JPH06151714A - Supplying circuit for bias voltage of active device - Google Patents

Supplying circuit for bias voltage of active device

Info

Publication number
JPH06151714A
JPH06151714A JP4297486A JP29748692A JPH06151714A JP H06151714 A JPH06151714 A JP H06151714A JP 4297486 A JP4297486 A JP 4297486A JP 29748692 A JP29748692 A JP 29748692A JP H06151714 A JPH06151714 A JP H06151714A
Authority
JP
Japan
Prior art keywords
laminated
via hole
active device
bias voltage
dielectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4297486A
Other languages
Japanese (ja)
Inventor
Haruki Nishida
治樹 西田
Hiroshi Suzuki
鈴木  寛
Shin Watanabe
伸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4297486A priority Critical patent/JPH06151714A/en
Publication of JPH06151714A publication Critical patent/JPH06151714A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To miniaturize a circuit by reducing the kinds of electrodes by a method wherein a via hole is provided as far as to the surface of a dielectric substrate from the electrode of an active device, an earthing surface is formed by laminating a dielectric layer on the end part of the via hole, the earthing surface is earthed, and a self-bias application structure is formed. CONSTITUTION:The first via hole 21 is provided from directly below the source electrode S of the FET 13 provided on one surface of a dielectric substrate 41 to the other surface of the dielectric substrate. A dielectric layer 31 is laminated on the end part of the first via hole on the other surface, the first metal layer is laminated on the above-mentioned laminated layer, and an earthing surface 51 is formed. As a result, the source electrode is earthed at high frequencies and at the same time, it is connected to the earthing surface through the intermediary of a self-biasing drain resistor R. Drain voltage is applied to a drain D through a choke, a gate G is earthed through a resistor, and as the FET is self-biased by the resistor R1 the use of one electrode is enough, and the circuit can be made small in size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無線装置に使用する能
動デバイスのバイアス電圧供給回路に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bias voltage supply circuit for active devices used in radio equipment.

【0002】一般に、GaAsを用いた誘電体基板上にデバ
イス,回路パターン,入出力整合回路などを形成して増
幅、周波数変換などの機能部分を作っているが、FET を
用いた増幅回路の場合、ゲートとドレインに電圧を印加
してソースを接地する構成を用いると、2つの電源が必
要となって、回路構成が複雑になると共に、FET の動作
点を設定する為の動作点調整が必要となる。
Generally, a device, a circuit pattern, an input / output matching circuit, etc. are formed on a dielectric substrate using GaAs to make functional parts such as amplification and frequency conversion. In the case of an amplification circuit using FET, , When using the configuration in which voltage is applied to the gate and drain and the source is grounded, two power supplies are required, the circuit configuration becomes complicated, and operating point adjustment for setting the operating point of the FET is required. Becomes

【0003】そこで、電源の種類を1つにして、回路の
小形化を図ることが必要である。
Therefore, it is necessary to reduce the size of the circuit by using one power source.

【0004】[0004]

【従来の技術】図5は従来例の構成図で、(a) は誘電体
基板上に形成したFET を含むパターンをFET の入出力端
子に平行に切断した要部断面図、(b) はバイアホール(V
IA) 付近の拡大断面図、(c) は要部回路図の一例であ
る。
2. Description of the Related Art FIG. 5 is a block diagram of a conventional example. (A) is a cross-sectional view of an essential part of a pattern including an FET formed on a dielectric substrate cut in parallel with an input / output terminal of the FET, (b) is Via hole (V
An enlarged cross-sectional view near IA), and (c) is an example of a circuit diagram of the main part.

【0005】以下、図5について説明する。先ず、従来
のモノリシックマイクロ波集積回路( MMIC) に使用され
ている能動デバイスは小型化を図る上で、特開昭63-244
761 の図1に示す様に、誘電体基板(GaAs基板) に形成
したパターンの下にコンデンサを形成する等の構造にな
っている。
Hereinafter, FIG. 5 will be described. First, in order to miniaturize the active device used in the conventional monolithic microwave integrated circuit (MMIC), Japanese Patent Laid-Open No. 63-244
As shown in FIG. 1 of 761, the structure is such that a capacitor is formed under a pattern formed on a dielectric substrate (GaAs substrate).

