示したが、ニッケルの拡
散は非常に速く、加熱が終了した時点で低抵抗層12全
体がニッケルシリサイド層9で覆われ、図3(a)と同
様の状態になる。その後残留物10を除去し、ニッケル
シリサイド層9上に厚膜のニッケルメッキ層5を形成す
る。FIG. 4 shows another example of the joining method of the present invention. The low resistance layer 12 is formed by diffusing the impurities into the silicon by the gas diffusion method using the insulating film 2 as a mask on the exposed surface of the silicon layer or by the method of applying a solvent containing impurities and heating the insulating film 2. Using the mask 2 as a mask, a nickel plating layer is selectively deposited on the silicon layer having a low resistance surface. In this case, since the surface of the low resistance layer is flat and the adhesion of the plating layer is weak, the method shown in FIG. 3 is preferable. An extremely thin nickel plating layer 5a is once formed on a silicon layer having a low resistance layer [FIG. 4 (a)], and nickel is diffused by heating at a high temperature to form a nickel silicide layer 9 [FIG. 4 (b)]. )]. Generally, on the surface of the nickel silicide layer 9, as shown in FIG. 4B, a rough surface 13 is formed due to the occurrence of irregularities of about several 100 nm. Note that FIG. 4 (b)
For the sake of easy understanding, the process in which the nickel silicide layer 9 grows in the low resistance layer 12 is shown. However, the diffusion of nickel is very fast, and when the heating is completed, the entire low resistance layer 12 is nickel silicide. It is covered with the layer 9 and is in a state similar to that shown in FIG. After that, the residue 10 is removed, and a thick nickel plating layer 5 is formed on the nickel silicide layer 9.
【0010】図5は請求項2の方法による結合構造の一
例を示す。シリコンウエハを区分した各領域ごとのシリ
コン板1に切断した後、無電解ニッケルメッキ液中にシ
リコン板1を入れて攪拌すると、粗面になっている切断
面にもニッケルメッキ層が形成される。この方法を採る
と、さらに高い接合強度と良好な気密性が得られる。FIG. 5 shows an example of a joint structure according to the method of claim 2. After cutting the silicon wafer into the silicon plates 1 for each of the divided regions, when the silicon plate 1 is put into an electroless nickel plating solution and stirred, a nickel plating layer is also formed on the rough cut surface. . If this method is adopted, higher bonding strength and good airtightness can be obtained.
【0011】なお、上記説明では、シリコン板1の表面
及び裏面にニッケルメッキ層5を形成する場合、及び、
ウエハをシリコン板1に切断した後切断面にもニッケル
メッキ層を形成する場合の例として、図1に示す結合方
法による例のみを示したが、図3及び図4に示す結合方
法の場合も同様のことが言えることは勿論である。In the above description, when the nickel plating layer 5 is formed on the front surface and the back surface of the silicon plate 1, and
As an example of the case where the nickel plating layer is formed on the cut surface after the wafer is cut into the silicon plate 1, only the example of the joining method shown in FIG. 1 is shown, but the case of the joining method shown in FIGS. 3 and 4 is also shown. Of course, the same can be said.
【0012】[0012]
【発明の効果】以上説明したように、本発明では、シリ
コン層上の金属層の形成を無電解ニッケルメッキ法によ
って行なうようにしたので、蒸着やスパッタ装置のよう
な高価な設備を必要としなくなり、その上、金属層の成
長時間が従来の蒸着やスパッタ法に比べ非常に短く、コ
ストダウンに寄与する効果が大である。また、結合に半
田や鉛のような低融点金属を用いるため、気密性、対湿
性、対衝撃性に優れ、低融点金属は樹脂やガラスのよう
にシリコン層上に食み出すことがないので、出力や指向
性のばらつきが小さくなり、さらに、溶解接合温度が比
較的低いので、光透過率のばらつきも小さくなるという
効果がある。As described above, in the present invention, since the metal layer on the silicon layer is formed by the electroless nickel plating method, expensive equipment such as vapor deposition and sputtering equipment is not required. Moreover, the growth time of the metal layer is much shorter than that of the conventional vapor deposition or sputtering method, and the effect of contributing to cost reduction is great. In addition, since a low melting point metal such as solder or lead is used for bonding, it is excellent in airtightness, moisture resistance, and impact resistance, and the low melting point metal does not ooze out on the silicon layer unlike resin or glass. In addition, variations in output and directivity are reduced, and since the melting and joining temperature is relatively low, variations in light transmittance are also reduced.
【図1】本発明の接合方法の一例を示す図である。FIG. 1 is a diagram showing an example of a joining method of the present invention.
【図2】本発明の接合方法においてシリコン板の表面及
び裏面にニッケルメッキ層を設けた接合方法の一例を示
す図である。FIG. 2 is a diagram showing an example of a joining method in which a nickel plating layer is provided on the front and back surfaces of a silicon plate in the joining method of the present invention.
【図3】本発明の接合方法の他の例を示す図である。FIG. 3 is a diagram showing another example of the joining method of the present invention.
【図4】本発明の接合方法のその他の例を示す図であ
る。FIG. 4 is a diagram showing another example of the joining method of the present invention.
【図5】請求項2の方法による接合構造の一例を示す図
である。FIG. 5 is a diagram showing an example of a joining structure according to the method of claim 2;
【図6】従来の赤外線検出素子における光透過用窓部品
の高純度のシリコン板の取付構造の一例を示す図であ
る。FIG. 6 is a diagram showing an example of a mounting structure of a high-purity silicon plate of a light transmitting window component in a conventional infrared detecting element.
【図7】従来の高純度シリコン板の取付構造の他の例を
示す図である。FIG. 7 is a diagram showing another example of a conventional high-purity silicon plate mounting structure.
