JPH0544807B2 - - Google Patents

Info

Publication number
JPH0544807B2
JPH0544807B2 JP59213670A JP21367084A JPH0544807B2 JP H0544807 B2 JPH0544807 B2 JP H0544807B2 JP 59213670 A JP59213670 A JP 59213670A JP 21367084 A JP21367084 A JP 21367084A JP H0544807 B2 JPH0544807 B2 JP H0544807B2
Authority
JP
Japan
Prior art keywords
molybdenum oxide
magnetic permeability
oxygen concentration
temperature
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59213670A
Other languages
Japanese (ja)
Other versions
JPS6191908A (en
Inventor
Hiroshi Rikukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP59213670A priority Critical patent/JPS6191908A/en
Publication of JPS6191908A publication Critical patent/JPS6191908A/en
Publication of JPH0544807B2 publication Critical patent/JPH0544807B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、マンガン−亜鉛系フエライト材料を
主原料とする酸化物磁性材料の製造方法に関し、
更に詳しくは少量の酸化モリブデンを添加すると
ともに低酸素濃度で急速昇温を行い焼結させるよ
うにした高透磁率磁性材料の製造方法に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing an oxide magnetic material whose main raw material is a manganese-zinc ferrite material.
More specifically, the present invention relates to a method for manufacturing a high permeability magnetic material in which a small amount of molybdenum oxide is added and the temperature is rapidly raised at a low oxygen concentration to sinter the material.

[従来の技術] マンガン−亜鉛系フエライトは透磁率が高いと
いう大きな特徴があり、そのため特に低周波領域
で用いられるコイルやトランス類の高透磁率磁心
として広く使用されている。各種巻線部品の特性
を変えずに小型化しようとすると、透磁率以外の
材料特性を適切な値に調節できるならば透磁率の
大きい材料を用いる方が有利だからである。
[Prior Art] Manganese-zinc ferrite has a major feature of high magnetic permeability, and is therefore widely used as a high permeability magnetic core for coils and transformers used particularly in the low frequency range. This is because when attempting to downsize various winding components without changing their characteristics, it is advantageous to use a material with high magnetic permeability if material characteristics other than magnetic permeability can be adjusted to appropriate values.

透磁率を高くするためにはフエライトの結晶粒
径を大きくすれば良いとされているが、そのため
には高温長時間の焼結が必要となる。しかし亜鉛
を含むフエライトの場合には、あまり長時間高温
状態においておくとその表面から酸化亜鉛が蒸発
するため、かえつて透磁率を低下させる原因とな
る。そこで従来技術によれば、透磁率が10000も
しくはそれ以上の材料を得るためには、焼成時に
マンガン−亜鉛系フエライトに粉体を被せるなど
何らかのシールを施し、亜鉛が蒸発しないように
工夫した状態で高温長時間焼成を行つていた。
It is said that increasing the crystal grain size of ferrite is sufficient to increase magnetic permeability, but this requires sintering at high temperatures and for a long time. However, in the case of ferrite containing zinc, if it is left in a high temperature state for too long, zinc oxide will evaporate from its surface, which will cause a decrease in magnetic permeability. According to the prior art, in order to obtain a material with a magnetic permeability of 10,000 or more, the manganese-zinc ferrite must be covered with powder or some other kind of seal during firing to prevent the zinc from evaporating. It was fired at a high temperature for a long time.

[発明が解決しようとする問題点] ところがこのような方法だと、当然のことなが
ら長時間(例えばトツプ温度の保持時間が30〜40
時間といつたような)焼結を行わねばならないの
で焼成コストが増大し、また焼結後にシール除去
作業(例えば焼成時に被せていた粉体を破壊して
製品を1個1個取り出す作業)を行わねばならな
いため生産コストが非常に高く量産化には不向き
であつた。
[Problems to be solved by the invention] However, with this method, it goes without saying that it takes a long time (for example, the top temperature is maintained for 30 to 40 hours).
This increases the cost of sintering because it requires sintering (which takes a lot of time), and it also requires seal removal work after sintering (for example, breaking the powder that was covered during firing to take out each product one by one). Because this process had to be carried out, the production cost was extremely high, making it unsuitable for mass production.