【0006】一方、FET を用いた増幅器の場合、例え
ば、図5(c) に示す様にソースを接地し、ゲートとドレ
インに、一端がコンデンサC で接地されたチョークchを
介してゲート電圧, ドレイン電圧を印加する構成の2電
源方式を採用することがある。
On the other hand, in the case of an amplifier using a FET, for example, as shown in FIG. 5 (c), the source is grounded, and the gate voltage and the drain are connected to the gate voltage via a choke ch whose one end is grounded by a capacitor C. A dual power supply system having a configuration of applying a drain voltage may be adopted.

【0007】この時、図5(a),(b) に示す様に、GaAsの
誘電体基板11の上に設けられたFET13のソース(S) はバ
イアホール14, 16及び誘電体基板の誘電率よりも大きな
誘電率を持つ誘電体層15, 17を介して接地面12に接続さ
れるが、ミリ波帯の様な超高周波帯では、ソース電極
(S) −取り付け部18a ,18b−スルーホールからなる線路
に対して寄生インダクタンスL14, L16(図示せず)が発
生し、図示しない寄生インダクタンス成分と上記誘電体
層の容量を介して接地面12に接続される。
At this time, as shown in FIGS. 5A and 5B, the source (S) of the FET 13 provided on the GaAs dielectric substrate 11 is the via holes 14 and 16 and the dielectric substrate dielectric. It is connected to the ground plane 12 through the dielectric layers 15 and 17 having a dielectric constant larger than the dielectric constant, but in the super high frequency band such as the millimeter wave band, the source electrode
(S) - mounting portion 18a, 18B- parasitic inductances L 14, L 16 (not shown) occurs for consisting the through hole line, via the capacitance of the parasitic inductance component (not shown) and the dielectric layer contacting Connected to the ground 12.

【0008】この為、接地が不完全となり利得が低下す
る。また、ゲートとドレインに別々に電圧を印加してFE
T の動作点を決めるので、所定の動作点になるよう調整
する必要がある。
Therefore, the grounding is incomplete and the gain is lowered. In addition, FE is applied by applying voltage to the gate and drain separately.
Since the operating point of T is determined, it is necessary to adjust it so that it becomes a predetermined operating point.

【0009】ここで、スルーホール14, 16はエッチング
で設けるので、図に示す様に下部が上部よりも広がって
おり、内面をメタライズすることにより、誘電体基板の
表面と裏面が接続される。また、バイアホールの上部の
外形が、例えば、100 ミクロンとすると下部の外形は20
0 ミクロン程度になり、バイアホールの付近に別のバイ
アホールを設けるにはある程度のスペースが必要とな
る。
Since the through holes 14 and 16 are formed by etching, the lower portion is wider than the upper portion as shown in the figure, and the inner surface is metalized to connect the front surface and the back surface of the dielectric substrate. In addition, if the upper outline of the via hole is, for example, 100 microns, the lower outline is 20
It becomes about 0 micron, and a certain amount of space is required to provide another via hole near the via hole.

【0010】[0010]

【発明が解決しようとする課題】上記の様に、超高周波
帯では、ソース電極(S) からバイアホール出口までの線
路に対して寄生インダクタンスが発生し、不完全な接地
となる。
As described above, in the super high frequency band, a parasitic inductance is generated in the line from the source electrode (S) to the via hole exit, resulting in incomplete grounding.

【0011】また、ゲート電圧, ドレイン電圧として別
の電源から供給する際、2つのバイアホールが重なり合
わない様にある程度のスペースが必要となり、回路の小
型化が困難である。そこで、回路の小型化の為に電源の
種類の削減を図らなければならないと云う2つの問題が
ある。
Further, when the gate voltage and the drain voltage are supplied from different power sources, a certain space is required so that the two via holes do not overlap each other, and it is difficult to miniaturize the circuit. Therefore, there are two problems that the types of power sources must be reduced in order to miniaturize the circuit.

