JPH06333726A - Manufacture of high-density mn-zn ferrite - Google Patents

Manufacture of high-density mn-zn ferrite

Info

Publication number
JPH06333726A
JPH06333726A JP5142834A JP14283493A JPH06333726A JP H06333726 A JPH06333726 A JP H06333726A JP 5142834 A JP5142834 A JP 5142834A JP 14283493 A JP14283493 A JP 14283493A JP H06333726 A JPH06333726 A JP H06333726A
Authority
JP
Japan
Prior art keywords
ferrite
reducing agent
density
firing
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5142834A
Other languages
Japanese (ja)
Inventor
Akiyo Yuguchi
昭代 湯口
Toshiharu Kawasaki
俊治 川崎
Mitsuru Tomita
充 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP5142834A priority Critical patent/JPH06333726A/en
Publication of JPH06333726A publication Critical patent/JPH06333726A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a Mn-Zn ferrite of uniform magnetic characteristics without residual hematite or residual pores by sintering ferrite material with reducing agent in an inert atmosphere. CONSTITUTION:Materials for Mn-Zn ferrite, 62-68mol.% Fe2O3, 16-28mol.% MnO, and 10-16mol.% CoO, are mixed in a ball mill and baked in a nitrogen atmosphere. After CaO, SiO2, ZrO2 and CoO are added as additives, all the materials are pulverized in a ball mill. The resulting powder and a reducing agent are mixed at a ratio of 0.05-2.0% by weight in a mortar, and the mixture is compressed into a compact. After heated to 200 deg.C in a nitrogen atmosphere, the compact is sintered at 1200 deg.C in a nitrogen atmosphere containing 0.1% oxygen. This sinter is worked on a hot isostatic press, and then heat-treated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高周波トランスなどに
使用される高周波低損失Mn−Znフェライト及び磁気
ヘッド用コアに使用される高磁束密度、高周波高透磁率
の高密度Mn−Znフェライトの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency low-loss Mn-Zn ferrite used in a high-frequency transformer and a high-density Mn-Zn ferrite having a high magnetic flux density and a high frequency and a high magnetic permeability used in a magnetic head core. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】Mn−Znフェライトはスイッチング電
源におけるトランス材料として多用されているが、近
年、電源の小型化、軽量化が進み、その動作周波数が5
00KHZ〜1MHZと高い周波数で使用されるように
なってきており、将来はそれがさらに1MHZ以上へと
高周波化が進むものと思われる。このような電源に用い
られるトランス材料も高周波でより低損失の材料が要求
されてきており、従来のFe2 O3 を50〜55モル%
含むMn−Znフェライトを使用すると、損失が大き
く、発熱するという問題点がある。
2. Description of the Related Art Mn-Zn ferrite has been widely used as a transformer material in a switching power supply, but in recent years, the power supply has become smaller and lighter, and its operating frequency is 5
It has been used at a high frequency of 00KHZ to 1MHZ, and it is considered that the frequency will further increase to 1MHZ or more in the future. The transformer material used for such a power source is also required to have a low loss at high frequencies, and the conventional Fe2 O3 content is 50 to 55 mol%.
If Mn-Zn ferrite containing is used, there is a problem that the loss is large and heat is generated.

【0003】FDD(フロッピーディスク駆動装置)、
RDD(固定ディスク駆動装置)、VTR(ビデオテー
プレコーダ)等に使用される最近の磁気ヘッド材料とし
ては、主として高密度のMn−Znフェライトが使用さ
れている。しかし近年磁気記録における記録密度が向上
するとともに、これに用いられる記録媒体は酸化鉄系に
代わりより高い保磁力を有したメタル系が多く使用され
てきており、従来のFe2 O3 を50〜55モル%含む
高密度Mn−Znフェライトを用いたヘッドではその飽
和磁束密度が低いため使用が困難であった。これらの問
題点を改善するためにFe2 O3 を60モル%以上含
む、高い飽和磁束密度を有するMn−Znフェライトが
知られており、その高い飽和磁束密度のために高周波ま
で初透磁率が高く、低損失である特徴を有している。
FDD (floppy disk drive),
As a recent magnetic head material used for RDD (fixed disk drive), VTR (video tape recorder), etc., high density Mn-Zn ferrite is mainly used. However, as the recording density in magnetic recording has been improved in recent years, a metal medium having a higher coercive force has been widely used as a recording medium used for this instead of an iron oxide type, and a conventional Fe2 O3 content of 50 to 55 mol. %, It was difficult to use a head using a high-density Mn-Zn ferrite containing it because of its low saturation magnetic flux density. In order to improve these problems, Mn-Zn ferrite containing Fe2 O3 in an amount of 60 mol% or more and having a high saturation magnetic flux density is known. Due to the high saturation magnetic flux density, the initial permeability is high up to high frequencies, It has a feature of low loss.