本発明の目的は、上記のような従来技術の欠点
を解消し、連続炉を用いた比較的短時間の焼成サ
イクルで、かつ裸焼成でμ≧10000の高透磁率磁
性材料を容易に量産しうるような方法を提供する
ことにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to easily mass-produce high permeability magnetic materials with μ≧10,000 by bare firing in a relatively short firing cycle using a continuous furnace. The goal is to provide a method that can be used.

[問題点を解決するための手段] 上記のような目的を達成することのできる本発
明は、従来一般に用いられている組成のマンガン
−亜鉛系フエライト材料に対して少量の酸化モリ
ブデンを添加し、低酸素濃度で急速昇温を行い焼
成する高透磁率酸化物磁性材料の製造方法であ
る。
[Means for Solving the Problems] The present invention, which can achieve the above objects, adds a small amount of molybdenum oxide to a manganese-zinc ferrite material having a composition commonly used in the past. This is a method for producing a high permeability oxide magnetic material, which is fired by rapidly raising the temperature at a low oxygen concentration.

酸化モリブデンの添加量は、主成分からなるマ
ンガン−亜鉛系フエライト材料に対して0.01〜1
重量%の範囲である。また焼成時の昇温条件は、
1100℃以上の昇温速度が200〜600℃/hrであり、
かつその時の酸素濃度が0.01〜5%の範囲であ
る。なお焼結温度は1300℃以上とする。
The amount of molybdenum oxide added is 0.01 to 1% to the manganese-zinc ferrite material, which is the main component.
% by weight. In addition, the heating conditions during firing are as follows:
The temperature increase rate over 1100℃ is 200 to 600℃/hr,
And the oxygen concentration at that time is in the range of 0.01 to 5%. The sintering temperature shall be 1300℃ or higher.

さて、ここで用いられるマンガン−亜鉛系フエ
ライト材料は、通常高透磁率磁性材料として用い
られるこの種の材料の組成範囲とほぼ同様であつ
てよく、例えばFe2O350〜58モル%、ZnO 3〜
30モル%、MnO 12〜47モル%程度の組成範囲が
選ばれる。
Now, the manganese-zinc-based ferrite material used here may have a composition range that is almost similar to the composition range of this type of material that is normally used as a high permeability magnetic material, such as Fe 2 O 3 50 to 58 mol%, ZnO 3~
A composition range of approximately 30 mol % and MnO 12 to 47 mol % is selected.

また上記のなかで特に好ましい製造条件は、酸
化モリブデンの添加量が0.1〜0.5重量%であり、
焼結昇温速度が350〜450℃/hr、その時の酸素濃
度が0.02〜0.4%程度の時である。
Furthermore, particularly preferred production conditions among the above are that the amount of molybdenum oxide added is 0.1 to 0.5% by weight,
This is when the sintering temperature increase rate is 350 to 450°C/hr and the oxygen concentration is about 0.02 to 0.4%.

磁性材料の焼成は連続炉による24時間以下の焼
成サイクルで行うことができ、特にシールを施す
必要はなく裸焼成でよい。
The magnetic material can be fired in a continuous furnace in a firing cycle of 24 hours or less, and there is no need to apply a seal and bare firing may be sufficient.

[作用] 上記のような構成とすることによつてマンガン
−亜鉛系フエライトの透磁率を著しく増大しうる
理由については今だ完全に解明された訳ではない
が、本発明により得られた材料は粒径が非常に大
きくなつており、これが主要な原因をなしている
ものと推察される。
[Function] Although the reason why the magnetic permeability of manganese-zinc ferrite can be significantly increased by having the above-mentioned structure has not yet been completely elucidated, the material obtained by the present invention The particle size has become very large, and this is presumed to be the main cause.