【0012】[0012]

【課題を解決するための手段】第1の本発明では、能動
デバイスの接地すべき電極(S) の真下から誘電体基板の
他方の面まで第1のバイアホールを設け、第1のバイア
ホールの端部に誘電体層を積層し、積層した誘電体層に
更に、第1の金属層を積層して接地面を形成し、電極に
対して高周波的に接地すると共に、自己バイアス電圧を
印加する構成にした。これにより、電源の種類が1種類
となり、回路の小型化が図られる。
According to the first aspect of the present invention, a first via hole is provided from directly below an electrode (S) to be grounded of an active device to the other surface of the dielectric substrate. A dielectric layer is laminated on the end portion of the electrode, a first metal layer is further laminated on the laminated dielectric layer to form a ground plane, and the electrode is grounded at high frequency and a self-bias voltage is applied It was configured to do. As a result, there is only one type of power source, and the size of the circuit can be reduced.

【0013】第2の本発明では、能動デバイスの接地す
べき電極(S) の真下と、電極より所定距離以上離れた誘
電体基板の一方の面から、誘電体基板の他方の面に第
1,第2のバイアホールを設け、他方の面の第1,第2
のバイアホールの端部を積層した第2の金属膜で相互に
接続すると共に、第1,第2のバイアホール及び積層し
た第2の金属膜に誘電体層を積層し、該積層した誘電体
層に更に、第3の金属層を積層して接地面を形成し、電
極に対して高周波的に接地すると共に、該第2のバイア
ホールを介して自己バイアス電圧を印加する構成にし
た。
In a second aspect of the present invention, the first surface of the dielectric substrate is directly below the electrode (S) to be grounded of the active device and the first surface of the dielectric substrate is separated from the electrode by a predetermined distance or more. , The second via hole is provided, and the first and second surfaces of the other surface are provided.
Connecting the ends of the via holes to each other with a laminated second metal film, laminating a dielectric layer on the first and second via holes and the laminated second metal film, and laminating the laminated dielectric. A third metal layer is further laminated on the layer to form a ground plane, which is grounded at a high frequency with respect to the electrode, and a self-bias voltage is applied through the second via hole.

【0014】第3の本発明では、第1,第2 のバイアホ
ール間を抵抗素子で接続することにより、第1のバイア
ホールの場合よりも所要帯域の減衰量を大きくした。第
4の本発明では、積層した誘電体としてダイヤモンドで
構成する。
In the third aspect of the present invention, by connecting the first and second via holes with a resistance element, the attenuation amount in the required band is made larger than that in the case of the first via hole. In the fourth invention, diamond is used as the laminated dielectric.

【0015】第5の本発明では、第3の金属層を積層し
た接地面を隆起させて、上記の第1,第2のバイアホー
ルの貫通孔長を所定値以下に短縮して寄生インダクタン
スを削減した。
In the fifth aspect of the present invention, the ground plane on which the third metal layer is laminated is raised to shorten the through hole length of the first and second via holes to a predetermined value or less to reduce the parasitic inductance. Reduced.

【0016】[0016]

【作用】第1の本発明は、能動デバイス、例えば、FET
のソース電極の下に第1のバイアホールを設け、ソース
電極と反対側にある第1のバイアホール端部に誘電体層
を積層し、積層した誘電体層に更に、第1の金属層を積
層して接地面を形成してソース電極を高周波的に接地す
る。また、FET のソース電極に抵抗を付加してゲートよ
りも高い直流電位を持たせてFET を動作させる( 自己バ
イアス電圧を印加する) 。
According to the first aspect of the present invention, an active device such as an FET is provided.
A first via hole is provided under the source electrode of, a dielectric layer is laminated on the end of the first via hole on the opposite side of the source electrode, and a first metal layer is further formed on the laminated dielectric layer. The grounded surface is formed by stacking and the source electrode is grounded at high frequency. In addition, a resistance is added to the source electrode of the FET to give it a higher DC potential than the gate to operate the FET (apply a self-bias voltage).

