JPH06151153A - Calcinated powder for manganese-zinc ferrite and manufacture thereof - Google Patents
Calcinated powder for manganese-zinc ferrite and manufacture thereofInfo
- Publication number
- JPH06151153A JPH06151153A JP4297321A JP29732192A JPH06151153A JP H06151153 A JPH06151153 A JP H06151153A JP 4297321 A JP4297321 A JP 4297321A JP 29732192 A JP29732192 A JP 29732192A JP H06151153 A JPH06151153 A JP H06151153A
- Authority
- JP
- Japan
- Prior art keywords
- core
- rate
- powder
- manganese
- zinc ferrite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compounds Of Iron (AREA)
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、マンガン−亜鉛フェラ
イトコアを製造する際の原料となる、コア焼成時のひび
発生率の低い仮焼粉および、その製造方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a calcined powder which is a raw material for producing a manganese-zinc ferrite core and has a low rate of crack generation during firing of the core, and a method for producing the same.
【0002】[0002]
【従来の技術】マンガン−亜鉛フェライトコアを製造す
る場合、しばしばコア焼成時にコア表面にひびが発生す
ることがある。コアに発生するひびには様々な形態があ
るが、これは外見上の欠点となるばかりではなく、コア
本体の機械的強度の低下、甚だしい場合にはコアの磁気
特性の劣化などの問題を引き起こす。焼成時のひび発生
については、コア成形時に生コア内部に発生する密度む
らが主な原因とされてきた。ひび発生を抑えるために、
これまでは、主に粉体の成形性の観点から粉体の粒度分
布、及び成形条件の最適化に重点がおかれてきたが、こ
れらは成形後のコア内部の密度むらをなくすことを意図
したものであった。2. Description of the Related Art When manufacturing a manganese-zinc ferrite core, cracks often occur on the surface of the core during firing of the core. There are various forms of cracks that occur in the core, but this not only causes defects in appearance, but also causes problems such as deterioration of the mechanical strength of the core body and, in extreme cases, deterioration of the magnetic properties of the core. . Regarding the cracking during firing, the main cause has been the uneven density generated inside the green core during core molding. To suppress the occurrence of cracks,
Up to now, the focus has been mainly on the particle size distribution of powder and optimization of molding conditions from the viewpoint of powder moldability, but these are intended to eliminate density unevenness inside the core after molding. It was something that was done.
【0003】コアの成形条件は、プレスなどの設備能力
に制約されることが多く、柔軟性に欠けるため、生産量
の増加などによる製造条件の変化に対する最適化が極め
て難かしい。また、焼成炉内の雰囲気が変動した場合、
ひび発生率が増加するなどの問題には対処しにくい。す
なわち、仮焼粉の粒度分布、コアの成形条件のみでコア
焼成時のひび発生を十分に抑制することは困難であり、
製造条件の変動に影響されにくい仮焼粉という要求には
十分に答えられるものではない。The molding conditions of the core are often restricted by the capacity of equipment such as a press and lack in flexibility, so that it is extremely difficult to optimize the change of the manufacturing conditions due to the increase of the production amount. Also, when the atmosphere in the firing furnace changes,
It is difficult to deal with problems such as the increased incidence of cracks. That is, it is difficult to sufficiently suppress the occurrence of cracks during core firing only by the particle size distribution of the calcined powder and the molding conditions of the core,
The demand for a calcined powder that is less susceptible to fluctuations in manufacturing conditions cannot be fully met.
【0004】一方、焼成時のコアの還元、再酸化による
収縮膨張もひび発生の原因のひとつであることが明らか
となった。これによればコア焼成時のひび発生は、成形
時のコア内の密度むらと焼成時のコアの過剰な還元酸化
の相乗効果によるものと考えられるので、成形時のコア
の密度むらを減らすと共に、焼成時の還元、再酸化を抑
えれば、効果的にコア焼成時のひび発生を抑えることが
できる。On the other hand, it has been clarified that shrinkage and expansion due to reduction and reoxidation of the core during firing is also one of the causes of cracking. According to this, the occurrence of cracks during firing of the core is considered to be due to the synergistic effect of the uneven density in the core during molding and the excessive reduction and oxidation of the core during firing. By suppressing reduction and reoxidation during firing, it is possible to effectively suppress the occurrence of cracks during firing of the core.