透磁率増大の機構は以下のような作用によるも
のと考えられる。まず高温でも高原子価を維持す
るMoイオンが粒界近傍に存在することにより、
粒界近傍の金属イオン空格子量を増加させる。と
ころで焼結雰囲気の研究等から、金属イオン空格
子量を増加させることにより粒界の移動度が高ま
り、(連続)粒成長が促進されることが確認され
ている。従つて酸化モリブデンの添加によつても
粒成長が促進されるものと考えられる。但しこの
効果を得るためには、前もつて十分緻密な組織を
作つておく必要があり、このために低酸素下にお
ける昇温が重要である。また酸化モリブデンは
1100℃以上で昇華が起こる。従つて1300℃以上の
粒成長過程までなるべく昇華量を抑える必要があ
り、このために急速昇温が重要となる。更に添加
物によつて粒成長を起こさせた場合、例え粒径が
大きくなつても粒界に残つた添加物による粒界応
力等により透磁率が大きく低下することがしばし
ば観察されるが、酸化モリブデンの場合には最終
的には殆ど蒸発してしまうため、この悪影響が少
なく、添加量を選択することにより大幅な透磁率
の改善が得られるのである。
The mechanism of increase in magnetic permeability is thought to be due to the following effects. First, Mo ions, which maintain high valence even at high temperatures, exist near the grain boundaries.
Increases the amount of metal ion vacancies near grain boundaries. By the way, research on sintering atmospheres has confirmed that increasing the amount of metal ion vacancies increases the mobility of grain boundaries and promotes (continuous) grain growth. Therefore, it is considered that grain growth is also promoted by the addition of molybdenum oxide. However, in order to obtain this effect, it is necessary to create a sufficiently dense structure in advance, and for this reason it is important to raise the temperature under low oxygen conditions. Also, molybdenum oxide
Sublimation occurs above 1100℃. Therefore, it is necessary to suppress the amount of sublimation as much as possible until the grain growth process reaches 1300°C or higher, and rapid temperature rise is therefore important. Furthermore, when grain growth is caused by additives, it is often observed that even if the grain size becomes large, the magnetic permeability decreases significantly due to grain boundary stress caused by the additives remaining at the grain boundaries. In the case of molybdenum, most of it evaporates eventually, so this adverse effect is small, and by selecting the amount added, a significant improvement in magnetic permeability can be obtained.

[実施例] 以下、図面に基づき本発明の実施例について説
明する。第1図は酸化モリブデン(MoO3)を
0.15重量%添加したマンガン−亜鉛系フエライト
(Fe2O3 53モル%、MnO 27モル%、ZnO 20モル
%)の常温における透磁率を、1100℃以上で昇温
時における酸素濃度と昇温速度に対してプロツト
した等μ線図である。この時の焼結温度は1320℃
であり、焼結時間は2時間、また焼結時の酸素濃
度は3%である。なお、酸化モリブデンを添加し
ない材料について同様に昇温速度および昇温時の
酸素濃度を変化させて実験したところ、第1図に
示すような昇温速度ならびに昇温酸素濃度範囲で
はこれらの影響を殆ど受けずに透磁率は常に略
7000程度であつた。
[Example] Hereinafter, an example of the present invention will be described based on the drawings. Figure 1 shows molybdenum oxide (MoO 3 ).
Magnetic permeability at room temperature of manganese-zinc ferrite (53 mol% Fe 2 O 3 , 27 mol% MnO, 20 mol% ZnO) added with 0.15% by weight, oxygen concentration and heating rate when heated above 1100℃ FIG. The sintering temperature at this time is 1320℃
The sintering time was 2 hours, and the oxygen concentration during sintering was 3%. In addition, when we similarly conducted experiments on materials to which molybdenum oxide was not added by varying the heating rate and oxygen concentration during heating, we found that these effects were not affected by the heating rate and heating oxygen concentration range shown in Figure 1. Almost no magnetic permeability
It was around 7000.