【0017】即ち、バイアス回路は高周波的に接地され
ている箇所に接続されているので、バイアス電源接続の
影響が受け難くなる。第2の本発明は、FET のソース電
極の真下と、電極より所定距離以上離れたソース電極側
の誘電体基板から、誘電体基板の他方の面まで第1,第
2のバイアホールを設ける。
That is, since the bias circuit is connected to a place which is grounded in terms of high frequency, it is less susceptible to the bias power supply connection. In the second aspect of the present invention, first and second via holes are provided from directly below the source electrode of the FET and from the dielectric substrate on the side of the source electrode which is separated from the electrode by a predetermined distance or more to the other surface of the dielectric substrate.

【0018】そして、他方の面上に設けた第1,第2の
バイアホールを積層した第2の金属膜で相互に接続する
と共に、第1,第2のバイアホール及び形成した第2の
金属膜に誘電体層を積層し、該積層した誘電体層に更
に、第3の金属層を積層して接地面を形成する。これに
より、電極が高周波的に接地されるが、直流的には該第
2のバイアホールを介して自己バイアス電圧できる構成
にした。
Then, the first and second via holes provided on the other surface are connected to each other by a laminated second metal film, and the first and second via holes and the formed second metal are formed. A dielectric layer is laminated on the film, and a third metal layer is further laminated on the laminated dielectric layer to form a ground plane. As a result, the electrode is grounded at a high frequency, but in terms of direct current, a self-bias voltage can be applied via the second via hole.

【0019】第3の本発明は、第1,第2のバイアホー
ル間を抵抗素子で接続することにより、第1のバイアホ
ールの場合よりも所要帯域の減衰量を大きくした。ま
た、第4の本発明は積層した誘電体としてダイヤモンド
で構成する。更に、第5の本発明は金属層を積層した接
地面を隆起させて、上記の第1,第2のバイアホールの
貫通孔長を所定値以下に短縮して寄生インダクタンスの
削減を行った。
In the third aspect of the present invention, the attenuation amount in the required band is made larger than that in the case of the first via hole by connecting the first and second via holes with the resistance element. In the fourth aspect of the present invention, diamond is used as the laminated dielectric. Furthermore, in the fifth aspect of the present invention, the ground plane on which a metal layer is laminated is raised to shorten the through hole length of the first and second via holes to a predetermined value or less to reduce the parasitic inductance.

【0020】[0020]

【実施例】図1は第1の本発明の実施例の構成図で、
(a) は誘電体基板上に形成したFETを含むパターンをFET
の入出力端子に平行に切断した要部断面図、(b) は等
価回路図の一例である。図2は第2の本発明の実施例の
構成図で、(a) は誘電体基板上に形成したFET を含むパ
ターンをFET の入出力端子に平行に切断した要部断面
図、(b) は等価回路図の一例である。
FIG. 1 is a block diagram of the first embodiment of the present invention.
(a) is a pattern including a FET formed on a dielectric substrate
FIG. 3B is a cross-sectional view of a main part cut in parallel with the input / output terminal of, and FIG. FIG. 2 is a block diagram of a second embodiment of the present invention, in which (a) is a cross-sectional view of a main part of a pattern including an FET formed on a dielectric substrate cut in parallel with the input / output terminals of the FET, (b). Is an example of an equivalent circuit diagram.

【0021】図3は第3,第4の本発明の実施例の構成
図で、(a) は誘電体基板上に形成したFET を含むパター
ンをFET の入出力端子に平行に切断した要部断面図、
(b) は等価回路図の一例である。図4は第5の本発明の
実施例の構成図であるが、誘電体基板上に形成したFET
を含むパターンをFET の入出力端子に平行に切断した要
部断面図である。
FIG. 3 is a block diagram of the third and fourth embodiments of the present invention, in which (a) is a main part obtained by cutting a pattern including an FET formed on a dielectric substrate in parallel with the input / output terminals of the FET. Cross section,
(b) is an example of an equivalent circuit diagram. FIG. 4 is a block diagram of the fifth embodiment of the present invention, in which a FET formed on a dielectric substrate is used.
FIG. 4 is a cross-sectional view of a main part, in which a pattern including is cut parallel to the input / output terminals of the FET.