【0005】焼成時の還元、再酸化は、成形体の中に含
まれるバインダー燃焼時に必要な酸素量が供給されない
場合に起こる。バインダー燃焼時に十分な酸素を焼成炉
内に吹き込むことによってひびの発生が抑えられると考
えられるが、この方法は焼成炉の熱的能力が十分でない
場合、炉内の温度分布を乱すことが考えられ、かえって
悪影響を及ぼす可能性がある。従って、焼成炉に酸素を
吹き込まずにバインダー燃焼に十分な酸素を供給できる
手段が求められる。Reduction and reoxidation during firing occur when the amount of oxygen required for burning the binder contained in the molded body is not supplied. It is thought that the generation of cracks can be suppressed by blowing sufficient oxygen into the firing furnace during binder combustion, but this method may disturb the temperature distribution inside the firing furnace when the thermal capacity of the firing furnace is not sufficient. However, there is a possibility of adverse effects. Therefore, there is a demand for a means capable of supplying sufficient oxygen for binder combustion without blowing oxygen into the firing furnace.
【0006】[0006]
【発明が解決しようとする課題】本発明は、マンガン−
亜鉛フェライトコア焼成時のコアのひび発生率を大幅に
下げると共に製造条件の変動に影響されにくい仮焼粉を
得ることを目的としている。SUMMARY OF THE INVENTION The present invention relates to manganese-
The purpose of the present invention is to obtain a calcined powder that is not easily affected by fluctuations in manufacturing conditions while significantly reducing the rate of core cracking during firing of a zinc ferrite core.
【0007】[0007]
【課題を解決するための手段】本発明によれば、仮焼粉
内の酸素量を積極的に増加させることによって、(コア
形状の変更などの)製造条件が変化した場合でもバイン
ダー燃焼のための酸素量が不足したことによるコア焼成
時の過剰な還元、再酸化を抑え、コア焼成時のひびの発
生を防ぐことができる。According to the present invention, by positively increasing the amount of oxygen in the calcined powder, binder combustion is achieved even when manufacturing conditions (such as changing the core shape) are changed. It is possible to prevent excessive reduction and reoxidation at the time of firing the core due to the lack of the oxygen content of the above, and to prevent the occurrence of cracks at the time of firing the core.
【0008】更に詳しくは、仮焼粉に含まれるヘマタイ
ト量とスピネル量との比を最適化し、1分子中に含まれ
る双方の酸素量差を利用して、仮焼粉にバインダー燃焼
のための酸素を保有させるものであり、ヘマタイトがス
ピネルとなるときに放出される酸素をバインダーの燃焼
に供給し、焼成炉内雰囲気の酸素量の不足分を補うもの
である。ここで、ヘマタイト量とスピネル量との比を、
仮焼粉のスピネル化率とするが、これは粉末X線回析の
それぞれのメインピークの強度から決めるものとし、次
のように定義する。More specifically, the ratio between the amount of hematite and the amount of spinel contained in the calcined powder is optimized, and the difference in the amounts of oxygen contained in one molecule is utilized to make the calcined powder for binder combustion. It retains oxygen and supplies the oxygen released when hematite becomes spinel to the combustion of the binder to make up for the shortage of oxygen in the atmosphere in the firing furnace. Here, the ratio between the amount of hematite and the amount of spinel is
The spinelization rate of the calcined powder is determined from the intensity of each main peak of the powder X-ray diffraction, and is defined as follows.
【0009】 スピネル化率(%)=Im/(Im+Ih) ここで、Imは、スピネルのd valueが2.53の強
度、Ihは、ヘマタイトのd valueが2.69の強度で
ある。Spinelization rate (%) = Im / (Im + Ih) Here, Im is the strength at which the d value of spinel is 2.53, and Ih is the strength at which the d value of hematite is 2.69.
【0010】仮焼粉のスピネル化率を55〜75%と限
定した理由は、スピネル化率が75%を越えるとヘマタ
イトから放出される酸素量がバインダー燃焼のために十
分ではなく、ひびの発生を効果的に抑えることができな
くなる。また、55%を下回ると焼成時の収縮率を適当
に保つことが難しくなり、仮焼を実施した効果が十分で
はなくなるからである。好ましくは、スピネル化率が6
0〜70%であればさらに良い結果が得られる。この範
囲のスピネル化率を持つ仮焼粉は、仮焼時の雰囲気の酸
素濃度、焼成温度パターンを最適化することで得られ
る。The reason why the spinelization rate of the calcined powder is limited to 55 to 75% is that when the spinelization rate exceeds 75%, the amount of oxygen released from hematite is not sufficient for binder combustion and cracks occur. Cannot be effectively suppressed. On the other hand, if it is less than 55%, it becomes difficult to appropriately maintain the shrinkage ratio during firing, and the effect of performing calcination becomes insufficient. Preferably, the spinelization rate is 6
Even better results are obtained if it is 0 to 70%. The calcined powder having a spinelization rate in this range can be obtained by optimizing the oxygen concentration in the atmosphere during calcining and the firing temperature pattern.
