JP3438621B2 - Method for producing high-permeability oxide magnetic material - Google Patents

Method for producing high-permeability oxide magnetic material

Info

Publication number
JP3438621B2
JP3438621B2 JP32647798A JP32647798A JP3438621B2 JP 3438621 B2 JP3438621 B2 JP 3438621B2 JP 32647798 A JP32647798 A JP 32647798A JP 32647798 A JP32647798 A JP 32647798A JP 3438621 B2 JP3438621 B2 JP 3438621B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
permeability
magnetic material
magnetic permeability
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32647798A
Other languages
Japanese (ja)
Other versions
JP2000154023A (en
Inventor
良夫 松尾
敏隆 橋本
清人 小野
誠 石倉
Original Assignee
エフ・ディ−・ケイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エフ・ディ−・ケイ株式会社 filed Critical エフ・ディ−・ケイ株式会社
Priority to JP32647798A priority Critical patent/JP3438621B2/en
Publication of JP2000154023A publication Critical patent/JP2000154023A/en
Application granted granted Critical
Publication of JP3438621B2 publication Critical patent/JP3438621B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、Mn−Zn系フェ
ライト材料を主原料とする酸化物磁性材料の製造方法に
関し、更に詳しくは焼成保持期間の酸素濃度を好適に設
定して焼結するようにした高透磁率酸化物磁性材料の製
造方法に関するものである。 【0002】 【従来の技術】一般的に、Mn−Zn系フェライト材料
は透磁率が高いことから、従来よりコイルやトランス等
の磁心として広く使用されている。その理由は、透磁率
が高い材料を使用する方がコイルやトランス等の小型化
に対して極めて有効であるからである。 【0003】近年、電子部品の軽薄短小化傾向から、係
る磁性材料においても高透磁率のものを製造するための
方法が種々提案されており、例えば、特公平5−448
07号公報には、マンガン−亜鉛系フェライト材料に対
して酸化モリブデンを0.01〜1重量%添加した原料
を、1100℃以上での昇温速度が200〜600/h
rで、且つ、その時の酸素濃度が0.01〜5%の昇温
条件で急速昇温し、焼結温度1300℃以上で焼成する
ようにした高透磁率酸化物磁性材料の製造方法が開示さ
れている。 【0004】係る開示技術によれば、各種添加物の添加
と併せて最適な焼成条件を設定し、フェライトの微細構
造を制御することによって高い透磁率を得ることができ
る。 【0005】 【発明が解決しようとする課題】ところが、上記のよう
に主原料が亜鉛を含む磁性材料の場合では、焼成保持時
間が、例えば30〜40hrといったように長時間であ
ると、焼成時に焼成体の表面から酸化亜鉛が蒸発し、そ
の表面領域で組成ズレを誘発して焼成体の内部に組成ズ
レによる応力が発生する。これが透磁率値を著しく低下
させる原因となっていた。 【0006】本発明は、上記問題に鑑みて成されたもの
で、Mn−Zn系の磁性材料の製造において、焼成保持
期間における亜鉛の蒸発を抑制し、コア内の組成ズレを
減少させることにより透磁率の向上を図った高透磁率酸
化物磁性材料の製造方法を提供することを目的としてい
る。 【0007】 【課題を解決するための手段】すなわち、上記目的を達
成するために、本発明では、主成分の組成がFe2 3
50〜58モル%、MnO12〜47モル%、ZnO3
〜30モル%であるMn−Zn系フェライト材料にMo
3 0.04〜0.08重量%添加した原料を、11
00℃以上での昇温速度が200〜600℃/hrで、
且つ、その時の酸素濃度が0.01〜5%の昇温条件に
て急速昇温し、焼結温度1300℃以上で5〜30hr
保持して焼成する(焼成保持期間)ようにした高透磁率
酸化物磁性材料の製造方法であって、前記焼成保持期間
の酸素濃度を25〜35%としたことを特徴とするもの
である。 【0008】 【0009】フェライト結晶内の亜鉛イオンは焼成時の
酸素濃度によって焼成体内部から表面付近へ拡散し、そ
の後ガス成分として蒸発することが知られている。従っ
て、上記手段のように、焼成保持期間中の酸素濃度を好
適値に設定することによりZnの蒸発を極力抑制させる
ことが可能となる。その結果、焼成体内の組成ズレが軽
減され、高い透磁率値を持つ材料を得ることができる。 【0010】 【発明の実施の形態】透磁率の高いフェライト材料を得
るためには高純度原料の吟味、異方性や磁歪が小さくな
る組成の選定や各種添加物の適用といったものの他に、
フェライトの微細構造をいかに制御しながら焼成するか
が重要である。好適条件にて作製されたフェライトで
は、初透磁率が結晶粒子径に比例して大きくなると言わ
れており、大きく、且つ均一な結晶粒子の形成が求めら
れている他、気孔の少ない緻密な微細構造をもつ焼結体
を得ることが重要であるとされている。 【0011】本発明では、従来より一般に用いられる組
成のMn−Zn系フェライト材料に対し、既に結晶粒子
径を増大させる効果があることが認められている範囲の
MoO3 を添加し(0.01〜1重量%)、かつMoO
3 を添加したことによる空孔量の増加を極力抑えるよう
な焼成方法により、高透磁率の酸化物磁性材料の製造を
行うものである。さらに、焼結温度1300℃以上で5
〜30hr保持する間(焼成保持期間)の酸素濃度を1
5〜40%として焼成することを特徴としている。 【実施例】以下、図面に基づき本発明の実施例を説明す
る。 【0012】主成分の組成が、Fe2 3 52.5モル
%、MnO23.5モル%、ZnO24.0モル%とし
たMn−Zn系フェライト材料にMoO3 を0〜0.1
重量%添加し、昇温速度300℃/Hr、昇温時の酸素
濃度0.3%、焼結温度1380℃、焼成保持期間10
Hrの焼成条件にて各々試料を作製した。 【0013】図1はMoO3 の添加量による透磁率の変
化を示す図である。図示のように、MoO3 を少量添加
することにより透磁率の改善がみられ、添加量が0.0
4〜0.08重量%付近にて高特性を示し、0.06重
量%にてピーク値に達している。その後、添加量の増大
とともに透磁率は徐々に減少していく。 【0014】図2は焼成保持期間における酸素濃度によ
る透磁率の変化を示す図である。図1で高透磁率を示し
たMoO3 の添加量0.04〜0.06重量%の範囲
で、焼成保持期間中の酸素濃度0.2〜45%の範囲で
透磁率値をプロットすると、透磁率は酸素濃度30%ま
で酸素濃度の増大とともに増加し、30%付近で最も高
い値が得られた。これは、酸素濃度を高くすることによ
り、亜鉛の表面からの蒸発が抑制されて焼成体内の組成
ズレが減少することによるものと考えられる。ところ
が、酸素濃度30%以上においては透磁率は緩やかに減
少していく。 【0015】図2の結果から、酸素濃度範囲15〜40
%で高透磁率値が得られるので好適であるが、特に、2
5〜35%の範囲では得られる透磁率は極めて高く、且
つ安定した特性が得られるのでより好ましいと言える。 【0016】 【発明の効果】以上説明したように、本発明によれば、
MoO3 の添加量と焼成保持期間中の酸素濃度を最適化
することにより焼成時の亜鉛の蒸発を抑制できる。その
結果、焼成体内の組成ズレが軽減され高い透磁率値を持
つ酸化物磁性体材料が得られる。特に、MoO3 の添加
量0.04〜0.06重量%、酸素濃度25〜35%の
範囲では極めて高く且つ安定した透磁率が得られるの
