JP2008081339A - Low loss ferrite material, and its production method - Google Patents

Low loss ferrite material, and its production method Download PDF

Info

Publication number
JP2008081339A
JP2008081339A JP2006261243A JP2006261243A JP2008081339A JP 2008081339 A JP2008081339 A JP 2008081339A JP 2006261243 A JP2006261243 A JP 2006261243A JP 2006261243 A JP2006261243 A JP 2006261243A JP 2008081339 A JP2008081339 A JP 2008081339A
Authority
JP
Japan
Prior art keywords
mol
loss
low
temperature
ferrite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006261243A
Other languages
Japanese (ja)
Inventor
Yoshimi Takahashi
芳美 高橋
Toshiaki Yokota
敏昭 横田
Shuichi Goto
秀一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006261243A priority Critical patent/JP2008081339A/en
Publication of JP2008081339A publication Critical patent/JP2008081339A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low loss ferrite material for transformer, having low loss while maintaining high saturation magnetic flux density, and to provide its production method. <P>SOLUTION: In the low loss ferrite material essentially consisting of 60 to 67 mol% Fe<SB>2</SB>O<SB>3</SB>, 8 to 18 mol% ZnO and 18 to 28 mol% MnO, and admixed with 20 to 200 ppm SiO<SB>2</SB>and 200 to 2,000 ppm CaO, density is ≥4.90×10<SP>3</SP>kg/m<SP>3</SP>, saturation magnetic flux density is ≥550 mT, and core loss per unit volume in 100 kHz, 200 mT is ≤2,000 kW/m<SP>3</SP>at 25°C, and is ≤1,800 kW/m<SP>3</SP>at 100°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、低損失のMnZn系フェライト材料及びその製造方法に関し、特にスイッチング電源やチョークコイル、非接触トランスなどに用いられるトランス用フェライト材料に関するもので材料の飽和磁束密度を改善し、さらに発熱などの問題に大きく関係する材料の磁気損失を低減することにより性能の改善および使用環境温度の拡大を可能とするものである。   The present invention relates to a low-loss MnZn-based ferrite material and a method for manufacturing the same, and more particularly to a ferrite material for transformers used in switching power supplies, choke coils, non-contact transformers, etc. It is possible to improve the performance and expand the use environment temperature by reducing the magnetic loss of the material which is largely related to the above problem.

スイッチング電源は電子機器の軽薄短小に伴い高性能化が要求されているが、高性能化には効率が高いことが望まれている。ここで効率化を考える際、トランスの発熱の問題が大きくなる。トランスの変換効率を高くすることを目的として可能な限り高磁界で差動させるためにフェライトなどの磁性材料の磁気損失が大きくなり熱と言う形で損失が発生するからである。高い磁界を発生させるには磁性材料の飽和磁束密度をあげること、コイルの巻き数をあげること及び材料の形状を大きくすることなどが有効である。   Switching power supplies are required to have higher performance as electronic devices become lighter, thinner and smaller, but high efficiency is desired for higher performance. When efficiency is considered here, the problem of heat generation of the transformer becomes large. This is because the magnetic loss of a magnetic material such as ferrite increases to generate a loss in the form of heat in order to make a differential with a high magnetic field as much as possible for the purpose of increasing the conversion efficiency of the transformer. In order to generate a high magnetic field, it is effective to increase the saturation magnetic flux density of the magnetic material, increase the number of turns of the coil, and increase the shape of the material.

飽和磁束密度をあげるには珪素鋼板やセンダスト、アモルファスなどの鉄系の金属磁性材料を用いることが考えられる。しかしながら、金属系磁性材料は材料自体が所有する電気抵抗が低く一般に10kHz以上の高周波帯域では渦電流損失により特性が劣化してしまう問題がある。また、コイルの巻数を上げル方法も最大では磁性材料の飽和磁束密度に依存するので限界があり、また巻数が多いほどロスの発生につながることになる。さらに形状の大型化には同様に電源のスペース大電流による消費電力の増大などの問題があり、コスト高となる。いずれも何らかの問題を抱えていた。   In order to increase the saturation magnetic flux density, it is conceivable to use an iron-based metal magnetic material such as silicon steel plate, sendust, or amorphous. However, the metallic magnetic material has a problem that the electrical resistance of the material itself is low and the characteristics are deteriorated due to eddy current loss in a high frequency band of 10 kHz or more. In addition, the method of increasing the number of turns of the coil has a limit because it depends on the saturation magnetic flux density of the magnetic material at the maximum, and the more the number of turns, the more the loss is generated. Further, the increase in shape has a problem such as an increase in power consumption due to a large current in the power supply space, resulting in an increase in cost. Both had some problems.

そこで材料のコストが安く電気抵抗が高いことから最も一般的なフェライト材料の高飽和磁束密度化が望まれている(例えば、特許文献1〜7参照。)。一般フェライトにはMnZn系、NiZn系、MgZn系など多くの組成系があるが、このうち高い飽和磁束密度で磁気損失の低いMnZn系が低損失用のトランスに使用されている。   Therefore, since the cost of the material is low and the electric resistance is high, it is desired to increase the saturation magnetic flux density of the most common ferrite material (see, for example, Patent Documents 1 to 7). General ferrite includes many composition systems such as MnZn series, NiZn series, and MgZn series. Of these, MnZn series that has a high saturation magnetic flux density and low magnetic loss is used for a transformer for low loss.

ところで現在改善が求められているMnZn系の高飽和磁束密度の材料は500〜520mTが限界とされていた。それは従来のトランス用低損失材料は組成を大きく変えると平衡酸素圧の関係等から均一に焼成ができないからであった。   Incidentally, the MnZn-based high saturation magnetic flux density material that is currently required to be improved has been limited to 500 to 520 mT. This is because conventional low-loss materials for transformers cannot be uniformly fired due to the relationship of equilibrium oxygen pressure and the like when the composition is greatly changed.

特開2003−2736号公報JP 2003-2736 A 特開2003−257724号公報JP 2003-257724 A 特開平6−215920号公報JP-A-6-215920 特開平5−243034号公報Japanese Patent Laid-Open No. 5-243034 特開平5−238817号公報JP-A-5-238817 特開平5−166620号公報JP-A-5-166620 特開2004−64057号公報JP 2004-64057 A

本発明は、以上の従来技術における問題に鑑みてなされたものであり、高い飽和磁束密度を保持しながら低損失を兼ね備えたトランス用の低損失フェライト材料及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems in the prior art, and an object thereof is to provide a low-loss ferrite material for a transformer having a low loss while maintaining a high saturation magnetic flux density, and a method for manufacturing the same. To do.