【0004】しかし、このようなFe2 O3 を多く有す
るようなMn−Znフェライトを、従来のセラミック的
手法で仮焼、粉砕、焼成して得ようとすると、焼成の
際、Fe2 O3 のスピネル化反応による過剰の酸素の放
出のために、焼成体中に多量の気孔および未反応のヘマ
タイトが残存するとともに、磁気特性が焼成体中で不均
一になる問題点がある。また、このような焼成体を熱間
静水圧プレス(以下HIP処理という。)処理して高密
度化しようとしても、その残存気孔のために高密度化せ
ず、また未反応のヘマタイトのために磁気特性が劣化
し、不均一なものになる。
However, if Mn-Zn ferrite containing a large amount of Fe2 O3 is to be calcined, crushed and fired by a conventional ceramic technique, the spinelization reaction of Fe2 O3 will occur during firing. Due to the release of excess oxygen due to the above, there are problems that a large amount of pores and unreacted hematite remain in the fired body, and the magnetic properties become nonuniform in the fired body. Further, even if an attempt is made to densify such a fired body by hot isostatic pressing (hereinafter referred to as HIP treatment), it does not densify due to the residual pores, and due to unreacted hematite. Magnetic properties deteriorate and become non-uniform.

【0005】焼成体中のこのような多量の気孔およびヘ
マタイトの残存を防ぐには、仮焼を1100℃以上の高
温で不活性ガス中で複数回かつ長時間にわたって行い、
十分粉体のスピネル化度を上げることにより焼成での放
出酸素を低減することはできるが、焼成体が大きくなる
とその効果は不十分となり、前記の問題点が依然生じる
ようになる。またこの場合、仮焼温度が高いため粉体の
焼結が起こり、その後の粉砕が困難になるとともに、酸
化雰囲気中での焼成はスピネル構造が解離してしまうた
めに、脱灰工程を必要とする有機系バインダーを使用で
きない。さらに、スピネル化度が高い粉体ほど、焼成に
おける昇温過程での再酸化によるスピネル構造の解離が
起こりやすいなどの問題点があった。
In order to prevent such a large amount of pores and hematite from remaining in the fired body, calcination is performed at a high temperature of 1100 ° C. or higher in an inert gas for a plurality of times and for a long time,
Although the oxygen released during firing can be reduced by sufficiently increasing the spinelization degree of the powder, the effect becomes insufficient as the fired body becomes larger, and the above-mentioned problems still occur. Further, in this case, since the calcination temperature is high, the powder is sintered and the subsequent pulverization becomes difficult, and the firing in an oxidizing atmosphere causes the spinel structure to dissociate, which requires a deashing step. Can not use organic binder. Further, there is a problem that the higher the degree of spinelization, the easier the dissociation of the spinel structure due to reoxidation during the temperature rising process during firing.

【0006】特公平4−33756号公報では、Fe2
O3 を多く含むフェライトの製造方法において、焼成を
複数の工程に分けて行い、1250℃より高い温度で焼
成を行う方法が提案されているが、焼成工程が複雑な上
に焼成温度が高いため、結晶粒の異常成長などが起きて
しまう問題点がある。
In Japanese Patent Publication No. 4-33756, Fe2
In a method for producing a ferrite containing a large amount of O3, a method has been proposed in which firing is performed in a plurality of steps and firing is performed at a temperature higher than 1250 ° C. However, since the firing step is complicated and the firing temperature is high, There is a problem that abnormal growth of crystal grains occurs.

【0007】また、特開昭63−252929号公報に
あるように、フェライト材に用いる粉体に二価の鉄を多
量に含む共沈フェライトを使用する方法が提案されてお
り、これを用いると元々スピネル化しているため仮焼を
する必要がなく、焼成時での放出酸素量も少なく成る
が、共沈粉体を得る工程が複雑な上に原料コストが高く
なる問題点がある。
As disclosed in Japanese Patent Laid-Open No. 63-252929, there has been proposed a method of using coprecipitated ferrite containing a large amount of divalent iron in the powder used for the ferrite material. Since it is originally made spinel, it is not necessary to perform calcination, and the amount of oxygen released during firing is small, but there is a problem that the process of obtaining the coprecipitated powder is complicated and the raw material cost is high.