で、より一層好適である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide magnetic material using a Mn--Zn ferrite material as a main raw material, and more particularly to an oxygen concentration during a firing holding period. And a method for producing a high-permeability oxide magnetic material in which sintering is suitably performed. [0002] In general, Mn-Zn ferrite materials have been widely used as magnetic cores of coils and transformers since they have high magnetic permeability. The reason is that the use of a material having a high magnetic permeability is extremely effective for miniaturization of coils, transformers, and the like. [0003] In recent years, in view of the tendency of electronic parts to be lighter, thinner and smaller, various methods have been proposed for producing such magnetic materials having high magnetic permeability, for example, Japanese Patent Publication No. 5-448.
No. 07 discloses that a material obtained by adding 0.01 to 1% by weight of molybdenum oxide to a manganese-zinc ferrite material has a temperature rising rate at 1100 ° C. or higher of 200 to 600 / h.
A method for manufacturing a high-permeability oxide magnetic material is disclosed in which the temperature is rapidly raised under a heating condition of 0.01% to 5% and the sintering temperature is 1300 ° C. or higher. Have been. According to the disclosed technology, a high magnetic permeability can be obtained by setting optimum firing conditions in conjunction with the addition of various additives and controlling the fine structure of ferrite. However, in the case where the main raw material is a magnetic material containing zinc as described above, if the firing holding time is long, for example, 30 to 40 hours, the firing time is reduced. The zinc oxide evaporates from the surface of the fired body, and induces a composition shift in the surface region, and a stress due to the composition shift is generated inside the fired body. This has caused the magnetic permeability value to be significantly reduced. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems. In the production of a Mn-Zn-based magnetic material, the present invention suppresses the evaporation of zinc during the firing holding period and reduces the composition deviation in the core. It is an object of the present invention to provide a method for producing a high-permeability oxide magnetic material with improved magnetic permeability. That is, in order to achieve the above object, according to the present invention, the composition of the main component is Fe 2 O 3
50-58 mol%, MnO12-47 mol%, ZnO3
Mo to 30 mol% Mn-Zn ferrite material
A raw material containing 0.04 to 0.08% by weight of O 3 was added to 11
At a temperature rising rate of 200 to 600 ° C./hr
In addition, the temperature is rapidly increased under the condition that the oxygen concentration at that time is 0.01 to 5%, and the sintering temperature is 1300 ° C. or more and 5 to 30 hours.
A method for producing a high-permeability oxide magnetic material which is held and fired (baking holding period), wherein the oxygen concentration in the firing holding period is 25 to 35% . It is known that zinc ions in ferrite crystals diffuse from the inside of a fired body to near the surface depending on the oxygen concentration during firing, and then evaporate as a gas component. Therefore, it is possible to suppress the evaporation of Zn as much as possible by setting the oxygen concentration during the firing holding period to a suitable value as in the above means. As a result, composition deviation in the fired body is reduced, and a material having a high magnetic permeability value can be obtained. DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to obtain a ferrite material having a high magnetic permeability, in addition to examination of a high-purity raw material, selection of a composition that reduces anisotropy and magnetostriction, and application of various additives,