【0022】なお、全図を通じて同一符号は同一対象物
を示す。以下、図1〜図4を順次、説明する。図1(a)
において、例えば、GaAsを用いた誘電体基板41の一方の
面に設けられたFET 13のソース電極(S) の真下から該誘
電体基板の他方の面に第1のバイアホール21を設ける。
そして、該他方の面の第1のバイアホールの端部に誘電
体層31を積層し、該積層した誘電体層の上に更に、第1
の金属層を積層して接地面51を形成する。
The same reference numerals denote the same objects throughout the drawings. Hereinafter, FIGS. 1 to 4 will be sequentially described. Figure 1 (a)
In, for example, a first via hole 21 is provided from directly below the source electrode (S) of the FET 13 provided on one surface of the dielectric substrate 41 using GaAs to the other surface of the dielectric substrate.
Then, the dielectric layer 31 is laminated on the end portion of the first via hole on the other surface, and the first dielectric layer 31 is further formed on the laminated dielectric layer.
The metal layers are laminated to form the ground plane 51.

【0023】これにより、ソース電極は高周波的に接地
されると共に、自己バイアス用の抵抗R を介して接地面
に接続される。ここで、図1(b) は図1(a) の等価回路
を示すが、図1(b) に示す様に、第1のバイアホールに
より寄生インダクタンスL21 が発生し(ソース電極に直
接,接続しているので従来例よりも小さい)、積層した
誘電体層の容量C31 を介して接地されるので、例えば、
ミリ波帯では完全な接地が難しい。
As a result, the source electrode is grounded at a high frequency and is also connected to the ground plane via the resistor R for self-bias. Here, FIG. 1 (b) shows the equivalent circuit of FIG. 1 (a), but as shown in FIG. 1 (b), a parasitic inductance L 21 is generated by the first via hole (directly on the source electrode, Since it is connected, it is smaller than the conventional example), and is grounded via the capacitance C 31 of the laminated dielectric layers.
Complete grounding is difficult in the millimeter wave band.

【0024】なお、ドレイン(D) はチョークを介してド
レイン電圧が印加し、ゲート(G) は抵抗を介して接地さ
れ、FET は抵抗R1により自己バイアスされるので電源が
1つで済み、回路が小型化される。
The drain voltage is applied to the drain (D) via the choke, the gate (G) is grounded via the resistor, and the FET is self-biased by the resistor R 1, so only one power supply is required. The circuit is miniaturized.

【0025】図2(a) はFET 13のソース電極の真下と、
ソース電極より所定距離以上離れた誘電体基板42の一方
の面から、他方の面まで第1,第2のバイアホール22,
23を設け、該他方の面の第1,第2のバイアホール端部
を積層した第2の金属膜24で相互に接続する。
FIG. 2 (a) shows directly below the source electrode of the FET 13,
The first and second via holes 22, from one surface of the dielectric substrate 42 separated from the source electrode by a predetermined distance to the other surface,
23 is provided, and the end portions of the first and second via holes on the other surface are connected to each other by a second metal film 24 that is laminated.

【0026】そして、該第1,第2のバイアホール及び
形成した第2の金属膜に誘電体層32を積層し、該積層し
た誘電体に第3の金属層を積層して接地面52を形成す
る。図2(b) は図2(a) の構成の等価回路であるが、第
2の金属膜24を設けることにより、等価的にインダクタ
ンスL24 を持たせたもので、2つのバイアホールによる
インダクタンスL22, L23と積層した誘電体層による容量
C321, C322とで低域通過フイルタが構成され、遮断周波
数が低くなり高周波接地の際の減衰量が大きくなる。
Then, a dielectric layer 32 is laminated on the first and second via holes and the formed second metal film, and a third metal layer is laminated on the laminated dielectric to form the ground plane 52. Form. 2 (b) is an equivalent circuit of the configuration of FIG. 2 (a). By providing the second metal film 24, the inductance L 24 is equivalently provided. The inductance due to the two via holes is shown in FIG. capacity by dielectric layer laminated with L 22, L 23
A low-pass filter is formed by C 321 and C 322, and the cutoff frequency becomes low and the attenuation amount at the time of high-frequency grounding becomes large.