【0008】[0008]

【発明が解決しようとする課題】本発明は前記問題点を
改善しようとするものであり、その目的はFe2 O3 を
多く含むMn−Znフェライトの製造方法において、従
来のセラミック的手法で残存ヘマタイトも残存気孔も含
まず、かつ製品内での磁気特性が均一なMn−Znフェ
ライトを得る製造方法を提供するものである。より具体
的には比較的低いスピネル化度の粉体でも、1200℃
前後の低い焼成温度で比較的大きい焼成体が残存ヘマタ
イトを含まず、残存気孔が少ない状態で得られ、磁気特
性が均一な高周波低損失Mn−Znフェライトを得るこ
とを目的とする。さらにこのMn−ZnフェライトをH
IP及び熱処理することにより、残存ヘマタイト及び気
孔を含まず、高飽和磁束密度でかつ高周波での初透磁率
の高い高密度フェライトを得ることを目的とする。
SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and an object of the present invention is to produce residual Mn-Zn ferrite containing a large amount of Fe2 O3 by the conventional ceramic method. It is intended to provide a manufacturing method for obtaining Mn-Zn ferrite which does not include residual pores and has uniform magnetic properties in a product. More specifically, even a powder having a relatively low spinelization degree is 1200 ° C.
It is an object of the present invention to obtain a high-frequency low-loss Mn-Zn ferrite having uniform magnetic properties, which is obtained in a state where a relatively large fired body at a low firing temperature before and after does not contain residual hematite and has few remaining pores. Furthermore, this Mn-Zn ferrite is added to H
It is an object of the present invention to obtain a high-density ferrite having a high saturation magnetic flux density and a high initial permeability at a high frequency, which does not contain residual hematite and pores, by IP and heat treatment.

【0009】[0009]

【課題を解決するための手段】本発明は、上記主成分と
してモル比で62〜68%のFe2 O3 、16〜28%
のMnO及び10〜16%のZnOから成り、副成分と
してCaO、SiO2、ZrO2 及びCoOの少なくと
も1種を含むフェライト材を焼成しMn−Znフェライ
トを得る製造方法において、該フェライト材に重量比で
0.05〜2.0%の還元剤を添加し、不活性ガス中で
昇温して焼成を行う。また、こうして得られた高密度M
n−ZnフェライトをHIP熱処理することにより、高
密度Mn−Znフェライトを得る。
According to the present invention, the main components are 62 to 68% of Fe2 O3 and 16 to 28% in molar ratio.
Of MnO and 10 to 16% ZnO, and a ferrite material containing at least one of CaO, SiO2, ZrO2 and CoO as a subcomponent to obtain a Mn-Zn ferrite in a weight ratio to the ferrite material. A reducing agent is added in an amount of 0.05 to 2.0%, the temperature is raised in an inert gas, and firing is performed. Also, the high density M obtained in this way
High-density Mn-Zn ferrite is obtained by HIP heat treatment of n-Zn ferrite.

【0010】本発明で使用されるフェライト材の主成分
はモル比でFe2 O3 62〜68%、MnO16〜28
%およびZnO10〜16%から成り、飽和磁束密度が
5800G以上の焼成体を得ることができる。これらの
主成分を秤量し、混合した後仮焼する。仮焼は粉体のス
ピネル化度が60〜90%程度まで進行するように温度
および雰囲気を適切に選ぶ必要がある。これ以上スピネ
ル化度を上げようとすると焼結が過度に進みすぎ粉砕が
困難になり、またこれ以下のスピネル化度では還元剤の
効果が十分に働かない。
The main component of the ferrite material used in the present invention is 62 to 68% of Fe2 O3 and MnO 16 to 28 in molar ratio.
% And ZnO 10 to 16%, and a sintered body having a saturation magnetic flux density of 5800 G or more can be obtained. These main components are weighed, mixed, and then calcined. It is necessary to properly select the temperature and atmosphere for the calcination so that the spinelization degree of the powder progresses to about 60 to 90%. If the spinelization degree is further increased, the sintering proceeds excessively and it becomes difficult to grind, and if the spinelization degree is lower than this, the effect of the reducing agent does not work sufficiently.

【0011】仮焼後副成分として、CaO、SiO2 、
ZrO2 及びCoOの少なくとも1種を所定量加え粉砕
する。これらのうちCaO、SiO2 及びZrO2 は焼
成体の抵抗率を上げる効果があり、CoOはFe2 O3
の量に応じて異方性定数K1を調整する効果があり、い
ずれも高周波での初透磁率を改善することができる。
After calcination, CaO, SiO2,
A predetermined amount of at least one of ZrO2 and CoO is added and crushed. Of these, CaO, SiO2 and ZrO2 have the effect of increasing the resistivity of the fired body, and CoO is Fe2 O3.
There is an effect of adjusting the anisotropy constant K1 in accordance with the amount of, and any of them can improve the initial permeability at high frequency.