【0011】仮焼温度の面からは、仮焼粉の粒度分布の
最適化とスピネル化率の最適化は相反し、仮焼炉をでる
と処理粉が急冷されるような従来の方法では仮焼粉のス
ピネル化率を55〜75%とすると、仮焼の効果が十分
でないために、コア成形時に成形圧が高くなるといった
問題がおこる。しかし、仮焼の最高温度を最適化して原
料粉の焼結、粒成長を促進し、処理粉の冷却時に処理粉
の酸化度を調整することで、仮焼粉の粒度分布とスピネ
ル化率の最適化を同時に達成することができる。すなわ
ち、仮焼時に適当な温度パターンをとることにより、目
標とする粉体特性を持つ仮焼粉を得ることができる。仮
焼の最高温度を900〜1100℃としたのは、これよ
りも温度が高いと本焼成時に焼結が進みにくくなり、こ
れよりも温度が低いと仮焼の効果が十分ではないからで
ある。From the viewpoint of the calcination temperature, the optimization of the particle size distribution of the calcination powder and the optimization of the spinelization rate are contradictory, and in the conventional method in which the treated powder is rapidly cooled when leaving the calcination furnace, If the spinelization rate of the fired powder is 55 to 75%, the effect of the calcination is not sufficient, so that there is a problem that the molding pressure becomes high during core molding. However, by optimizing the maximum temperature of calcination to promote sintering and grain growth of the raw powder and adjusting the oxidation degree of the treated powder when cooling the treated powder, the particle size distribution and spinelization rate of the calcined powder can be improved. Optimization can be achieved at the same time. That is, by taking an appropriate temperature pattern during calcination, it is possible to obtain a calcined powder having target powder characteristics. The maximum temperature of calcination is set to 900 to 1100 ° C., because if the temperature is higher than this, it becomes difficult for sintering to proceed during the main firing, and if the temperature is lower than this, the effect of calcination is not sufficient. .
【0012】また、降温時700〜1000℃の間で少
なくとも100℃の温度にわたって、50℃/分以下の
冷却速度にするのは、この温度範囲以外では温度パター
ンの操作のみではスピネル化率を制御するのは難しく、
また、冷却速度がこれよりも大きいと、スピネル化率を
75%以下とすることができないためである。本発明に
よる仮焼粉は、通常の成形、焼成の製造行程を経て得ら
れるマンガン−亜鉛フェライトコアの原料とすることが
できる。Further, the cooling rate of 50 ° C./min or less is maintained at a temperature of 700 ° C. to 1000 ° C. for at least 100 ° C., and the spinelization rate is controlled only by operating the temperature pattern outside the temperature range. Difficult to do,
If the cooling rate is higher than this, the spinelization rate cannot be 75% or less. The calcined powder according to the present invention can be used as a raw material for a manganese-zinc ferrite core obtained through a normal forming and firing manufacturing process.
【0013】[0013]
【実施例】以下に、本発明を実施例に基づいて、さらに
説明する。下記の組成を持つ原料粉を用意し、それを仮
焼温度をそれぞれ変えて大気中に仮焼したのち、粉砕
し、異なるスピネル化率を持つ仮焼粉を得た。EXAMPLES The present invention will be further described below based on examples. Raw material powders having the following compositions were prepared, which were calcined in the atmosphere at different calcination temperatures, and then pulverized to obtain calcined powders having different spinelization rates.
【0014】組成:Fe2 O3 52.9,MnO 3
6.7,ZnO 10.4mol % これらを密度3.0g/cm3 のFE30B(JIS−C
2514)の成形体とし、1300℃で4時間焼成し
た後のコアのひびの発生率を、図1に示す。図1より明
らかなように、スピネル化率が75%以下の仮焼粉では
ひび発生率が改善されており、特にスピネル化率が70
%以下の領域ではひび発生率が著しく改善され、発生率
がほぼ零となっている。Composition: Fe 2 O 3 52.9, MnO 3
6.7, ZnO 10.4 mol% FE30B (JIS-C with a density of 3.0 g / cm 3
FIG. 1 shows the occurrence rate of cracks in the core after the molded product of No. 2514) was fired at 1300 ° C. for 4 hours. As is clear from FIG. 1, the calcination powder having a spinelization rate of 75% or less has an improved crack generation rate, and particularly the spinelization rate is 70%.