【0027】なお、ソース電流の大きな回路の場合、MM
ICの中に構成する抵抗R2の発熱量が大きくなり焼ける場
合があるが、この様な時は抵抗R2を第2のバイアホール
を介して外部に設けることにより大きな発熱量に対処で
きる。
In the case of a circuit with a large source current, MM
The amount of heat generated by the resistor R 2 included in the IC may be large and burned. In such a case, the large amount of heat generated can be dealt with by providing the resistor R 2 outside through the second via hole.

【0028】さて、図2(a),(b) においては、金属膜24
を介して他方の面の第1,第2のバイアホール端部を相
互に接続したが、図3(a) に示す様に、抵抗R3で第1,
第2のバイアホールを接続する様にした。この時の等価
回路は図3(b) に示すが、コンデンサC332はコンデンサ
C331 よりも容量値が非常に大きくしている為、周波数
が高い時はコンデンサC331で接地され、低い時は抵抗R3
で接地される。
2 (a) and 2 (b), the metal film 24
Although the ends of the first and second via holes on the other surface were connected to each other via, the first and second via holes were connected by the resistor R 3 as shown in Fig. 3 (a).
The second via hole is connected. Equivalent circuit at this time is shown in FIG. 3 (b), the capacitor C 332 is a capacitor
Since the capacitance value than C 331 is very large, when the frequency is high is grounded by the capacitor C 331, when a low resistance R 3
Grounded at.

【0029】また、誘電体層では熱が遮断されるので熱
がこもる。そこで、誘電体層をダイヤモンドで構成すれ
ば、ダイヤモンドは耐圧が高く純度が高いので、イオン
化したものが流れ込むことがなく、必要な接地容量が非
常に薄くても得られると云う利点が得られる。
Further, since heat is cut off in the dielectric layer, heat is accumulated. Therefore, if the dielectric layer is composed of diamond, since diamond has a high withstand voltage and high purity, ionized substances do not flow in, and the advantage that the required grounding capacitance can be obtained is obtained.

【0030】図4は接地面53を隆起させることにより、
バイアホールによる寄生インダクタンスを抑圧する様に
したものである。上記の様に、FET のソース直下にバイ
アホールがある為、従来よりも寄生インダクタンスの低
減と確実な高周波接地により回路の安定動作に寄与す
る。また、電源が1つで済む為、装置全体の小型化が図
られる。
FIG. 4 shows that by raising the ground plane 53,
The parasitic inductance due to the via hole is suppressed. As mentioned above, since there is a via hole directly under the source of the FET, it contributes to the stable operation of the circuit by reducing the parasitic inductance and reliable high-frequency grounding as compared with the past. Moreover, since only one power supply is required, the size of the entire device can be reduced.

【0031】[0031]

【発明の効果】以上詳細に説明した様に本発明によれ
ば、電源の種類の削減を図ることができると云う効果が
ある。
As described above in detail, according to the present invention, it is possible to reduce the kinds of power sources.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の本発明の実施例の構成図で、(a) は誘電
体基板上に形成したFET を含むパターンをFET の入出力
端子に平行に切断した要部断面図、(b) は等価回路図の
一例である。
FIG. 1 is a configuration diagram of a first embodiment of the present invention, in which (a) is a cross-sectional view of a main part obtained by cutting a pattern including an FET formed on a dielectric substrate in parallel with an input / output terminal of the FET, ) Is an example of an equivalent circuit diagram.

【図2】第2の本発明の実施例の構成図で、(a) は誘電
体基板上に形成したFET を含むパターンをFET の入出力
端子に平行に切断した要部断面図、(b) は等価回路図の
一例である。
FIG. 2 is a configuration diagram of a second embodiment of the present invention, (a) is a cross-sectional view of a main part of a pattern including a FET formed on a dielectric substrate cut in parallel with an input / output terminal of the FET, ) Is an example of an equivalent circuit diagram.