It is important how to control and control the ferrite microstructure. It is said that the initial permeability of ferrite produced under suitable conditions increases in proportion to the crystal particle diameter. In addition to the need to form large and uniform crystal particles, dense and fine pores with few pores are required. It is considered important to obtain a sintered body having a structure. In the present invention, MoO 3 is added to a Mn—Zn-based ferrite material having a composition generally used in the past, in an amount that has already been found to have an effect of increasing the crystal grain size (0.01). -1% by weight) and MoO
This is to produce an oxide magnetic material having a high magnetic permeability by a firing method that minimizes an increase in the amount of vacancies due to the addition of 3 . Further, when the sintering temperature is 1300 ° C. or more, 5
The oxygen concentration during holding for up to 30 hours (sintering holding period) is 1
It is characterized by firing at 5 to 40%. Embodiments of the present invention will be described below with reference to the drawings. The Mn-Zn ferrite material whose main component is composed of 52.5 mol% of Fe 2 O 3 , 23.5 mol% of MnO and 24.0 mol% of ZnO contains 0 to 0.1 of MoO 3 .
% By weight, temperature rising rate 300 ° C./Hr, oxygen concentration 0.3% at the time of temperature rising, sintering temperature 1380 ° C., firing holding period 10
Samples were prepared under the firing conditions of Hr. FIG. 1 is a diagram showing a change in magnetic permeability depending on the amount of MoO 3 added. As shown in the figure, the magnetic permeability was improved by adding a small amount of MoO 3 ,
High characteristics are exhibited around 4 to 0.08% by weight, and the peak value is reached at 0.06% by weight. Thereafter, the magnetic permeability gradually decreases as the added amount increases. FIG. 2 is a diagram showing a change in the magnetic permeability depending on the oxygen concentration during the firing holding period. When the permeability value is plotted in the range of 0.04 to 0.06% by weight of MoO 3 added with the high permeability in FIG. 1 and in the range of 0.2 to 45% of oxygen concentration during the firing holding period, The permeability increased with an increase in the oxygen concentration up to an oxygen concentration of 30%, and the highest value was obtained around 30%. It is considered that this is because, by increasing the oxygen concentration, the evaporation of zinc from the surface is suppressed, and the composition deviation in the fired body is reduced. However, when the oxygen concentration is 30% or more, the magnetic permeability gradually decreases. From the results shown in FIG. 2, the oxygen concentration range is 15 to 40.
% Is preferable since a high magnetic permeability value can be obtained.
In the range of 5 to 35%, the obtained magnetic permeability is extremely high, and stable characteristics can be obtained, which is more preferable. As described above, according to the present invention,
By optimizing the amount of MoO 3 added and the oxygen concentration during the firing holding period, the evaporation of zinc during firing can be suppressed. As a result, the composition deviation in the fired body is reduced, and an oxide magnetic material having a high magnetic permeability value is obtained. In particular, when the amount of MoO 3 added is in the range of 0.04 to 0.06% by weight and the oxygen concentration is in the range of 25 to 35%, an extremely high and stable magnetic permeability can be obtained, which is more preferable.