In the region of less than or equal to%, the crack occurrence rate is remarkably improved and the occurrence rate is almost zero.
【0015】また、表1に示すとおり、仮焼粉のスピネ
ル化率を55〜75%とするためには、冷却速度を50
℃/分以下とすればよいことが分る。Further, as shown in Table 1, in order to set the spinelization rate of the calcined powder to 55 to 75%, the cooling rate is set to 50.
It will be understood that the temperature may be set to not more than ° C / minute.
【0016】 表1 冷却速度とスピネル化率の関係冷却速度(℃/分) スピネル化率(%) 4.1 58 10 63 12.1 63 17 63 20 65 27 67 34 67 42 70 50 7554 78 (仮焼温度1070℃)Table 1 Relationship between cooling rate and spinelization rate Cooling rate (° C./min) Spinelization rate (%) 4.1 58 10 63 12.1 63 63 17 63 20 20 65 27 27 67 34 67 67 42 70 50 75 75 54 78 (Calcination temperature 1070 ° C)
【0017】[0017]
【発明の効果】仮焼粉のスピネル化率を55〜75%に
することにより、コア焼成時の過剰な還元酸化を防止
し、コアひび発生率を大幅に下げることが可能となり、
成形条件あるいは焼成炉内の雰囲気の変動など、製造条
件の変動に影響されにくい仮焼粉を得ることができる。
また、仮焼時の雰囲気の酸素濃度を10〜30%とし、
最高温度を900℃〜1100℃とし、この最高温度を
含む高温処理を前半とし、仮焼の後半で1100〜70
0℃までの間で少なくとも100℃にわたって50℃/
分以下の冷却速度で処理するとスピネル化率を55〜7
5%の仮焼粉を得ることができる。EFFECTS OF THE INVENTION By setting the spinelization rate of the calcined powder to 55 to 75%, it is possible to prevent excessive reductive oxidation during core firing, and to significantly reduce the core crack generation rate.
It is possible to obtain a calcined powder that is less susceptible to changes in manufacturing conditions such as changes in molding conditions or the atmosphere in the firing furnace.
Further, the oxygen concentration of the atmosphere during calcination is set to 10 to 30%,
The maximum temperature is 900 ° C to 1100 ° C, the high temperature treatment including this maximum temperature is the first half, and the latter half of the calcination is 1100 to 70 ° C.
50 ° C / up to 0 ° C over at least 100 ° C
When processed at a cooling rate of less than 5 minutes, the spinelization rate is 55 to 7
It is possible to obtain 5% of calcined powder.
【図1】スピネル化率によるひび発生率を示した図であ
る。FIG. 1 is a diagram showing a crack generation rate depending on a spinelization rate.
【手続補正書】[Procedure amendment]
【提出日】平成4年12月14日[Submission date] December 14, 1992
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0009[Correction target item name] 0009
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0009】 スピネル化率(%)=Im/(Im+Ih) ここで、Imは、スピネルのdvalueが2.53オ
ングストロームの強度、Ihは、ヘマタイトのdval
ueが2.69オングストロームの強度である。Spinelization rate (%) = Im / (Im + Ih) Here, Im is the intensity of spinel dvalue of 2.53 angstrom, and Ih is the hematite dval.
The ue has an intensity of 2.69 angstrom.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0017[Correction target item name] 0017
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0017】[0017]
【発明の効果】仮焼粉のスピネル化率を55〜75%に
することにより、コア焼成時の過剰な還元酸化を防止
し、コアひび発生率を大幅に下げることが可能となり、
成形条件あるいは焼成炉内の雰囲気の変動など、製造条
件の変動に影響されにくい仮焼粉を得ることができる。
また、仮焼時の最高温度を900℃〜1100℃とし、
この最高温度からの処理粉の冷却時、1100℃〜70
0℃までの間で、少なくとも100℃にわたって50℃
/分以下の冷却速度で処理するとスピネル化率55〜7
5%の仮焼粉を得ることができる。EFFECTS OF THE INVENTION By setting the spinelization rate of the calcined powder to 55 to 75%, it is possible to prevent excessive reductive oxidation during core firing, and to significantly reduce the core crack generation rate.
It is possible to obtain a calcined powder that is less susceptible to changes in manufacturing conditions such as changes in molding conditions or the atmosphere in the firing furnace.