前記課題を解決するために提供する本発明は、Fe 60〜67mol%、ZnO 8〜18mol%、MnO 18〜28mol%を主成分とし、SiO 20〜200ppm、CaO 200〜2000ppmが添加されてなる低損失フェライト材料であって、密度が4.90×10kg/m以上、飽和磁束密度が550mT以上、100kHz,200mTにおける単位体積あたりの磁心損失が25℃で2000kW/m以下、100℃で1800kW/m以下であることを特徴とする低損失フェライト材料である。 The present invention provided to solve the above-mentioned problems is mainly composed of Fe 2 O 3 60 to 67 mol%, ZnO 8 to 18 mol%, MnO 18 to 28 mol%, and SiO 2 20 to 200 ppm and CaO 200 to 2000 ppm. A low-loss ferrite material having a density of 4.90 × 10 3 kg / m 3 or more, a saturation magnetic flux density of 550 mT or more, and a core loss per unit volume at 100 kHz and 200 mT of 2000 kW / m 3 at 25 ° C. Hereinafter, it is a low-loss ferrite material characterized by being 1800 kW / m 3 or less at 100 ° C.

前記課題を解決するために提供する本発明は、Fe 60〜67mol%、ZnO 8〜18mol%、MnO 18〜28mol%を主成分とし、SiO 20〜200ppm、CaO 200〜2000ppmが添加された出発原料を焼結して得られる低損失フェライト材料であって、前記出発原料を仮焼成した後、バインダーを添加して成形し本焼結する際に、バインダー分解温度から焼成最高温度に至るまでの昇温時の酸素分圧を0.5%以下として製造されてなることを特徴とする低損失フェライト材料である。 The present invention provided to solve the above-mentioned problems is mainly composed of Fe 2 O 3 60 to 67 mol%, ZnO 8 to 18 mol%, MnO 18 to 28 mol%, and SiO 2 20 to 200 ppm and CaO 200 to 2000 ppm. A low-loss ferrite material obtained by sintering the starting material, and after calcining the starting material, adding a binder to form and perform main sintering, from the binder decomposition temperature to the maximum firing temperature. It is a low-loss ferrite material produced by setting the oxygen partial pressure at the time of temperature rise to 0.5% or less.

ここで、前記焼成最高温度に保持後の冷却過程のうち、1100℃から800℃までの冷却における酸素分圧を0.5%以下として製造されてなることが好適である。   Here, it is preferable that the oxygen partial pressure in cooling from 1100 ° C. to 800 ° C. is made 0.5% or less in the cooling process after maintaining the maximum firing temperature.

また前記課題を解決するために提供する本発明は、Fe 60〜67mol%、ZnO 8〜18mol%、MnO 18〜28mol%を主成分とし、焼結促進材としてSiO 20〜200ppm、CaO 200〜2000ppmが添加された出発原料を用いる低損失フェライト材料の製造方法であって、前記出発原料を仮焼成した後、バインダーを添加して成形し本焼結する際に、バインダー分解温度から焼成最高温度に至るまでの昇温時の酸素分圧を0.5%以下とすることを特徴とする低損失フェライト材料の製造方法である。 The present invention is provided in order to solve the above problems, Fe 2 O 3 60~67mol%, ZnO 8~18mol%, mainly composed of MnO 18~28mol%, SiO 2 20~200ppm as sintering promoting material, A method for producing a low-loss ferrite material using a starting material to which 200 to 2000 ppm of CaO is added, and after calcining the starting material, adding a binder to form and perform main sintering, from the binder decomposition temperature A method for producing a low-loss ferrite material, characterized in that an oxygen partial pressure at the time of temperature rise up to a maximum firing temperature is 0.5% or less.

ここで、前記焼成最高温度に保持後の冷却過程のうち、1100℃から800℃までの冷却における酸素分圧を0.5%以下とすることが好適である。   Here, it is preferable that the oxygen partial pressure in cooling from 1100 ° C. to 800 ° C. is 0.5% or less in the cooling process after maintaining the maximum firing temperature.

本発明の低損失フェライト材料によれば、電磁トランスの磁界を高めることが可能となることから、種々のトランスに応用が可能となる。具体的には、電源に使用されるチョークコイル、シェーバーや電話子機などに使用されている非接触トランス、電気自動車用の充電用トランスなどで発生磁界の距離を伸ばすことが可能となる。また、トランスの飽和磁界が高くなることから、従来に較べて小型のトランスに設計が可能になること、コイルの巻線を少なくすることが可能、流す電流を減らすことが可能なことからコアの発熱が少なくなるなどの効果がある。トランスの設計の幅が広がる、コストダウンにもつながる。電源の消費電力の削減にも効果がでる。
本発明の低損失フェライト材料の製造方法によれば、高い飽和磁束密度を保持しながら低損失を兼ね備えたトランス用の低損失フェライト材料を得ることができる。
According to the low-loss ferrite material of the present invention, the magnetic field of the electromagnetic transformer can be increased, so that it can be applied to various transformers. Specifically, the distance of the generated magnetic field can be extended by a choke coil used for a power source, a non-contact transformer used for a shaver, a telephone slave unit, a charging transformer for an electric vehicle, or the like. In addition, since the transformer's saturation magnetic field is high, it is possible to design a transformer that is smaller than conventional transformers, to reduce the number of coil windings, and to reduce the current that flows. There are effects such as less heat generation. The range of transformer design is widened, leading to cost reduction. It is also effective in reducing power consumption.
According to the method for producing a low-loss ferrite material of the present invention, it is possible to obtain a low-loss ferrite material for a transformer having a low loss while maintaining a high saturation magnetic flux density.

発明者らのこれまでの研究開発により、フェライト材料の低損失化には主組成が最も重要でMnZn系フェライトが高性能であること、添加元素としてSiOおよびCaOが不可欠であること、密度が高いことを見出している。また、低損失材料はスイッチング電源に使用されるためコアロスのミニマム温度を60℃から100℃に設定するようにすること、そしてこのミニマム温度はフェライト材料の結晶磁気異方性定数K1、磁歪定数λsの組成および温度依存性に支配されることを見出している。 According to the inventors' previous research and development, the main composition is the most important for reducing the loss of ferrite materials, and MnZn-based ferrite has high performance, that additive elements such as SiO 2 and CaO are indispensable, and the density is I find it expensive. Further, since the low loss material is used for a switching power supply, the minimum temperature of the core loss is set to 60 ° C. to 100 ° C., and this minimum temperature is the crystal magnetic anisotropy constant K1 and magnetostriction constant λs of the ferrite material. It has been found that it is governed by the composition and temperature dependence.