1 シリコン板 2 絶縁膜 3 レジスト層 4 粗面 5 ニッケルメッキ層 6 半田層 7 金属キャップ 8 開口部 1 Silicon Plate 2 Insulating Film 3 Resist Layer 4 Rough Surface 5 Nickel Plating Layer 6 Solder Layer 7 Metal Cap 8 Opening
Claims (2)
板を金属キャップに接合するシリコン板と金属の接合方
法において、 高純度シリコンウエハの表面及び裏面を絶縁膜で覆い、
該ウエハを接合する金属キャップの大きさに合わせて区
分した各領域の金属キャップに接合する部分の表面ある
いは表面及び裏面の絶縁膜を除去してシリコン層を露出
させ、該シリコン層の表面を機械加工して粗面状にする
か、あるいは、該シリコン層の表面に不純物を拡散して
低抵抗層を形成し、該シリコン層上に上記絶縁膜をマス
クに無電解により直接ニッケルメッキ層を形成するか、
あるいは、一旦薄いニッケルメッキ層を形成し、加熱し
て該シリコン層中にニッケルを拡散させてニッケルシリ
サイド層を形成し、該ニッケルシリサイド層表面に残留
するニッケル層及び酸化物層を除去して該ニッケルシリ
サイド層上に厚いニッケルメッキ層を形成し、該ウエハ
を接合する金属キャップの大きさに合わせて区分した各
領域ごとのシリコン板に切断し、該シリコン板のニッケ
ルメッキ層と金属キャップを半田や鉛のような低融点金
属にて溶融することを特徴とするシリコン板と金属の接
合方法。1. A method of joining a silicon plate and a metal, which joins a high-purity silicon plate forming a light-transmitting window to a metal cap, wherein a front surface and a back surface of the high-purity silicon wafer are covered with an insulating film,
The silicon layer is exposed by removing the insulating film on the front surface or the front surface and the back surface of the portion to be bonded to the metal cap in each region divided according to the size of the metal cap to which the wafer is bonded, and the surface of the silicon layer is machined. It is processed into a rough surface, or impurities are diffused on the surface of the silicon layer to form a low resistance layer, and a nickel plating layer is directly formed on the silicon layer by electroless plating using the insulating film as a mask. Or,
Alternatively, once a thin nickel plating layer is formed, nickel is diffused in the silicon layer by heating to form a nickel silicide layer, and the nickel layer and oxide layer remaining on the surface of the nickel silicide layer are removed to remove the nickel layer. A thick nickel plating layer is formed on the nickel silicide layer, and the wafer is cut into silicon plates for each area divided according to the size of the metal cap for joining the wafer, and the nickel plating layer of the silicon plate and the metal cap are soldered. A method for joining a silicon plate and a metal, which comprises melting with a low melting point metal such as lead or lead.
した後、該シリコン板の切断面にもニッケルメッキ層を
形成することを特徴とする請求項1に記載のシリコン板
と金属の接合方法。2. The method for joining a silicon plate and a metal according to claim 1, wherein after the wafer is cut into silicon plates for respective regions, a nickel plating layer is also formed on a cut surface of the silicon plate. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31655892A JPH06151905A (en) | 1992-10-30 | 1992-10-30 | Method of junctioning silicon board and metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31655892A JPH06151905A (en) | 1992-10-30 | 1992-10-30 | Method of junctioning silicon board and metal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06151905A true JPH06151905A (en) | 1994-05-31 |
Family
ID=18078440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31655892A Pending JPH06151905A (en) | 1992-10-30 | 1992-10-30 | Method of junctioning silicon board and metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06151905A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016171217A (en) * | 2015-03-13 | 2016-09-23 | シチズン電子株式会社 | Lateral face mounting type light-emitting device |
-
1992
- 1992-10-30 JP JP31655892A patent/JPH06151905A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016171217A (en) * | 2015-03-13 | 2016-09-23 | シチズン電子株式会社 | Lateral face mounting type light-emitting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2983486B2 (en) | Semiconductor substrate having a brazing material layer | |
US4078711A (en) | Metallurgical method for die attaching silicon on sapphire devices to obtain heat resistant bond | |
WO1997018584A1 (en) | Method for forming bump of semiconductor device | |
US4866505A (en) | Aluminum-backed wafer and chip | |
US4042951A (en) | Gold-germanium alloy contacts for a semiconductor device | |
JP2005019830A (en) | Manufacturing method of semiconductor device | |
JPH04299873A (en) | Manufacture of photovoltaic device | |
EP0991122A2 (en) | Connecting legs for electronic device | |
US7476606B2 (en) | Eutectic bonding of ultrathin semiconductors | |
JPH06151905A (en) | Method of junctioning silicon board and metal | |
JPH07142518A (en) | Lead frame, semiconductor chip, and semiconductor device | |
US5573171A (en) | Method of thin film patterning by reflow | |
US6548386B1 (en) | Method for forming and patterning film | |
KR19980024894A (en) | Semiconductor body with a layer of solder material | |
US4039116A (en) | Photodetector-to-substrate bonds | |
US3996548A (en) | Photodetector-to-substrate bonds | |
JP2005026612A (en) | Semiconductor device | |
JPS6038823A (en) | Semiconductor device | |
JPH0793329B2 (en) | How to fix semiconductor pellets | |
FR2722916A1 (en) | Connection element comprising solder-coated core | |
JPS6033301B2 (en) | Method for manufacturing compound semiconductor device | |
JPS63179535A (en) | Manufacture of semiconductor device | |
JPH0366130A (en) | Formation of bump | |
JPH0140514B2 (en) | ||
FR2697125A1 (en) | A method of mounting a microstructure and microstructure mounted according to the method. |