【0012】還元剤としては、特に制約されるものでは
ないが、フェライト材と均一に混合することができる有
機系バインダーを使用するのが好ましい。有機系バイン
ダーとしては、ポリアクリルアミド、メチルセルロー
ス、ポリビニルアルコール、グリセリン、ポリエチレン
オキシド及びオレイン酸などから選ぶことができる。還
元剤は粉砕時、整粒時あるいは成形時のいずれでも添加
できるが、いずれの場合でも粉体と十分混合される必要
がある。例えば整粒時、乳鉢などで粉体と十分混練して
添加することができる。添加量は粉体のスピネル化に応
じて、フェライト材に対し0.05〜2.0wt%の範
囲内で添加する。添加量が2.0wt%以上であると焼
成体中にウスタイトなどの異相が生じ磁気特性が悪化
し、0.05wt%以下であると還元剤としての効果が
十分に働かず、ヘマタイト及び多量の気孔が残存する。
The reducing agent is not particularly limited, but it is preferable to use an organic binder which can be uniformly mixed with the ferrite material. The organic binder can be selected from polyacrylamide, methyl cellulose, polyvinyl alcohol, glycerin, polyethylene oxide, oleic acid and the like. The reducing agent can be added either during pulverization, sizing, or molding, but in any case, it must be sufficiently mixed with the powder. For example, at the time of sizing, it can be added after being sufficiently kneaded with the powder in a mortar or the like. The amount of addition is 0.05 to 2.0 wt% with respect to the ferrite material, depending on the spinelization of the powder. If the added amount is 2.0 wt% or more, a different phase such as wustite occurs in the fired body and the magnetic properties are deteriorated, and if it is 0.05 wt% or less, the effect as a reducing agent does not sufficiently work, and hematite and a large amount are added. Porosity remains.

【0013】なお、従来のFe2 O3 を50〜55モル
%含むMn−Znフェライトにおいてもこのような還元
剤を添加することが知られているが、その目的とすると
ころは微結晶の焼結体を得ようとするものであり、10
00℃以下の低温焼成でもヘマタイトを完全に反応させ
ようとするもので、本発明のFe2 O3 を多く含むMn
−Znフェライトの場合とは目的が異なるものである。
It is known that such a reducing agent is added also to the conventional Mn-Zn ferrite containing 50 to 55 mol% of Fe2 O3. The purpose is to add a microcrystalline sintered body. Is about to get 10
It aims to completely react hematite even at low temperature firing below 00 ° C., and Mn containing a large amount of Fe 2 O 3 according to the present invention.
The purpose is different from the case of -Zn ferrite.

【0014】還元剤を添加した粉体は成形した後焼成す
る。焼成の際スピネル化反応にともなう過剰酸素の放出
が300〜1100℃の範囲で起こるが、この放出酸素
は成形体内部まで均一に含まれている還元剤の分解によ
り効果的に吸収され、大きな成形体でも内外部とも均一
な焼成体になる。焼成は還元剤の効果を十分にするた
め、不活性ガスの雰囲気で行う。空気などの酸化性ガス
中で焼成すると添加した還元剤が酸化分解され、還元剤
として機能しなくなる。不活性ガスの導入は200℃が
好ましく、これ以上の温度では還元剤の酸化燃焼が一部
起こり放出酸素の吸収が不十分となり、またこれ以下の
温度では不活性ガスの一部が無駄となってしまう。不活
性ガスとしてはアルゴン、ヘリウムおよび窒素などから
選ぶことができる。その後、不活性ガス中で、またはよ
り好ましくは酸素濃度を制御した不活性ガス中で焼成温
度1150〜1250℃の範囲で保持した後、降温す
る。
The powder to which the reducing agent is added is molded and then fired. During firing, the release of excess oxygen due to the spinelization reaction occurs in the range of 300 to 1100 ° C., but this released oxygen is effectively absorbed by the decomposition of the reducing agent evenly contained in the inside of the molded body, resulting in large molding. The fired body is uniform both inside and outside the body. The firing is performed in an atmosphere of an inert gas so that the effect of the reducing agent is sufficient. When firing in an oxidizing gas such as air, the added reducing agent is oxidatively decomposed and does not function as a reducing agent. It is preferable to introduce the inert gas at 200 ° C. At a temperature higher than this, oxidative combustion of the reducing agent partially occurs and absorption of released oxygen becomes insufficient, and at a temperature lower than this, a part of the inert gas is wasted. Will end up. The inert gas can be selected from argon, helium, nitrogen and the like. After that, the firing temperature is maintained in the range of 1150 to 1250 ° C. in an inert gas, or more preferably in an inert gas whose oxygen concentration is controlled, and then the temperature is lowered.