この第1図から明らかなように、従来の通常の
昇温条件(150〜200℃/hr、空気中)では酸化モ
リブデンを添加しても透磁率は改善されないこと
が判る。つまり、酸化モリブデンを適量添加し、
かつ低酸素濃度で急速昇温を行うことにより大幅
に透磁率は改善することが出来るのである。昇温
速度が200〜600℃/hrで昇温時の酸素濃度が0.01
〜5%程度とすると透磁率は約10000程度もしく
はそれ以上に達し初期の目的を達成することがで
きる。またより好ましくは昇温速度が350〜450
℃/hrで昇温時の酸素濃度が0.02〜0.4%程度で
あり、その時には透磁率は約11000程度もしくは
それ以上にも達する。
As is clear from FIG. 1, it can be seen that the addition of molybdenum oxide does not improve the magnetic permeability under normal temperature raising conditions (150 to 200° C./hr, in air). In other words, by adding an appropriate amount of molybdenum oxide,
Moreover, the magnetic permeability can be significantly improved by rapidly increasing the temperature at a low oxygen concentration. The heating rate is 200 to 600℃/hr and the oxygen concentration during heating is 0.01
If it is set to about 5%, the magnetic permeability will reach about 10,000 or more, and the initial purpose can be achieved. More preferably, the heating rate is 350 to 450
The oxygen concentration during temperature rise is about 0.02 to 0.4% in °C/hr, and at that time the magnetic permeability reaches about 11,000 or more.

さて第2図は、酸化モリブデンの添加量に対す
る透磁率をプロツトしたものである。この時の
1100℃以上における昇温速度は400℃/hrであり、
その時の酸素濃度は0.1%である。焼成条件は同
じく1320℃−2時間である。酸化モリブデンを極
少量添加することによつてその効果が急激に現わ
れ、約0.2重量%でピークに達する。その後添加
量が増大するにつれて透磁率は漸次減少し続け
る。従つて酸化モリブデンの添加量範囲は0.01〜
1.0重量%であればよいが、より好ましくは0.1〜
0.5重量%程度である。
Now, FIG. 2 is a plot of magnetic permeability versus the amount of molybdenum oxide added. at this time
The temperature increase rate above 1100℃ is 400℃/hr,
The oxygen concentration at that time is 0.1%. The firing conditions were the same at 1320°C for 2 hours. By adding a very small amount of molybdenum oxide, its effect appears rapidly, reaching a peak at about 0.2% by weight. Thereafter, as the amount added increases, the magnetic permeability continues to decrease gradually. Therefore, the addition amount range of molybdenum oxide is 0.01~
It may be 1.0% by weight, but more preferably 0.1~
It is about 0.5% by weight.

第1図および第2図から判るように、最終条件
としては酸化モリブデンの添加量が0.15重量%、
1100℃以上の昇温速度が400℃/hr、その時の酸
素濃度が0.1%程度である。
As can be seen from Figures 1 and 2, the final conditions are that the amount of molybdenum oxide added is 0.15% by weight;
The temperature increase rate above 1100℃ is 400℃/hr, and the oxygen concentration at that time is about 0.1%.

さて酸化モリブデン無添加のマンガン−亜鉛系
フエライトと本発明を適用したフエライトの組成
を比較すると、無添加の場合その粒径が平均15μ
m程度なのに対して本発明により得られる材料で
は約30μmと粒径が略2倍になつていることが認
められた。そして主としてこの粒径増大の効果に
よつて透磁率の増大が実現されているのである。
Now, when we compare the composition of manganese-zinc ferrite without the addition of molybdenum oxide and ferrite to which the present invention is applied, we find that in the case of no addition, the particle size is 15μ on average.
It was found that the particle size of the material obtained according to the present invention is about 30 μm, which is approximately twice as large as that of about 30 μm. The increase in magnetic permeability is mainly achieved by the effect of increasing the particle size.