ここで、結晶磁気異方性K1やλsは組成に依存しており、いずれも限りなく0になることが望ましいが、それぞれの組成依存性が異なるために60℃から100℃でK1、λsともに限りなくゼロに近く、飽和磁束密度が高いのは、52mol%≦Fe≦54mol%、9mol%≦ZnO≦11mol%、36mol%≦MnO≦38mol%の範囲に存在している。この組成から離れるとK1とλsが大きくなり、また異なった温度特性を持つことからコアロスの温度特性が悪くなる。 Here, the magnetocrystalline anisotropy K1 and λs depend on the composition, and it is desirable that both become zero as much as possible. However, since the composition dependency is different, both K1 and λs are from 60 ° C. to 100 ° C. The saturation magnetic flux density is as close to zero as possible, and the saturation magnetic flux density is in a range of 52 mol% ≦ Fe 2 O 3 ≦ 54 mol%, 9 mol% ≦ ZnO ≦ 11 mol%, 36 mol% ≦ MnO ≦ 38 mol%. If it is away from this composition, K1 and λs increase, and since the temperature characteristics are different, the core loss temperature characteristics deteriorate.

一方、MnZn系フェライトとは化学式で(MO)Feと表されるようにM2+イオンが一個、Fe3+イオンが2個、O2-イオンが4個の共有結合を持ち、スピネル構造を持った物質である。MnZnフェライトというのは厳密には(MnZn)O・Feと書き表されることから、Feが50mol%の場合にステイキオメトリーとなる。そのため、Feが50mol%からずれるとスピネル化が難しくなり、焼結が困難になる。したがって上記K1およびλsがゼロになる組成近傍が焼結するには限界と考えられていた。 On the other hand, MnZn-based ferrite has a covalent bond of one M 2+ ion, two Fe 3+ ions, and four O 2− ions, as expressed by the chemical formula (MO) Fe 2 O 3 , It is a substance with a spinel structure. Strictly speaking, MnZn ferrite is expressed as (MnZn) O.Fe 2 O 3, and therefore, when the amount of Fe 2 O 3 is 50 mol%, it is a stchiometry. For this reason, if Fe 2 O 3 deviates from 50 mol%, spineling becomes difficult and sintering becomes difficult. Therefore, it was considered that the vicinity of the composition where K1 and λs become zero was the limit for sintering.

また、MnZnフェライトの単結晶はステイキオ組成からずれても単結晶になる性質を持った物質でありK1や磁歪λを制御して磁気特性をコントロールできることから幅広い組成で単結晶が作成可能で、各種磁気ヘッドの要求に対応した単結晶フェライトが育成されている。さらに単結晶は1600℃を越える高い温度で形成されることから平衡酸素圧が正圧(1気圧よりも高い)である必要があるが、酸素中でも可能となっている。つまり平衡酸素圧がある範囲であればスピネル化することを示唆しているものと思われる。   In addition, the single crystal of MnZn ferrite is a substance that has the property of becoming a single crystal even if it deviates from the Staquio composition. Since K1 and magnetostriction λ can be controlled to control the magnetic properties, single crystals can be produced with a wide range of compositions. Single crystal ferrites that meet the requirements of magnetic heads have been grown. Furthermore, since the single crystal is formed at a high temperature exceeding 1600 ° C., the equilibrium oxygen pressure needs to be positive (higher than 1 atm), but it is possible even in oxygen. In other words, it seems to suggest that if the equilibrium oxygen pressure is within a certain range, it will be spineled.

以上のような知見考察から、本発明では高い飽和磁束密度が得られると思われるFeリッチ組成でも酸素濃度を制御すれば高密度のスピネルフェライトが作成できるのでないかと考えられた。さらにMnZn系フェライトでは一般的な組成である52mol%≦Fe≦54mol%でK1=0、λsが0になるが、Feが60mol%以上の組成にもK1=0のラインが存在する。この組成ラインではλsが大きいもののK1が小さいことから焼結が可能になればコアロスが低い材料が存在する可能性がある。 From the above knowledge and consideration, it was considered that a high-density spinel ferrite could be produced by controlling the oxygen concentration even with an Fe 2 O 3 rich composition, which is considered to have a high saturation magnetic flux density in the present invention. Furthermore, in the case of MnZn-based ferrite, K1 = 0 and λs become 0 when 52 mol% ≦ Fe 2 O 3 ≦ 54 mol%, which is a general composition, but even when the composition is Fe 2 O 3 of 60 mol% or more, K1 = 0 line Exists. In this composition line, although λs is large but K1 is small, there is a possibility that a material with low core loss exists if sintering is possible.

そこで、発明者らは、Feが60mol%付近の組成の焼結性についての研究開発を進めれば、新しい高い飽和磁束密度の低損失材料を見出すことが可能なのではないかと考え、鋭意検討の結果、本発明を成すにいたった。 Therefore, the inventors considered that it would be possible to find a new low loss material with a high saturation magnetic flux density if research and development on sinterability with a composition of Fe 2 O 3 near 60 mol% was advanced. As a result of intensive studies, the present invention has been achieved.

以下に、本発明に係る低損失フェライト材料及びその製造方法について説明する。
本発明に係る低損失フェライト材料は、Fe 60〜67mol%、ZnO 8〜18mol%、MnO 18〜28mol%を主成分とし、SiO 20〜200ppm、CaO 200〜2000ppmが添加されてなるものであり、密度が4.90×10kg/m以上、飽和磁束密度が550mT以上、100kHz,200mTにおける単位体積あたりの磁心損失(コアロス)が25℃で2000kW/m以下、100℃で1800kW/m以下であることを特徴とするものである。また、100kHz,200mTにおける単位体積あたりの磁心損失(コアロス)は、25℃で1600kW/m以下、60℃で1500kW/m以下、100℃で1500kW/m以下であることが好ましい。
Below, the low-loss ferrite material which concerns on this invention, and its manufacturing method are demonstrated.
The low-loss ferrite material according to the present invention is composed mainly of Fe 2 O 3 60 to 67 mol%, ZnO 8 to 18 mol%, MnO 18 to 28 mol%, and SiO 2 20 to 200 ppm and CaO 200 to 2000 ppm. The density is 4.90 × 10 3 kg / m 3 or more, the saturation magnetic flux density is 550 mT or more, and the core loss per unit volume at 100 kHz and 200 mT is 2000 kW / m 3 or less at 25 ° C., 100 ° C. 1800 kW / m 3 or less. Further, 100kHz, core loss per unit volume in 200 mT (core loss) is, 1600kW / m 3 or less at 25 ° C., at 60 ℃ 1500kW / m 3 or less, is preferably 1500 kW / m 3 or less at 100 ° C..