【0015】このようにして得られたフェライト焼成体
を高密度フェライトとする場合には焼成体をHIP処理
する。HIP処理の条件は特に制約されるものではない
が、結晶粒の成長を抑えながら高密度化するために、焼
成温度より30〜100℃低い温度で、圧力500〜1
500kg/cm2範囲で行うのが好ましい。HIP処
理された高密度フェライトは、HIP処理による内部歪
除去のために熱処理される。熱処理の条件は内部歪が除
去されれば特に制約されるものではないが、フェライト
内部の気孔の再生あるいは表面部の劣化を防ぐために、
酸素濃度を制御した不活性ガス雰囲気中で700〜10
00℃の範囲で行うのが好ましい。
When the ferrite fired body thus obtained is to be a high-density ferrite, the fired body is subjected to HIP treatment. The conditions of the HIP treatment are not particularly limited, but in order to increase the density while suppressing the growth of crystal grains, the temperature is 30 to 100 ° C. lower than the firing temperature and the pressure is 500 to 1
It is preferably carried out in the range of 500 kg / cm 2. The HIP-treated high-density ferrite is heat-treated to remove internal strain by the HIP treatment. The condition of heat treatment is not particularly limited as long as the internal strain is removed, but in order to prevent reproduction of pores inside the ferrite or deterioration of the surface portion,
700 to 10 in an inert gas atmosphere with controlled oxygen concentration
It is preferably carried out in the range of 00 ° C.

【0016】[0016]

【作用】上述のFe2 O3 を多く含むMn−Znフェラ
イトの製造方法によれば、従来のセラミック的手法によ
って残存ヘマタイトが全くなく、残存気孔が少ない状態
で得られるため、磁気特性が均一で、高周波で低損失な
比較的大きいフェライト焼成体を得ることができる。ま
た、この焼成体をHIP処理および熱処理することによ
って、残存ヘマタイト及び気孔を含まず、また、製品内
での磁気特性が均一で、高飽和磁束密度でかつ高周波で
初透磁率の高い高密度フェライトを量産性良く提供する
ことができる。
According to the above-described method for producing Mn-Zn ferrite containing a large amount of Fe2 O3, there is no residual hematite and there are few residual pores by the conventional ceramic method, so that the magnetic characteristics are uniform and the high frequency Thus, a relatively large ferrite fired body with low loss can be obtained. Further, by subjecting this fired body to HIP treatment and heat treatment, high density ferrite free of residual hematite and pores, having uniform magnetic properties in the product, high saturation magnetic flux density and high initial permeability at high frequency. Can be provided with good mass productivity.

【0017】[0017]

【実施例】以下、本発明の実施例を説明する。主成分と
してFe2 O3 、MnOおよびZnOを図1に示す組成
範囲で選び、これをボールミルで混合し、窒素中で80
0〜1000℃で、5時間仮焼した。これに副成分とし
てCaO、SiO2 、ZrO2 およびCoOを図1に示
す範囲でそれぞれ添加し、ボールミルで粉砕した。この
フェライト原料粉に還元剤を図2に示す種類および範囲
でそれぞれ、乳鉢を用いて混合添加し、50×50×1
0mmのブロック状に成形した。そして、この成形体を
200℃より窒素雰囲気中で昇温し、0.1%の酸素を
含む窒素雰囲気中で1200℃、6時間焼成して焼成体
を得た。この焼成体のブロック内部の残存異相及び残存
気孔の有無を調べた。また、ブロックの中心部及び表面
部から外径5mmφ、内径3mmφ、厚さ0.5mmt
のリングを加工し、5MHZでの初透磁率μi及び相対
損失係数tanδ/μiを測定した。それらの結果を図
3に示す。
EXAMPLES Examples of the present invention will be described below. Fe2 O3, MnO and ZnO were selected as the main components within the composition range shown in FIG.
It was calcined at 0 to 1000 ° C. for 5 hours. CaO, SiO2, ZrO2 and CoO were added as auxiliary components in the range shown in FIG. 1 and pulverized with a ball mill. A reducing agent was mixed and added to this ferrite raw material powder in the types and ranges shown in FIG. 2 using a mortar, and 50 × 50 × 1
It was molded into a 0 mm block shape. Then, the temperature of this formed body was raised from 200 ° C. in a nitrogen atmosphere, and the formed body was fired at 1200 ° C. for 6 hours in a nitrogen atmosphere containing 0.1% oxygen to obtain a fired body. The presence or absence of residual foreign phase and residual pores inside the block of this fired body was examined. Also, from the center and the surface of the block, the outer diameter is 5 mmφ, the inner diameter is 3 mmφ, and the thickness is 0.5 mmt.
The ring was processed and the initial magnetic permeability μi and the relative loss coefficient tan δ / μi at 5 MHZ were measured. The results are shown in FIG.