【図面の簡単な説明】 【図1】MoO3 の添加量による透磁率の変化を示す図
である。 【図2】焼成保持期間中の酸素濃度による透磁率の変化
を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a change in magnetic permeability depending on the amount of MoO 3 added. FIG. 2 is a diagram showing a change in magnetic permeability depending on an oxygen concentration during a firing holding period.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石倉 誠 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (56)参考文献 特開 平9−320829(JP,A) 特公 平5−44807(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C01G 49/00 - 49/08 C04B 35/26 - 35/40 H01F 1/00 - 1/375 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Makoto Ishikura 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd. (56) References JP-A-9-320829 (JP, A) Hei 5-44807 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C01G 49/00-49/08 C04B 35/26-35/40 H01F 1/00-1/375

Claims (1)

(57)【特許請求の範囲】 【請求項1】 主成分の組成がFe2 3 50〜58モ
ル%、MnO12〜47モル%、ZnO3〜30モル%
であるMn−Zn系フェライト材料にMoO3 0.0
4〜0.08重量%添加した原料を、1100℃以上で
の昇温速度が200〜600℃/hrで、且つ、その時
の酸素濃度が0.01〜5%の昇温条件にて急速昇温
し、焼結温度1300℃以上で5〜30hr保持して焼
成するようにした高透磁率酸化物磁性材料の製造方法で
あって、 前記焼成保持期間の酸素濃度が25〜35%であること
を特徴とする高透磁性率酸化物材料の製造方法。
(57) [Claims 1] The composition of the main component is 50 to 58 mol% of Fe 2 O 3, 12 to 47 mol% of MnO, and 3 to 30 mol% of ZnO.
The MoO 3 in Mn-Zn ferrite material is 0.0
The raw material to which 4-0.08% by weight is added is rapidly heated at a heating rate of 1100 ° C. or more at a heating rate of 200-600 ° C./hr and an oxygen concentration at that time of 0.01-5%. A method for producing a high-permeability oxide magnetic material which is heated and held at a sintering temperature of 1300 ° C. or higher for 5 to 30 hours and fired, wherein the oxygen concentration during the firing holding period is 25 to 35%. A method for producing a high-permeability oxide material, comprising:
JP32647798A 1998-11-17 1998-11-17 Method for producing high-permeability oxide magnetic material Expired - Lifetime JP3438621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32647798A JP3438621B2 (en) 1998-11-17 1998-11-17 Method for producing high-permeability oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32647798A JP3438621B2 (en) 1998-11-17 1998-11-17 Method for producing high-permeability oxide magnetic material

Publications (2)

Publication Number Publication Date
JP2000154023A JP2000154023A (en) 2000-06-06
JP3438621B2 true JP3438621B2 (en) 2003-08-18

Family

ID=18188256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32647798A Expired - Lifetime JP3438621B2 (en) 1998-11-17 1998-11-17 Method for producing high-permeability oxide magnetic material

Country Status (1)

Country Link
JP (1) JP3438621B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109133897A (en) * 2018-09-05 2019-01-04 无锡斯贝尔磁性材料有限公司 A kind of UU80 core production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109133897A (en) * 2018-09-05 2019-01-04 无锡斯贝尔磁性材料有限公司 A kind of UU80 core production method

Also Published As

Publication number Publication date
JP2000154023A (en) 2000-06-06

Similar Documents

Publication Publication Date Title
EP1560229A2 (en) Method for producing Mn-Zn ferrite
EP1547988A1 (en) Ferrite material
JP4523430B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP2001151565A (en) Mn-Zn FERRITE AND METHOD OF PRODUCING THE SAME
JP3588693B2 (en) Mn-Zn ferrite and method for producing the same
JP4587542B2 (en) Ferrite material, ferrite substrate using the same, and electromagnetic wave absorbing member
JP3492802B2 (en) Low loss ferrite material
JP3288113B2 (en) Mn-Zn ferrite magnetic material
JP4656949B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP3597673B2 (en) Ferrite material
JP3438621B2 (en) Method for producing high-permeability oxide magnetic material
JP2003068516A (en) Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD
JP3597665B2 (en) Mn-Ni ferrite material
JP2004247602A (en) MnZn-BASED FERRITE WAVE ABSORBER
JP3597666B2 (en) Mn-Ni ferrite material
JPH0544804B2 (en)
JP2935219B1 (en) Method for producing Mn-Zn ferrite core
JP2802839B2 (en) Oxide soft magnetic material
JP4233083B2 (en) Mn-Zn ferrite
JP2627676B2 (en) Manufacturing method of oxide magnetic material
JP3287010B2 (en) Manufacturing method of soft ferrite sintered body for high frequency
JPH08268719A (en) Ferrite material
JP2000299217A (en) High permeability oxide magnetic material
JP3248936B2 (en) Method for producing low loss manganese zinc ferrite
JPH08148323A (en) Production of oxide magnetic material and molding

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term