ここで、前記組成に、CoO(1.0mol%以下)、ZrO(0.1mol%以下)、SnO(1.0mol%以下)、TiO(1.0mol%以下)、Ta(0.1mol%以下)、Nb(0.1mol%以下)、Al(0.1mol%以下)、Ga(0.1mol%以下)、In(0.1mol%以下)、NiO(1.0mol%以下)のうち、1乃至3種類をさらに複合添加してもよい。なお、その際の添加量は各原料のカッコ内の数値とするとよい。 Here, the composition includes CoO (1.0 mol% or less), ZrO 2 (0.1 mol% or less), SnO 2 (1.0 mol% or less), TiO 2 (1.0 mol% or less), Ta 2 O 5. (0.1 mol% or less), Nb 2 O 5 (0.1 mol% or less), Al 2 O 3 (0.1 mol% or less), Ga 2 O 3 (0.1 mol% or less), In 2 O 3 (0 .1 mol% or less) or NiO (1.0 mol% or less), 1 to 3 types may be further added in combination. In addition, the addition amount in that case is good to set it as the numerical value in the parenthesis of each raw material.

図1に、本発明に係る低損失フェライト材料の作製手順を示す。なお、図1の処理工程は一般的なセラミックスの作製手順と同じであり、焼成工程の条件を除き各処理工程は通常の焼結フェライト材料の製造条件と同じでよい。   FIG. 1 shows a procedure for producing a low-loss ferrite material according to the present invention. The processing steps in FIG. 1 are the same as a general ceramic manufacturing procedure, and each processing step may be the same as the manufacturing conditions of a normal sintered ferrite material except for the firing step conditions.

まず、主成分としてFe 60〜67mol%、ZnO 8〜18mol%、MnO 18〜28mol%を、焼結促進材としてSiO 20〜200ppm、CaO 200〜2000ppmを出発原料としてそれぞれ秤量して混合し、微粉砕、乾燥、解砕を行った後、仮焼成を行い、微粉砕する。ついで、乾燥後、適当な大きさに造粒し、顆粒、バインダーを添加してプレス等の手法によって任意の形に成形する。つぎに、成形されたフェライトを密閉型焼成炉内に配置し、図2に示す温度プロファイルで焼成を行う。 First, Fe 2 O 3 60 to 67 mol%, ZnO 8 to 18 mol%, and MnO 18 to 28 mol% are weighed as main components, and SiO 2 20 to 200 ppm and CaO 200 to 2000 ppm are weighed as starting materials, respectively. After mixing, fine pulverization, drying, and pulverization, temporary baking is performed and fine pulverization is performed. Next, after drying, it is granulated to an appropriate size, added with granules and binder, and formed into an arbitrary shape by a technique such as pressing. Next, the formed ferrite is placed in a closed firing furnace and fired with a temperature profile shown in FIG.

図2の温度プロファイルは、5つの領域に分けられる。すなわち、図中Aの領域は脱バイ領域、Bの領域は昇温領域、Cの領域は本焼結の領域、Dの領域が除冷領域、Eの領域が炉冷領域である。   The temperature profile of FIG. 2 is divided into five regions. That is, the area A in the figure is the debuy area, the area B is the temperature raising area, the area C is the main sintering area, the area D is the cooling area, and the area E is the furnace cooling area.

ここで、Aの領域は、成形のために添加されたバインダーが分解する600℃程度の温度(バインダー分解温度)まで焼成炉内の温度を昇温してバインダーを除去する領域(脱バイ)である。このとき、バインダー分解温度までの昇温時にはある程度の酸素分圧が必要であり、例えば大気中における酸素分圧と同等の20%とする。   Here, the region A is a region where the temperature in the baking furnace is raised to a temperature of about 600 ° C. (binder decomposition temperature) at which the binder added for molding is decomposed (debide) and the binder is removed. is there. At this time, when raising the temperature to the binder decomposition temperature, a certain oxygen partial pressure is required, for example, 20% which is equivalent to the oxygen partial pressure in the atmosphere.

Bの領域は、脱バインダー化を行った後に、本焼結温度(焼成最高温度。例えば1250〜1350℃)まで焼成炉内の温度をさらに昇温し、フェライトの形成と緻密化を行う領域である。この領域Bの時、すなわちバインダー分解温度から焼成最高温度に至るまでの昇温時に、酸素分圧を0.5%以下とすることが好ましい。酸素分圧を低減する手法としては、例えば窒素ガス等の不活性ガスを焼成炉内に導入する方法、燃焼により焼成炉内の酸素ガスを消費する方法など適宜採用すればよい。   In the region B, after debinding, the temperature in the firing furnace is further increased to the main sintering temperature (maximum firing temperature, for example, 1250 to 1350 ° C.), and ferrite is formed and densified. is there. In this region B, that is, at the time of temperature rise from the binder decomposition temperature to the highest firing temperature, the oxygen partial pressure is preferably 0.5% or less. As a method for reducing the oxygen partial pressure, for example, a method of introducing an inert gas such as nitrogen gas into the firing furnace, a method of consuming the oxygen gas in the firing furnace by combustion, or the like may be adopted as appropriate.

Cの領域は、焼成最高温度(例えば1310℃)に到達した後にこの温度で所定時間保持を行って本焼結を行う領域である。   The region C is a region in which the main sintering is performed by holding at this temperature for a predetermined time after reaching the maximum firing temperature (for example, 1310 ° C.).

Dの領域は、焼成最高温度から所定の冷却速度で徐冷を行う領域である。領域Dでは、1100℃から800℃までの冷却における酸素分圧を0.5%以下とすることが好ましい。最後にEの領域で炉冷を行う。   The region D is a region where annealing is performed at a predetermined cooling rate from the highest firing temperature. In the region D, the oxygen partial pressure in cooling from 1100 ° C. to 800 ° C. is preferably 0.5% or less. Finally, furnace cooling is performed in the region E.

以上の処理を施すことにより、密度が4.90×10kg/m以上、飽和磁束密度が550mT以上、100kHz−200mTにおける単位体積あたりの磁心損失が25℃で2000kW/m以下、100℃で1800kW/m以下となる低損失フェライト材料が得られる。 By performing the above treatment, the density is 4.90 × 10 3 kg / m 3 or more, the saturation magnetic flux density is 550 mT or more, and the core loss per unit volume at 100 kHz-200 mT is 2000 kW / m 3 or less at 25 ° C., 100 A low-loss ferrite material having a temperature of 1800 kW / m 3 or less at 0 ° C. is obtained.

以下、本発明の詳細について実験の結果に基づいて説明する。
(実験例1)
表1に示すように、出発原料としてFeを62〜66mol%の範囲、ZnOを10〜18mol%の範囲、MnOを18〜26mol%の範囲で変化させ、SiOを100ppm、CaOを800ppmとして、図1に示す手順でフェライト材料のサンプルを作製した。なお、焼成における温度プロファイルを図3に示すように、領域Aでは大気雰囲気(酸素分圧20%)、領域Bでは酸素分圧1%の雰囲気とし、領域Cでは酸素分圧2%の雰囲気で焼成最高温度1310℃として4時間保持した。また、領域Dでは酸素分圧0.2%の雰囲気で徐冷し、領域EではNパージして酸素分圧0%とした雰囲気で炉冷した。
Hereinafter, details of the present invention will be described based on experimental results.
(Experimental example 1)
As shown in Table 1, the range of 62~66Mol% of Fe 2 O 3 as starting material, ZnO and 10~18Mol% range, MnO varied between 18~26Mol%, and the SiO 2 100 ppm, a CaO A sample of ferrite material was prepared by the procedure shown in FIG. 1 at 800 ppm. As shown in FIG. 3, the temperature profile in firing is an atmospheric atmosphere (oxygen partial pressure of 20%) in region A, an atmosphere of oxygen partial pressure of 1% in region B, and an atmosphere of oxygen partial pressure of 2% in region C. The firing temperature was maintained at 1310 ° C. for 4 hours. Further, in region D, annealing was performed slowly in an atmosphere having an oxygen partial pressure of 0.2%, and in region E, furnace cooling was performed in an atmosphere in which N 2 purge was performed to achieve an oxygen partial pressure of 0%.

Figure 2008081339
Figure 2008081339

得られたフェライト材料サンプルについて、1194A/mの磁界を印加して飽和磁束密度を測定し、ついで残留磁束密度を測定した。また、保磁力、10kHzにおける透磁率を測定した。さらに、100kHz−200mTの条件で室温(25℃)から100℃の温度範囲でコアロスPcを測定した。コアロス測定は、BH測定器IWATSU製SY−8232にて行った。また、密度は密度測定器で測定した。   About the obtained ferrite material sample, a magnetic field of 1194 A / m was applied to measure the saturation magnetic flux density, and then the residual magnetic flux density was measured. Further, the coercivity and the magnetic permeability at 10 kHz were measured. Furthermore, the core loss Pc was measured in the temperature range from room temperature (25 ° C.) to 100 ° C. under the condition of 100 kHz-200 mT. The core loss was measured with a SY-8232 manufactured by BH measuring instrument IWATSU. The density was measured with a density measuring device.

表2に本実験例のサンプルを評価した結果を示す。ここで、比較例1として一般的な低損失材料(Fe 53.5mol%、ZnO 10mol%、MnO 36.5mol%、SiO 100ppm、CaO 800ppmを出発原料とし、焼成条件が異なるもの。)の諸特性を示している。
試料3〜8のサンプルにおいて、飽和磁束密度が550mT以上となっており、比較例1の一般的な低損失材料に較べて高くなっていることが判明した。
Table 2 shows the results of evaluating the sample of this experimental example. Here, as a comparative example 1, a general low-loss material (Fe 2 O 3 53.5 mol%, ZnO 10 mol%, MnO 36.5 mol%, SiO 2 100 ppm, CaO 800 ppm is used as a starting material, and firing conditions are different. ).
In samples 3 to 8, it was found that the saturation magnetic flux density was 550 mT or higher, which was higher than the general low-loss material of Comparative Example 1.

Figure 2008081339
Figure 2008081339

(実験例2)
実験例1において試料1〜7は比較例1に比べ密度が低く、コアロスの値が大きい。そこで密度をあげるため、焼成工程の領域Bにおける昇温中の雰囲気を制御しバインダー除去後の焼成雰囲気の酸素濃度を1%から0.01%の範囲で変化させて焼成した。詳しくは、出発原料を実験例1において最も飽和磁束密度の高かった試料3の近傍組成で、65mol%Fe−15mol%ZnO−20mol%MnO−100ppmSiO−800ppmCaOとし、図4に示す温度プロファイルのように領域Bの酸素濃度を除き実験例1と同じ焼結条件とした。なお、0.01%以下の酸素濃度には焼成炉の能力上制御ができなかった。
(Experimental example 2)
In Experimental Example 1, Samples 1 to 7 have a lower density and a larger core loss value than Comparative Example 1. Therefore, in order to increase the density, firing was performed by controlling the atmosphere during heating in the region B of the firing step and changing the oxygen concentration in the firing atmosphere after removing the binder in the range of 1% to 0.01%. Specifically, the starting material has a composition close to that of sample 3 having the highest saturation magnetic flux density in Experimental Example 1, and is 65 mol% Fe 2 O 3 -15 mol% ZnO-20 mol% MnO-100 ppm SiO 2 -800 ppm CaO, and the temperature shown in FIG. The sintering conditions were the same as in Experimental Example 1 except for the oxygen concentration in the region B as in the profile. The oxygen concentration of 0.01% or less could not be controlled due to the ability of the firing furnace.

表3に本実験例のサンプルを評価した結果を示す。
酸素濃度が低い方が、密度が高くコアロスも低くなることが分かる。密度は比較例1の一般的な低損失フェライト材料と同等以上の4.85×10kg/m以上、最大で4.96×10kg/mを実現している。
Table 3 shows the results of evaluating the sample of this experimental example.
It can be seen that the lower the oxygen concentration, the higher the density and the lower the core loss. The density is 4.85 × 10 3 kg / m 3 , which is equal to or higher than that of the general low-loss ferrite material of Comparative Example 1, and a maximum of 4.96 × 10 3 kg / m 3 is realized.

Figure 2008081339
Figure 2008081339

(実験例3)
実験例2において一般的な低損失材料同等以上の密度が実現しており、さらに高い飽和磁束密度も得られているがコアロスについては劣っていた。そこで、実験例2において、図5に示すように領域Bの雰囲気の酸素濃度を0.1%とし、領域Cの最高焼成温度における温度と雰囲気の酸素濃度をそれぞれ1270〜1350℃、酸素濃度は1、2、4%と変化させ、それ以外は実験例2と同じ条件でサンプルを作製した。
(Experimental example 3)
In Experimental Example 2, a density equal to or higher than that of a general low-loss material was realized, and a higher saturation magnetic flux density was obtained, but the core loss was inferior. Therefore, in Experimental Example 2, as shown in FIG. 5, the oxygen concentration of the atmosphere in the region B is set to 0.1%, the temperature at the highest firing temperature of the region C and the oxygen concentration of the atmosphere are 1270 to 1350 ° C., respectively, Samples were produced under the same conditions as in Experimental Example 2 except that the amount was changed to 1, 2, and 4%.

表4に本実験例のサンプルを評価した結果を示す。
最高焼成温度では1310℃、酸素濃度では2%のところでコアロスが低くなることが分かった。また、室温(25℃)における飽和磁束密度はいずれでも570mT、密度では4.92×10kg/mが得られており、いずれも高飽和磁束密度で高密度の低損失材料であることが判明した。
Table 4 shows the results of evaluating the samples of this experimental example.
It was found that the core loss was low when the maximum firing temperature was 1310 ° C. and the oxygen concentration was 2%. In addition, the saturation magnetic flux density at room temperature (25 ° C.) is 570 mT, and the density is 4.92 × 10 3 kg / m 3 , both of which are high-saturation magnetic flux densities and high-density low-loss materials. There was found.

Figure 2008081339
Figure 2008081339

(実験例4)
前記実験例2,3で得られた高飽和磁束密度の低損失フェライト材料はコアロスの値が一般の低損失材料に較べて高い。そこで、コアロスの値を改善すべく、実験例2において、図6に示すように領域Bの雰囲気の酸素濃度を0.1%とし、領域Dの徐冷過程における1100℃から800℃までの温度領域の雰囲気の酸素濃度を1〜0.001%の範囲で変化させ、それ以外は実験例2と同じ条件でサンプルを作製した。なお、0.001%以下の酸素濃度には焼成炉の能力上制御ができなかった。
(Experimental example 4)
The low loss ferrite material having a high saturation magnetic flux density obtained in Experimental Examples 2 and 3 has a higher core loss value than a general low loss material. Therefore, in order to improve the core loss value, in Experimental Example 2, the oxygen concentration of the atmosphere in the region B is set to 0.1% as shown in FIG. 6, and the temperature from 1100 ° C. to 800 ° C. in the slow cooling process of the region D Samples were produced under the same conditions as in Experimental Example 2 except that the oxygen concentration of the atmosphere in the region was changed in the range of 1 to 0.001%. In addition, the oxygen concentration of 0.001% or less could not be controlled due to the capability of the firing furnace.

表5に本実験例のサンプルを評価した結果を示す。
徐冷中の酸素濃度を下げるほどコアロスの値は低くなり、コアロスの最良のものとして100℃で1000kW/mが得られた(試料31,32)。
Table 5 shows the results of evaluating the samples of this experimental example.
The value of the core loss decreased as the oxygen concentration during the slow cooling was decreased, and 1000 kW / m 3 was obtained at 100 ° C. as the best core loss (Samples 31 and 32).

Figure 2008081339
Figure 2008081339

(実験例5)
実験例4においてコアロスの値が最もよかった試料31の焼成条件で主組成の見直しを行った。すなわち、出発原料としてFeを60〜67mol%の範囲、ZnOを6〜20mol%の範囲、MnOを16〜30mol%の範囲で変化させ、SiOを100ppm、CaOを800ppmとして、図1に示す手順でフェライト材料のサンプルを作製した。なお、焼成における温度プロファイルを図7に示すように、領域Aでは大気雰囲気(酸素分圧20%)、領域Bでは酸素分圧0.1%の雰囲気とし、領域Cでは酸素分圧2%の雰囲気で焼成最高温度1310℃として4時間保持した。また、領域Dでは酸素分圧0.01%の雰囲気で徐冷し、領域EではNパージして酸素分圧0%とした雰囲気で炉冷した。
(Experimental example 5)
In Experimental Example 4, the main composition was reviewed under the firing conditions of Sample 31 having the best core loss value. That is, as a starting material, Fe 2 O 3 is changed in a range of 60 to 67 mol%, ZnO is changed in a range of 6 to 20 mol%, MnO is changed in a range of 16 to 30 mol%, SiO 2 is set to 100 ppm, and CaO is set to 800 ppm. A sample of a ferrite material was prepared by the procedure shown in FIG. As shown in FIG. 7, the temperature profile in firing is an atmospheric atmosphere (oxygen partial pressure of 20%) in region A, an atmosphere of oxygen partial pressure of 0.1% in region B, and an oxygen partial pressure of 2% in region C. The firing temperature was kept at 1310 ° C. for 4 hours in the atmosphere. Further, in region D, annealing was performed slowly in an atmosphere having an oxygen partial pressure of 0.01%, and in region E, furnace cooling was performed in an atmosphere in which N 2 purge was performed and the oxygen partial pressure was 0%.

表6に本実験例のサンプルを評価した結果を示す。
飽和磁束密度が550mT以上の高い値が得られるのはフェライトの主要三元系材料であるFe、ZnOおよびMnOをそれぞれ、60mol%≦Fe≦67mol%、8mol%≦ZnO≦18mol%、18mol%≦MnO≦28mol%の組成範囲としたときであることが判明した。図8に、それらの組成範囲を示した三元系組成図を示す。本発明における主要三元系材料の範囲は図中斜線で示された領域である。
Table 6 shows the result of evaluating the sample of this experimental example.
A high value of saturation magnetic flux density of 550 mT or more is obtained because Fe 2 O 3 , ZnO and MnO, which are the main ternary materials of ferrite, are 60 mol% ≦ Fe 2 O 3 ≦ 67 mol% and 8 mol% ≦ ZnO ≦, respectively. It was found that the composition range was 18 mol%, 18 mol% ≦ MnO ≦ 28 mol%. FIG. 8 shows a ternary composition diagram showing their composition range. The range of the main ternary material in the present invention is a region indicated by oblique lines in the figure.

Figure 2008081339
Figure 2008081339

(実験例6)
実験例5において、主要三元素の組成を65mol%Fe−15mol%ZnO−20mol%MnOとし、SiOを0〜250ppmの範囲で、CaOを0〜2500ppmの範囲で変化させ、それ以外は実験例5と同じ条件でサンプルを作製した。
(Experimental example 6)
In Experimental Example 5, the composition of the main three elements is 65 mol% Fe 2 O 3 -15 mol% ZnO-20 mol% MnO, SiO 2 is changed in the range of 0 to 250 ppm, CaO is changed in the range of 0 to 2500 ppm, and the others Prepared a sample under the same conditions as in Experimental Example 5.

表7に本実験例のサンプルを評価した結果を示す。
この結果から、SiOとCaOは必ず同時添加する必要があり、その添加量としてSiOを20〜200ppm、CaOを200〜2000ppmとすると飽和磁束密度が550mT以上であり、かつ低損失を実現することができることが分かった。また、本実験例において得られた低損失フェライト材料(組成65mol%Fe−15mol%ZnO−20mol%MnO−100ppmSiO2−800ppmCaO)についてコアロスの温度特性について測定した。その結果を図9に示す。
Table 7 shows the results of evaluating the samples of this experimental example.
From this result, it is necessary to add SiO 2 and CaO at the same time. When the addition amount is 20 to 200 ppm and CaO is 200 to 2000 ppm, the saturation magnetic flux density is 550 mT or more, and a low loss is realized. I found out that I could do it. Further, the core loss temperature characteristics of the low-loss ferrite material (composition 65 mol% Fe 2 O 3 -15 mol% ZnO-20 mol% MnO-100 ppm SiO 2 -800 ppm CaO) obtained in this experimental example were measured. The result is shown in FIG.

Figure 2008081339
Figure 2008081339

本発明に係る低損失フェライト材料の作製手順を示す図である。It is a figure which shows the preparation procedures of the low loss ferrite material which concerns on this invention. 本発明の低損失フェライト材料の焼結工程における温度プロファイルである。It is a temperature profile in the sintering process of the low-loss ferrite material of the present invention. 実験例1の焼結工程における温度プロファイルである。4 is a temperature profile in a sintering process of Experimental Example 1. 実験例2の焼結工程における温度プロファイルである。4 is a temperature profile in a sintering process of Experimental Example 2. 実験例3の焼結工程における温度プロファイルである。10 is a temperature profile in a sintering process of Experimental Example 3. 実験例4の焼結工程における温度プロファイルである。10 is a temperature profile in a sintering process of Experimental Example 4. 実験例5の焼結工程における温度プロファイルである。10 is a temperature profile in a sintering process of Experimental Example 5. 本発明の低損失フェライト材料の三元系組成図である。It is a ternary composition diagram of the low-loss ferrite material of the present invention. 本発明に係る低損失フェライト材料のコアロスの温度特性の例を示す図である。It is a figure which shows the example of the temperature characteristic of the core loss of the low loss ferrite material which concerns on this invention.

Claims (5)

Fe 60〜67mol%、ZnO 8〜18mol%、MnO 18〜28mol%を主成分とし、SiO 20〜200ppm、CaO 200〜2000ppmが添加されてなる低損失フェライト材料であって、
密度が4.90×10kg/m以上、飽和磁束密度が550mT以上、100kHz,200mTにおける単位体積あたりの磁心損失が25℃で2000kW/m以下、100℃で1800kW/m以下であることを特徴とする低損失フェライト材料。
Fe 2 O 3 60 to 67 mol%, ZnO 8 to 18 mol%, MnO 18 to 28 mol% as a main component, SiO 2 20 to 200 ppm, CaO 200 to 2000 ppm is a low loss ferrite material,
Density 4.90 × 10 3 kg / m 3 or more, the saturation magnetic flux density than 550MT, 100kHz, with the core loss 25 ° C. per unit volume in 200 mT 2000 kW / m 3 or less, at 100 ℃ 1800kW / m 3 or less A low-loss ferrite material characterized by being.
Fe 60〜67mol%、ZnO 8〜18mol%、MnO 18〜28mol%を主成分とし、SiO 20〜200ppm、CaO 200〜2000ppmが添加された出発原料を焼結して得られる低損失フェライト材料であって、
前記出発原料を仮焼成した後、バインダーを添加して成形し本焼結する際に、バインダー分解温度から焼成最高温度に至るまでの昇温時の酸素分圧を0.5%以下として製造されてなることを特徴とする低損失フェライト材料。
Fe 2 O 3 60-67 mol%, ZnO 8-18 mol%, MnO 18-28 mol% as the main component, SiO 2 20-200 ppm, CaO 200-2000 ppm added to the low-loss obtained by sintering A ferrite material,
When the starting material is pre-fired, the binder is added, formed, and finally sintered, the oxygen partial pressure at the time of temperature rise from the binder decomposition temperature to the highest firing temperature is 0.5% or less. A low-loss ferrite material characterized by comprising
前記焼成最高温度に保持後の冷却過程のうち、1100℃から800℃までの冷却における酸素分圧を0.5%以下として製造されてなることを特徴とする請求項2に記載の低損失フェライト材料。   3. The low-loss ferrite according to claim 2, wherein the low-loss ferrite according to claim 2, wherein the oxygen partial pressure in cooling from 1100 ° C. to 800 ° C. is 0.5% or less in the cooling process after maintaining the maximum firing temperature. material. Fe 60〜67mol%、ZnO 8〜18mol%、MnO 18〜28mol%を主成分とし、焼結促進材としてSiO 20〜200ppm、CaO 200〜2000ppmが添加された出発原料を用いる低損失フェライト材料の製造方法であって、
前記出発原料を仮焼成した後、バインダーを添加して成形し本焼結する際に、バインダー分解温度から焼成最高温度に至るまでの昇温時の酸素分圧を0.5%以下とすることを特徴とする低損失フェライト材料の製造方法。
Fe 2 O 3 60~67mol%, ZnO 8~18mol%, low loss mainly composed of MnO 18~28mol%, using the starting materials SiO 2 20~200ppm, CaO 200~2000ppm was added as a sintering promoting material A method of manufacturing a ferrite material,
After pre-baking the starting material, when forming a binder by adding a binder and performing main sintering, the oxygen partial pressure at the time of temperature rise from the binder decomposition temperature to the firing maximum temperature should be 0.5% or less. A method for producing a low-loss ferrite material characterized by:
前記焼成最高温度に保持後の冷却過程のうち、1100℃から800℃までの冷却における酸素分圧を0.5%以下とすることを特徴とする請求項4に記載の低損失フェライト材料の製造方法。   5. The production of a low-loss ferrite material according to claim 4, wherein an oxygen partial pressure in cooling from 1100 ° C. to 800 ° C. is 0.5% or less in the cooling process after being held at the maximum firing temperature. Method.
JP2006261243A 2006-09-26 2006-09-26 Low loss ferrite material, and its production method Pending JP2008081339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006261243A JP2008081339A (en) 2006-09-26 2006-09-26 Low loss ferrite material, and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006261243A JP2008081339A (en) 2006-09-26 2006-09-26 Low loss ferrite material, and its production method

Publications (1)

Publication Number Publication Date
JP2008081339A true JP2008081339A (en) 2008-04-10

Family

ID=39352560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006261243A Pending JP2008081339A (en) 2006-09-26 2006-09-26 Low loss ferrite material, and its production method

Country Status (1)

Country Link
JP (1) JP2008081339A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140307A (en) * 2011-01-04 2012-07-26 Tdk Corp Ferrite composition and electronic component
JP2012240897A (en) * 2011-05-23 2012-12-10 Tdk Corp Ferrite composition and electronic component
JP2013035736A (en) * 2011-08-10 2013-02-21 Tdk Corp Ferrite composition and electronic component
JP2013107793A (en) * 2011-11-21 2013-06-06 Tdk Corp Ferrite composition and electronic component
CN114420435A (en) * 2022-01-25 2022-04-29 沈阳工业大学 Design method for section of mixed material wound core for transformer
JP7117447B1 (en) 2021-12-28 2022-08-12 株式会社トーキン Method for producing zirconia setter and MnZn ferrite
CN115536381A (en) * 2022-10-19 2022-12-30 安徽龙磁金属科技有限公司 Manganese zinc ferrite material with high saturation magnetic flux density and low loss

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333726A (en) * 1993-05-21 1994-12-02 Minebea Co Ltd Manufacture of high-density mn-zn ferrite
JP2005029416A (en) * 2003-07-10 2005-02-03 Tdk Corp Ferrite material
JP2005187232A (en) * 2003-12-24 2005-07-14 Hitachi Metals Ltd Ferrite sintered compact, its production method, and electronic component using the same
JP2007031210A (en) * 2005-07-27 2007-02-08 Nec Tokin Corp Mn-Zn FERRITE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333726A (en) * 1993-05-21 1994-12-02 Minebea Co Ltd Manufacture of high-density mn-zn ferrite
JP2005029416A (en) * 2003-07-10 2005-02-03 Tdk Corp Ferrite material
JP2005187232A (en) * 2003-12-24 2005-07-14 Hitachi Metals Ltd Ferrite sintered compact, its production method, and electronic component using the same
JP2007031210A (en) * 2005-07-27 2007-02-08 Nec Tokin Corp Mn-Zn FERRITE

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140307A (en) * 2011-01-04 2012-07-26 Tdk Corp Ferrite composition and electronic component
JP2012240897A (en) * 2011-05-23 2012-12-10 Tdk Corp Ferrite composition and electronic component
JP2013035736A (en) * 2011-08-10 2013-02-21 Tdk Corp Ferrite composition and electronic component
JP2013107793A (en) * 2011-11-21 2013-06-06 Tdk Corp Ferrite composition and electronic component
JP7117447B1 (en) 2021-12-28 2022-08-12 株式会社トーキン Method for producing zirconia setter and MnZn ferrite
JP2023097903A (en) * 2021-12-28 2023-07-10 株式会社トーキン ZIRCONIA SETTER AND METHOD FOR PRODUCING MnZn-BASED FERRITE
CN114420435A (en) * 2022-01-25 2022-04-29 沈阳工业大学 Design method for section of mixed material wound core for transformer
CN114420435B (en) * 2022-01-25 2023-11-24 沈阳工业大学 Method for designing cross section of mixed material wound core for transformer
CN115536381A (en) * 2022-10-19 2022-12-30 安徽龙磁金属科技有限公司 Manganese zinc ferrite material with high saturation magnetic flux density and low loss

Similar Documents

Publication Publication Date Title
TWI699789B (en) Manufacturing method of manganese-zinc ferrite core and manganese-zinc ferrite core
JP5196704B2 (en) Method for producing ferrite sintered body
EP1816111A1 (en) LOW-LOSS Mn-Zn FERRITE AND UTILIZING THE SAME, ELECTRONIC PART AND SWITCHING POWER SUPPLY
TWI722151B (en) Manufacturing method of manganese-zinc ferrite and manganese-zinc ferrite
KR102558229B1 (en) Method for producing mnzn-based ferrite, and mnzn-based ferrite
JP2008081339A (en) Low loss ferrite material, and its production method
JP3389170B2 (en) NiMnZn ferrite
JP2007051052A (en) LOW LOSS MnZnNi-BASED FERRITE AND ELECTRONIC COMPONENT USING IT, AND SWITCHING POWER SUPPLY
JP2006202796A (en) HIGH SATURATION MAGNETIC FLUX DENSITY Mn-Zn-Ni BASED FERRITE
CN109354489A (en) A kind of high-frequency low-consumption Ferrite Material and preparation method thereof
JP2005330126A (en) MnZn FERRITE AND METHOD OF MANUFACTURING THE SAME
JP2001261344A (en) Mn-zn ferrite and method of producing the same
JP2004247370A (en) MnZn FERRITE
JP2003068516A (en) Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD
EP3597617B1 (en) Ni-based ferrite sintered body, coil component, and method for manufacturing ni-based ferrite sintered body
JP5721667B2 (en) Ferrite sintered body and ferrite core and ferrite coil using the same
JPH113813A (en) Ferrite material
JP5560436B2 (en) MnZnNi ferrite
JPH08169756A (en) Low loss manganese-zinc ferrite core and its production
JPH07272919A (en) Oxide magnetic material and inductor using the same
JP2008201639A (en) Low-loss ferrite material
JP4303443B2 (en) Ferrite material manufacturing method
JP2004247371A (en) MnZn FERRITE
JP5458302B2 (en) Mn-Zn-Ni ferrite
JP5458298B2 (en) Mn-Zn ferrite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090423

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090916

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120814