【図3】第3,第4の本発明の実施例の構成図で、(a)
は誘電体基板上に形成したFETを含むパターンをFET の
入出力端子に平行に切断した要部断面図、(b) は等価回
路図の一例である。
FIG. 3 is a configuration diagram of the third and fourth embodiments of the present invention, (a)
Is a cross-sectional view of a main part in which a pattern including a FET formed on a dielectric substrate is cut parallel to the input / output terminals of the FET, and (b) is an example of an equivalent circuit diagram.

【図4】第5の本発明の実施例の構成図であるが、誘電
体基板上に形成したFET を含むパターンをFET の入出力
端子に平行に切断した要部断面図である。
FIG. 4 is a constitutional view of a fifth embodiment of the present invention, which is a cross-sectional view of essential parts in which a pattern including an FET formed on a dielectric substrate is cut in parallel with an input / output terminal of the FET.

【図5】従来例の構成図で、(a) は誘電体基板上に形成
したFET を含むパターンをFETの入出力端子に平行に切
断した要部断面図、(b) はバイアホール(VIA) 付近の拡
大断面図、(c) は要部回路図の一例である。
FIG. 5 is a configuration diagram of a conventional example, in which (a) is a cross-sectional view of an essential part obtained by cutting a pattern including an FET formed on a dielectric substrate in parallel with the input / output terminals of the FET, and (b) is a via hole (VIA). ) Is an enlarged cross-sectional view of the vicinity, and (c) is an example of a main circuit diagram.

【符号の説明】[Explanation of symbols]

13 能動デバイス 21, 22 第1の
バイアホール 23 第2のバイアホール 31, 32, 33 誘
電体層 41 誘電体基板 51, 52, 53 接
地面
13 Active device 21, 22 First via hole 23 Second via hole 31, 32, 33 Dielectric layer 41 Dielectric substrate 51, 52, 53 Ground plane

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 誘電体基板(41)の一方の面に形成した能
動デバイス(13)のバイアス電圧供給回路において、 該能動デバイスの接地すべき電極(S) の真下から該誘電
体基板の他方の面まで第1のバイアホール(21)を設け、
該他方の面の第1のバイアホール端部に誘電体層(31)を
積層し、該積層した誘電体層に更に、第1の金属層を積
層して接地面(51)を形成し、該電極に対して、該積層し
た誘電体層を介して高周波的に接地すると共に、自己バ
イアス電圧を印加する構成にしたことを特徴とする能動
デバイスのバイアス電圧供給回路。
1. A bias voltage supply circuit for an active device (13) formed on one surface of a dielectric substrate (41), wherein from the position directly below an electrode (S) to be grounded of the active device, to the other side of the dielectric substrate. First via hole (21) is provided up to
A dielectric layer (31) is laminated on the end of the first via hole on the other surface, and a first metal layer is further laminated on the laminated dielectric layer to form a ground plane (51), A bias voltage supply circuit for an active device, wherein the electrode is grounded at a high frequency through the laminated dielectric layers and a self-bias voltage is applied.
【請求項2】 上記の能動デバイスのバイアス回路にお
いて、 該能動デバイスの接地すべき電極(S) の真下と、該電極
より所定距離以上離れた該誘電体基板の一方の面から、
該誘電体基板の他方の面に第1,第2のバイアホール(2
2, 23)を設け、 該他方の面の第1,第2のバイアホール端部を、積層し
た第2の金属膜(24)で相互に接続すると共に、該第1,
第2のバイアホール及び積層した第2の金属膜に誘電体
層(32)を積層し、該積層した誘電体層に更に、第3の金
属層を積層して接地面(52)を形成し、 該電極に対して、該積層した誘電体層を介して高周波的
に接地すると共に、該第2のバイアホール介して自己バ
イアス電圧を印加する構成にした能動デバイスのバイア
ス電圧供給回路。
2. In the bias circuit for an active device as described above, from directly below an electrode (S) to be grounded of the active device and from one surface of the dielectric substrate separated from the electrode by a predetermined distance or more,
On the other surface of the dielectric substrate, first and second via holes (2
2, 23) are provided, the end portions of the first and second via holes on the other surface are connected to each other by a laminated second metal film (24), and
A dielectric layer (32) is laminated on the second via hole and the laminated second metal film, and a third metal layer is further laminated on the laminated dielectric layer to form a ground plane (52). A bias voltage supply circuit for an active device configured to apply high-frequency ground to the electrode via the laminated dielectric layers and to apply a self-bias voltage via the second via hole.
【請求項3】 上記の誘電体基板の他方の面の第1,第
2のバイアホール端部を抵抗素子(R3)で相互に接続する
構成にした請求項2の能動デバイスのバイアス電圧供給
回路。
3. A bias voltage supply for an active device according to claim 2, wherein the first and second via hole ends of the other surface of the dielectric substrate are connected to each other by a resistance element (R 3 ). circuit.
【請求項4】 上記の積層した誘電体層をダイヤモンド
で形成した請求項1,2の能動デバイスのバイアス電圧
供給回路。
4. A bias voltage supply circuit for an active device according to claim 1, wherein the laminated dielectric layers are formed of diamond.
【請求項5】 上記の接地面(53)を隆起させて、第1,
第2のバイアホールの長さを所定値以下に短縮する構成
にした請求項2,3,4の能動デバイスのバイアス電圧
供給回路。
5. The grounding surface (53) is raised to make
5. A bias voltage supply circuit for an active device according to claim 2, wherein the length of the second via hole is shortened to a predetermined value or less.
JP4297486A 1992-11-09 1992-11-09 Supplying circuit for bias voltage of active device Withdrawn JPH06151714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4297486A JPH06151714A (en) 1992-11-09 1992-11-09 Supplying circuit for bias voltage of active device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4297486A JPH06151714A (en) 1992-11-09 1992-11-09 Supplying circuit for bias voltage of active device