In addition, the maximum temperature during calcination is set to 900 ° C to 1100 ° C,
When the treated powder is cooled from this maximum temperature, 1100 ° C to 70
50 ° C for at least 100 ° C up to 0 ° C
If processed at a cooling rate of less than 1 minute, the spinelization rate is 55 to 7
It is possible to obtain 5% of calcined powder.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 日下部 信 夫 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuo Kusakabe 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Shin-Nippon Steel Corporation Advanced Technology Research Laboratories
Claims (2)
特徴とするマンガン−亜鉛フェライト用仮焼粉。1. A calcined powder for manganese-zinc ferrite, which has a spinelization rate of 55 to 75%.
とし、この最高温度からの処理粉の冷却において、11
00〜700℃までの間で少なくとも100℃の温度に
わたって、50℃/分以下の冷却速度で処理することを
特徴とするマンガン−亜鉛フェライト用仮焼粉の製造方
法。2. The maximum temperature during calcination is 900 ° C. to 1100 ° C.
In cooling the treated powder from this maximum temperature, 11
A method for producing a calcined powder for manganese-zinc ferrite, which comprises treating at a temperature of at least 100 ° C between 0 and 700 ° C at a cooling rate of 50 ° C / min or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4297321A JPH06151153A (en) | 1992-11-06 | 1992-11-06 | Calcinated powder for manganese-zinc ferrite and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4297321A JPH06151153A (en) | 1992-11-06 | 1992-11-06 | Calcinated powder for manganese-zinc ferrite and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06151153A true JPH06151153A (en) | 1994-05-31 |
Family
ID=17844996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4297321A Pending JPH06151153A (en) | 1992-11-06 | 1992-11-06 | Calcinated powder for manganese-zinc ferrite and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06151153A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113929445A (en) * | 2021-09-24 | 2022-01-14 | 横店集团东磁股份有限公司 | Preparation method of permanent magnetic ferrite pre-sintered material |
-
1992
- 1992-11-06 JP JP4297321A patent/JPH06151153A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113929445A (en) * | 2021-09-24 | 2022-01-14 | 横店集团东磁股份有限公司 | Preparation method of permanent magnetic ferrite pre-sintered material |
CN113929445B (en) * | 2021-09-24 | 2023-07-21 | 横店集团东磁股份有限公司 | Preparation method of permanent ferrite pre-sintering material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005213100A (en) | METHOD OF MANUFACTURING MnZn FERRITE AND MnZn FERRITE | |
JP2004217452A (en) | Ferrite material and method of manufacturing the same | |
CN114605142A (en) | Composite ferrite substrate material for LTCF transformer and preparation method thereof | |
JPH04182353A (en) | Method for calcining mn-zn ferrite | |
JPH06151153A (en) | Calcinated powder for manganese-zinc ferrite and manufacture thereof | |
JPH06290926A (en) | Mn-zn ferrite magnetic material | |
CN114031388B (en) | Mn-Zn ferrite material and preparation method thereof | |
JP2914554B2 (en) | Method for producing high permeability MnZn ferrite | |
CN109095915B (en) | Combined substitution method for In (Cd, Ga), Ni, Ti and Co ions for preparing high-performance MnZn ferrite | |
JPH06333726A (en) | Manufacture of high-density mn-zn ferrite | |
JP2794679B2 (en) | Method for producing high-density ITO sintered body | |
JPS5851402B2 (en) | Porcelain for magnetic head structural parts and method for manufacturing the same | |
JP2532159B2 (en) | Transformer core for high frequency power supply | |
JPH06260321A (en) | Sintered ferrite with fine crystalline grains and manufacture thereof | |
JP2016074592A (en) | Mn-Zn-BASED FERRITE | |
JPH04321522A (en) | Production of manganese-zinc-based ferrite | |
JPH04295045A (en) | Production of calcined powder of starting material for ferrite | |
JPH07211533A (en) | Method of manufacturing oxide magnetic material | |
JPS60239355A (en) | Chromium oxide refractories | |
JPH0940456A (en) | Manufacture of soft ferrite core | |
JPH0794312A (en) | Manufacture of ferrite magnet | |
JPH03141611A (en) | Fineparticle organization mn-zn ferrite material and its manufacture | |
JPS58185437A (en) | Nonmagnetic zinc ferrite and preparation thereof | |
JPH06349624A (en) | Manufacture of oxide magnetic material | |
JPH01253210A (en) | Polycrystalline ferrite material and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020226 |