[発明の効果] 本発明は上記のような酸化物磁性材料の製造方
法であるから、昇温時に低酸素状態とすることに
よつて十分緻密な組織が作られ、しかも急速に昇
温するため昇華しやすい酸化モリブデンの昇華量
を抑えることができ、また焼結時における酸化モ
リブデンの存在によつて粒界の移動度が高まり連
続粒成長が促進され、最終的にはその酸化モリブ
デンが殆ど蒸発して無くなるために粒界応力等の
原因となる添加物が粒界に残らず、それらの効果
が相俟て著しい透磁率の増大を実現出来るのであ
る。
[Effects of the Invention] Since the present invention is a method for producing an oxide magnetic material as described above, a sufficiently dense structure is created by creating a low oxygen state during temperature rise, and the temperature rises rapidly. The amount of sublimation of molybdenum oxide, which tends to sublimate, can be suppressed, and the presence of molybdenum oxide during sintering increases the mobility of grain boundaries and promotes continuous grain growth, and eventually most of the molybdenum oxide evaporates. As a result, additives that cause grain boundary stress do not remain in the grain boundaries, and these effects work together to achieve a significant increase in magnetic permeability.

その上、この製造方法では、急速昇温を行わ
せ、その後は通常の焼結を行わせるため、焼成サ
イクルを24時間以下といつたように従来技術に比
し非常に短くすることができるし、しかも何らシ
ール等の煩瑣な工程が不要な裸焼成でよいからそ
の点においても生産コストを低く抑えることがで
きる。また本発明により得られた材料は、透磁率
の増加以外にもヒステリシス損失の低減効果があ
り、特に100KHz以下におけるパワーロスの改善
等にも優れた効果を発揮しうるものである。
Furthermore, since this manufacturing method involves rapid temperature rise followed by normal sintering, the firing cycle can be much shorter than conventional techniques, at less than 24 hours. Moreover, since bare firing is sufficient without any complicated processes such as sealing, production costs can be kept low in this respect as well. In addition to increasing magnetic permeability, the material obtained according to the present invention has the effect of reducing hysteresis loss, and can exhibit excellent effects in improving power loss, especially at frequencies below 100 KHz.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸化モリブデン添加時における透磁率
を昇温時における酸素濃度と昇温速度に対してプ
ロツトした等μ線図、第2図は酸化モリブデン添
加量に対する透磁率をプロツトしたグラフであ
る。
FIG. 1 is an isometric diagram in which the magnetic permeability when molybdenum oxide is added is plotted against the oxygen concentration and temperature increase rate during temperature rise, and FIG. 2 is a graph in which the magnetic permeability is plotted against the amount of molybdenum oxide added.

Claims (1)

【特許請求の範囲】 1 マンガン−亜鉛系フエライト材料に対して酸
化モリブデンを0.01〜1重量%添加した原料を、
1100℃以上での昇温速度が200〜600℃/hrで、か
つその時の酸素濃度が0.01〜5%の昇温条件で急
速昇温し、焼結温度1300℃以上で焼成することを
特徴とする高透磁率酸化物磁性材料の製造方法。 2 マンガン−亜鉛系フエライト材料は、
Fe2O350〜58モル%、ZnO 3〜30モル%、MnO
12〜47モル%を有する組成である特許請求の範囲
第1項記載の製造方法。 3 酸化モリブデンの添加量が0.1〜0.5重量%で
あり、1100℃以上の昇温速度が350〜450℃/hr、
その時の酸素濃度が0.02〜0.4%で焼成する特許
請求の範囲第1項または第2項記載の製造方法。
[Claims] 1. A raw material containing 0.01 to 1% by weight of molybdenum oxide to a manganese-zinc ferrite material,
It is characterized by rapid heating at a heating rate of 200 to 600°C/hr at 1100°C or higher and an oxygen concentration of 0.01 to 5%, and firing at a sintering temperature of 1300°C or higher. A method for producing a high permeability oxide magnetic material. 2 Manganese-zinc ferrite material is
Fe 2 O 3 50-58 mol%, ZnO 3-30 mol%, MnO
The manufacturing method according to claim 1, wherein the composition has a content of 12 to 47 mol%. 3. The amount of molybdenum oxide added is 0.1 to 0.5% by weight, and the temperature increase rate above 1100°C is 350 to 450°C/hr,
The manufacturing method according to claim 1 or 2, wherein the firing is performed at an oxygen concentration of 0.02 to 0.4%.
JP59213670A 1984-10-12 1984-10-12 Manufacture of high permeability oxide magnetic material Granted JPS6191908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59213670A JPS6191908A (en) 1984-10-12 1984-10-12 Manufacture of high permeability oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59213670A JPS6191908A (en) 1984-10-12 1984-10-12 Manufacture of high permeability oxide magnetic material