Publications (1)

Publication Number Publication Date
JPH06151714A true JPH06151714A (en) 1994-05-31

Family

ID=17847129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4297486A Withdrawn JPH06151714A (en) 1992-11-09 1992-11-09 Supplying circuit for bias voltage of active device

Country Status (1)

Country Link
JP (1) JPH06151714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018009314A1 (en) * 2016-07-05 2018-01-11 Raytheon Company Microwave monolithic integrated circuit (mmic) amplified having de-q'ing section with resistive via

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018009314A1 (en) * 2016-07-05 2018-01-11 Raytheon Company Microwave monolithic integrated circuit (mmic) amplified having de-q'ing section with resistive via

Similar Documents

Publication Publication Date Title
US5805023A (en) High frequency amplifier, receiver, and transmitter system
US4504796A (en) Microwave circuit apparatus
US4390851A (en) Monolithic microwave amplifier having active impedance matching
US6169461B1 (en) High-frequency oscillating circuit
US5233313A (en) High power field effect transistor amplifier
WO2000075990A1 (en) High impedance matched rf power transistor
JPH1083998A (en) Semiconductor device
US6710426B2 (en) Semiconductor device and transceiver apparatus
JPH06151714A (en) Supplying circuit for bias voltage of active device
JP3004882B2 (en) Spiral inductor, microwave amplifier circuit and microwave amplifier
JP3231449B2 (en) Microwave circuit
US4727351A (en) High power RF resistor
JP3062358B2 (en) Microwave integrated circuit device
JPS63244761A (en) High-frequency planer circuit device
JPS6134742Y2 (en)
JPH04287507A (en) Field effect transistor amplifier
JPH06276038A (en) High frequency low noise amplifier
JP2001352204A (en) Circuit element using transmission line, electronic circuit using the same element and line, and electronic device using the same
JPH0572764B2 (en)
JPH11274853A (en) High frequency integrated circuit device
JPH07321130A (en) Semiconductor device
JP2002252529A (en) High frequency power amplifier
JPH03218101A (en) Interdigital filter
JPH0249733Y2 (en)
JPH0218603B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201