【0018】さらに、この焼成体を、アルゴン雰囲気中
で1130℃、1000kg/cm2 の条件下で3時間
HIP処理を行い、さらに酸素を20ppm含む雰囲気
中で850℃、6時間熱処理した。こうして得られた高
密度フェライトのブロック内部の残存異相、残存気孔お
よびクラックの有無を調べた。またブロックの中心部か
ら外径5mmφ、内径3mmφ、厚さ0.5mmtのリ
ングを加工し、10Oeでの飽和磁束密度Bsおよび1
MHZ、10MHZでの初透磁率μiを、同様に表面部
からリングを加工し、初透磁率μiの測定を行った。そ
れらの結果を図4に示す。
Further, this fired body was subjected to HIP treatment in an argon atmosphere at 1130 ° C. and 1000 kg / cm 2 for 3 hours, and further heat-treated in an atmosphere containing 20 ppm of oxygen at 850 ° C. for 6 hours. The presence or absence of residual foreign phase, residual pores and cracks inside the block of the thus obtained high density ferrite was examined. Further, a ring having an outer diameter of 5 mmφ, an inner diameter of 3 mmφ and a thickness of 0.5 mmt is machined from the center of the block, and the saturation magnetic flux density Bs and 1 at 10 Oe are
With respect to the initial magnetic permeability μi at MHZ and 10 MHZ, a ring was similarly processed from the surface portion, and the initial magnetic permeability μi was measured. The results are shown in FIG.

【0019】以上の結果から明らかなように、本発明に
従う図3の実施例1〜4のMn−Znフェライトにおい
ては、焼成品内部に異相がなく、また気孔も少ないため
に、内部及び表面部での磁気特性が均一で、高周波での
損失が小さいことがわかる。これに対して、還元剤を添
加しない比較例1、あるいはその添加量が適当でない比
較例2、3のMn−Znフェライトでは、焼成品内部に
異相などの欠陥を残し、磁気特性も大きく低下する。ま
た、主成分の組成が本発明の範囲外にある比較例4、5
及び本発明の副成分を含まない比較例6のMn−Znフ
ェライトでは、焼成品内部には欠陥は残さないが、高周
波での初透磁率の低下や損失の増大が起きる。
As is clear from the above results, in the Mn-Zn ferrites of Examples 1 to 4 of FIG. 3 according to the present invention, since there are no different phases inside the fired product and there are few pores, the inside and the surface portion are It can be seen that the magnetic characteristics are uniform and the loss at high frequencies is small. On the other hand, in the Mn—Zn ferrite of Comparative Example 1 in which no reducing agent is added or the amount of addition of the reducing agent is not appropriate, defects such as a foreign phase are left inside the fired product, and the magnetic properties are greatly deteriorated. . Further, Comparative Examples 4 and 5 in which the composition of the main component is out of the range of the present invention.
Also, with the Mn-Zn ferrite of Comparative Example 6 containing no subcomponents of the present invention, no defects are left inside the fired product, but a decrease in initial permeability and an increase in loss occur at high frequencies.

【0020】また、これらの焼成品を処理して得られた
高密度Mn−Znフェライトにおいても、処理品内部に
異相及び気孔がなく、高飽和磁束密度で高周波での初透
磁率が高く、その処理品内部及び表面部でのばらつきも
少ないものであることがわかる。これに対して、還元剤
を添加しない比較例1、あるいはその添加量が適当でな
い比較例2、3の高密度フェライトでは、処理品内部に
欠陥を残し、磁気特性も大きく低下する。また、主成分
の組成が本発明の範囲外にある比較例4、5及び本発明
の副成分を含まない比較例6の高密度フェライトでは、
処理品内部に欠陥は残さないが、飽和磁束密度の低下や
高周波での初透磁率の低下が起きる。
Also, in the high density Mn-Zn ferrite obtained by treating these fired products, there are no different phases and pores inside the treated products, the high saturation magnetic flux density and the high initial magnetic permeability at high frequencies. It can be seen that there is little variation within the treated product and within the surface. On the other hand, in the high-density ferrite of Comparative Example 1 in which the reducing agent is not added, or Comparative Examples 2 and 3 in which the amount of the reducing agent is not appropriate, defects are left inside the processed product and the magnetic properties are greatly deteriorated. Further, in the high-density ferrites of Comparative Examples 4 and 5 in which the composition of the main component is out of the range of the present invention and Comparative Example 6 containing no subcomponent of the present invention,
Although no defects are left inside the processed product, the saturation magnetic flux density decreases and the initial permeability at high frequencies also decreases.

【0021】[0021]

【発明の効果】以上の説明から明らかなように、本発明
のMn−Znフェライトの製造方法にあっては、主成分
としてモル比で62〜68%のFe2 O3 、16〜28
%のMnO、および10〜16%のZnOから成り、副
成分としてCaO、SiO2 、ZrO2 、CoOの少な
くとも1種を含むフェライト材に重量比で0.05〜
2.0%の還元剤を添加し、不活性ガス中で焼成を行う
ために、スピネル化反応にともなう過剰の酸素の放出を
防ぐことができ、1200℃前後の低い焼成温度で、磁
気特性が均一で高周波で低損失な比較的大きいMn−Z
nフェライト焼成体を得ることができる。また、この焼
成体をHIP処理及び熱処理することにより、製品内で
のばらつきが少なく、高飽和磁束密度でかつ高周波で初
透磁率の高い高密度Mn−Znフェライトを量産性良く
製造することができる。
As is apparent from the above description, in the method for producing Mn-Zn ferrite of the present invention, the main components are 62 to 68% of Fe2 O3 and 16 to 28 in molar ratio.
% MnO and 10 to 16% ZnO, and a ferrite material containing at least one of CaO, SiO2, ZrO2 and CoO as a sub-component in a weight ratio of 0.05-.
Since 2.0% of the reducing agent is added and firing is performed in an inert gas, it is possible to prevent the release of excess oxygen due to the spinelization reaction, and it is possible to obtain magnetic properties at a low firing temperature of around 1200 ° C. Relatively large Mn-Z with uniform, high frequency and low loss
An n-ferrite fired body can be obtained. Further, by subjecting this fired body to HIP treatment and heat treatment, it is possible to manufacture a high-density Mn-Zn ferrite with little variation in the product, high saturation magnetic flux density, and high initial permeability at high frequency with good mass productivity. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例と比較例の含有成分を対比した
図表図
FIG. 1 is a diagrammatic chart comparing the components contained in an example of the present invention and a comparative example.

【図2】還元剤の種類と添加量を示す図表図FIG. 2 is a chart showing the types and addition amounts of reducing agents.

【図3】本発明の実施例と比較例の特性を対比した図表
FIG. 3 is a chart diagram comparing the characteristics of an example of the present invention and a comparative example.

【図4】本発明の実施例と比較例の他の特性を対比した
図表図
FIG. 4 is a diagrammatic chart comparing other characteristics of the example of the present invention and the comparative example.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】主成分としてモル比で62〜68%のFe
2 O3 、16〜28%のMnO及び10〜16%のZn
Oから成り、副成分としてCaO、SiO2 、ZrO2
及びCoOの少なくとも1種を含むフェライト材を焼成
しMn−Znフェライトを得る製造方法において、フェ
ライト材に還元剤を添加し不活性ガス中で焼成を行うこ
とを特徴とする高密度Mn−Znフェライトの製造方
法。
1. A main component of which the molar ratio is 62 to 68% Fe.
2 O3, 16-28% MnO and 10-16% Zn
O, with CaO, SiO2, ZrO2 as subcomponents
And a high-density Mn-Zn ferrite obtained by firing a ferrite material containing at least one of CoO to obtain Mn-Zn ferrite, and adding a reducing agent to the ferrite material and firing the inert material in an inert gas. Manufacturing method.
【請求項2】請求項1の焼成において、200℃より不
活性ガス雰囲気とし、200〜1100℃の範囲で徐々
に還元剤の分解と放出酸素の吸収を行い、酸素濃度を制
御した不活性ガス雰囲気中で焼成することを特徴とする
高密度Mn−Znフェライトの製造方法。
2. In the firing according to claim 1, an inert gas atmosphere in which an inert gas atmosphere is controlled from 200 ° C., the reducing agent is gradually decomposed and released oxygen is absorbed in a range of 200 to 1100 ° C. to control the oxygen concentration. A method for producing a high-density Mn-Zn ferrite, which comprises firing in an atmosphere.
【請求項3】請求項1の還元剤が有機系バインダーであ
り、その添加量が該フェライト材に対し、重量比で0.
05〜2.0%であることを特徴とする請求項1の高密
度Mn−Znフェライトの製造方法。
3. The reducing agent according to claim 1 is an organic binder, and the addition amount of the reducing agent is 0.
It is 0.5 to 2.0%, The manufacturing method of the high-density Mn-Zn ferrite of Claim 1 characterized by the above-mentioned.
【請求項4】請求項1の製造方法により得られたMn−
Znフェライトに熱間静水圧プレスを行い、その後、熱
処理を行うことを特徴とする高密度Mn−Znフェライ
トの製造方法。
4. A Mn-obtained by the manufacturing method according to claim 1.
A method for producing a high-density Mn-Zn ferrite, comprising performing hot isostatic pressing on Zn ferrite and then performing heat treatment.
JP5142834A 1993-05-21 1993-05-21 Manufacture of high-density mn-zn ferrite Pending JPH06333726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5142834A JPH06333726A (en) 1993-05-21 1993-05-21 Manufacture of high-density mn-zn ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5142834A JPH06333726A (en) 1993-05-21 1993-05-21 Manufacture of high-density mn-zn ferrite

Publications (1)

Publication Number Publication Date
JPH06333726A true JPH06333726A (en) 1994-12-02

Family

ID=15324702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5142834A Pending JPH06333726A (en) 1993-05-21 1993-05-21 Manufacture of high-density mn-zn ferrite

Country Status (1)

Country Link
JP (1) JPH06333726A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187232A (en) * 2003-12-24 2005-07-14 Hitachi Metals Ltd Ferrite sintered compact, its production method, and electronic component using the same
JP2008081339A (en) * 2006-09-26 2008-04-10 Sony Corp Low loss ferrite material, and its production method
JP2011195415A (en) * 2010-03-23 2011-10-06 Tdk Corp MnZn-BASED FERRITE POWDER, METHOD FOR PRODUCING MnZn-BASED FERRITE CORE, AND FERRITE CORE
JP2012140307A (en) * 2011-01-04 2012-07-26 Tdk Corp Ferrite composition and electronic component
CN114085086A (en) * 2021-11-02 2022-02-25 宝钢磁业(江苏)有限公司 Sintering process of iron-rich ultrahigh Bs material
CN114634356A (en) * 2022-03-14 2022-06-17 西南应用磁学研究所(中国电子科技集团公司第九研究所) Ultra-low loss manganese zinc ferrite material under 1MHz and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187232A (en) * 2003-12-24 2005-07-14 Hitachi Metals Ltd Ferrite sintered compact, its production method, and electronic component using the same
US7754094B2 (en) 2003-12-24 2010-07-13 Hitachi Metals Ltd. Sintered ferrite and its production method and electronic part using same
JP2008081339A (en) * 2006-09-26 2008-04-10 Sony Corp Low loss ferrite material, and its production method
JP2011195415A (en) * 2010-03-23 2011-10-06 Tdk Corp MnZn-BASED FERRITE POWDER, METHOD FOR PRODUCING MnZn-BASED FERRITE CORE, AND FERRITE CORE
JP2012140307A (en) * 2011-01-04 2012-07-26 Tdk Corp Ferrite composition and electronic component
CN114085086A (en) * 2021-11-02 2022-02-25 宝钢磁业(江苏)有限公司 Sintering process of iron-rich ultrahigh Bs material
CN114634356A (en) * 2022-03-14 2022-06-17 西南应用磁学研究所(中国电子科技集团公司第九研究所) Ultra-low loss manganese zinc ferrite material under 1MHz and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3584438B2 (en) Mn-Zn ferrite and method for producing the same
JPH06333726A (en) Manufacture of high-density mn-zn ferrite
EP1209136B1 (en) Production process of recycled Mn-Zn ferrite
JPH04182353A (en) Method for calcining mn-zn ferrite
JPH113813A (en) Ferrite material
US3609083A (en) Heat treatment of nickel zinc cobalt ferrite
JPH06333725A (en) High-density ferrite
JP3654303B2 (en) Low loss magnetic material
JPH06333727A (en) Mn-zn ferrite
JPH11307336A (en) Manufacture of soft magnetic ferrite
JP2895723B2 (en) Method for producing Mn-Zn ferrite
JP3286642B2 (en) Manufacturing method of soft ferrite
JPH06333724A (en) Sintered ferrite with crystallite particle and manufacture thereof
CN118299136A (en) High-frequency manganese zinc ferrite material and preparation method thereof
JPH0353270B2 (en)
JPH01253210A (en) Polycrystalline ferrite material and manufacture thereof
JP2002118014A (en) Sintered ferrite compact for clamp filter, and its manufacturing method
JPH0345032B2 (en)
JPH09270312A (en) Manufacture of manganese-zinc ferrite
KR970009415B1 (en) High density ferrite processing method
JP2566143B2 (en) High density and high coefficient of thermal expansion ferrite for composite magnetic head and manufacturing method thereof
JPH06112033A (en) Manufacture of ferrite material
JPH05238817A (en) Low-loss ferrite and its production
JPH0729718A (en) Manufacture of ferrite of high density
JPS6047727B2 (en) Manufacturing method of high-density ferrite