Publications (2)

Publication Number Publication Date
JPS6191908A JPS6191908A (en) 1986-05-10
JPH0544807B2 true JPH0544807B2 (en) 1993-07-07

Family

ID=16643016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59213670A Granted JPS6191908A (en) 1984-10-12 1984-10-12 Manufacture of high permeability oxide magnetic material

Country Status (1)

Country Link
JP (1) JPS6191908A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04321522A (en) * 1991-04-18 1992-11-11 Fuji Elelctrochem Co Ltd Production of manganese-zinc-based ferrite
JPH04328806A (en) * 1991-04-27 1992-11-17 Fuji Elelctrochem Co Ltd Manufacture of manganese-zinc ferrite
JP3635410B2 (en) * 1992-12-28 2005-04-06 Tdk株式会社 Method for producing manganese-zinc based ferrite
DE4303073A1 (en) * 1993-02-03 1994-08-04 Siemens Matsushita Components Ferrite with low power loss and high saturation induction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492091A (en) * 1972-04-24 1974-01-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492091A (en) * 1972-04-24 1974-01-09

Also Published As

Publication number Publication date
JPS6191908A (en) 1986-05-10

Similar Documents

Publication Publication Date Title
NO138566B (en) ANALOGICAL PROCEDURE FOR THE PREPARATION OF THERAPEUTIC ACTIVE 2,1,3-BENZOTIADIAZOLE DERIVATIVES
JP3454316B2 (en) Manganese zinc based ferrite core and method for producing the same
JP3635410B2 (en) Method for producing manganese-zinc based ferrite
JPH0544807B2 (en)
US3252913A (en) Method for preparing manganese-zincferrous ferrite
JPH0430726B2 (en)
US3492236A (en) Ferromagnetic core and process for its production
Peloschek et al. High-permeability MnZn ferrites with flat µ-T curves
JP2914554B2 (en) Method for producing high permeability MnZn ferrite
JP3790606B2 (en) Mn-Co ferrite material
JPS60262404A (en) Manufacture of mn-zn ferrite
JPH04321522A (en) Production of manganese-zinc-based ferrite
JPH04328806A (en) Manufacture of manganese-zinc ferrite
JP2532159B2 (en) Transformer core for high frequency power supply
US3065181A (en) Inductor materials
JPH0521222A (en) Manufacture of nickel-zinc ferrite
JPH0244099A (en) Single crystal ferrite, magnetic head using same, and production of single crystal ferrite
JP3248936B2 (en) Method for producing low loss manganese zinc ferrite
JPH0544804B2 (en)
JPH0544806B2 (en)
JP3438621B2 (en) Method for producing high-permeability oxide magnetic material
JPH0353270B2 (en)
US3637504A (en) Ferromagnetic storage cores and process of making the same
KR0143068B1 (en) A method of oxide magnetized material
JPH0555463B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees