JP2023097903A - ZIRCONIA SETTER AND METHOD FOR PRODUCING MnZn-BASED FERRITE - Google Patents

ZIRCONIA SETTER AND METHOD FOR PRODUCING MnZn-BASED FERRITE Download PDF

Info

Publication number
JP2023097903A
JP2023097903A JP2021214278A JP2021214278A JP2023097903A JP 2023097903 A JP2023097903 A JP 2023097903A JP 2021214278 A JP2021214278 A JP 2021214278A JP 2021214278 A JP2021214278 A JP 2021214278A JP 2023097903 A JP2023097903 A JP 2023097903A
Authority
JP
Japan
Prior art keywords
mass
mnzn
parts
content
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021214278A
Other languages
Japanese (ja)
Other versions
JP7117447B1 (en
Inventor
照夫 安岡
Teruo Yasuoka
健一 村井
Kenichi Murai
裕一郎 永山
Yuichiro Nagayama
達文 後藤
Tatsufumi Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2021214278A priority Critical patent/JP7117447B1/en
Application granted granted Critical
Publication of JP7117447B1 publication Critical patent/JP7117447B1/en
Priority to CN202211699203.5A priority patent/CN116354715A/en
Publication of JP2023097903A publication Critical patent/JP2023097903A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/481Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing silicon, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

To provide: a zirconia setter capable of producing a ferrite having high specific initial permeability and high Curie temperature; a MnZn-based ferrite produced using the setter; and a method for producing the same.SOLUTION: A zirconia setter has a CaO content of 0.28 mass% or less and a porosity of 45.0 volume% or less. A method for producing an MnZn-based ferrite includes producing the MnZn-based ferrite which is mainly composed of Fe2O3, ZnO, and MnO, using the zirconia setter. The MnZn-based ferrite is produced using the method, wherein the ZnO content on a setter ground surface in a sintered body obtained by sintering the MnZn-based ferrite raw material is 95.0% or more of the ZnO content inside the sintered body.SELECTED DRAWING: None

Description

本発明は、ジルコニア質セッタ、MnZn系フェライトおよびその製造方法に関する。 TECHNICAL FIELD The present invention relates to a zirconia setter, a MnZn-based ferrite, and a method for producing the same.

MnZn系フェライトは、家電機器や電子機器などに搭載されるノイズ対策部品用の磁芯材料などとして用いられている。また、MnZn系フェライトは、その使用用途にあわせて、高透磁率の達成、優れた透磁率の周波数安定性の維持などの高機能化が検討されてきている。 MnZn-based ferrites are used as magnetic core materials for noise countermeasure parts mounted in home electric appliances and electronic equipment. Further, MnZn-based ferrites have been studied to have high functionality such as achievement of high magnetic permeability and maintenance of excellent frequency stability of magnetic permeability according to the intended use.

また、近年需要が増加している車載用途においては、外部環境の温度が高くなることが想定されるため、上記特性に加えて、キュリー温度の向上や耐熱性能の向上等が求められている。ここで、フェライトのキュリー温度は、フェライト組成の配合比に依存する傾向があることが知られている。 In addition, in automotive applications, for which demand has been increasing in recent years, the temperature of the external environment is expected to rise, so in addition to the above characteristics, improvements in Curie temperature and heat resistance are required. Here, it is known that the Curie temperature of ferrite tends to depend on the compounding ratio of the ferrite composition.

特許文献1には、フェライトにおける、基本成分、副成分および不可避的不純物中の炭素量を規定範囲内に制御することにより、特定の温度範囲(-20℃~150℃)において高い比初透磁率を有することができるMn-Zn-Co系フェライトが開示されている。 In Patent Document 1, by controlling the amount of carbon in the basic components, subcomponents, and inevitable impurities in ferrite within a specified range, a high relative initial permeability in a specific temperature range (-20 ° C. to 150 ° C.) A Mn--Zn--Co based ferrite is disclosed which can have a

特開2015-229626号公報JP 2015-229626 A

しかしながら、特許文献1に記載の技術では、得られたフェライトのキュリー温度および比初透磁率の範囲が限定的であり、より広い範囲に適用できる技術の開発が求められていた。また、このように従来の技術では、フェライトの組成自体に着目したものが多く、フェライト原料を焼結する際に用いるセッタの組成に着目しているものは非常に少なかった。 However, with the technique described in Patent Document 1, the range of the Curie temperature and relative initial permeability of the obtained ferrite is limited, and development of a technique that can be applied to a wider range has been desired. In addition, many of the conventional techniques focus on the composition of ferrite itself, and very few of them focus on the composition of the setter used when sintering the ferrite raw material.

本発明は、このような背景を鑑みてなされたものであり、高い比初透磁率および高いキュリー温度を有するフェライトを製造可能なジルコニア質セッタ、当該セッタを用いて製造したMnZn系フェライト並びにその製造方法を提供することを目的とする。 The present invention has been made in view of such a background, and provides a zirconia setter capable of producing ferrite having a high relative initial permeability and a high Curie temperature, an MnZn-based ferrite produced using the setter, and production thereof. The purpose is to provide a method.

本発明に係るジルコニア質セッタは、CaOの含有量は0.28質量%以下であり、気孔率は45.0体積%以下であることを特徴とする。 The zirconia setter according to the present invention is characterized by having a CaO content of 0.28% by mass or less and a porosity of 45.0% by volume or less.

上記ジルコニア質セッタの一実施形態は、CaOを含有しない。 One embodiment of the zirconia setter does not contain CaO.

上記ジルコニア質セッタの一実施形態は、気孔率が、25.0体積%以下である。 One embodiment of the zirconia setter has a porosity of 25.0% by volume or less.

上記ジルコニア質セッタの一実施形態は、Yの含有量が1.0質量%以上10.0質量%以下、MgOの含有量が1.0質量%以下、CeOの含有量が1.0質量%以下、SiOの含有量が10.0質量%以下である。 In one embodiment of the zirconia setter, the content of Y 2 O 3 is 1.0% by mass or more and 10.0% by mass or less, the content of MgO is 1.0% by mass or less, and the content of CeO 2 is 1 .0% by weight or less, and the content of SiO2 is 10.0% by weight or less.

本発明に係るMnZn系フェライトの製造方法は、FeとZnOとMnOとを主成分とするMnZn系フェライトを、上述した本発明のジルコニア質セッタを用いて製造することを特徴とする。 A method for producing MnZn-based ferrite according to the present invention is characterized by producing MnZn-based ferrite containing Fe 2 O 3 , ZnO and MnO as main components using the zirconia setter of the present invention described above.

上記製造方法の一実施形態は、前記MnZn系フェライト原料を焼結する際の、昇温温度域600℃以上1310℃以下における酸素濃度を5.0体積%以下にする。 In one embodiment of the above manufacturing method, the oxygen concentration in the temperature rising temperature range of 600° C. or higher and 1310° C. or lower when sintering the MnZn-based ferrite raw material is set to 5.0% by volume or less.

上記製造方法の一実施形態は、昇温された前記MnZn系フェライト原料を、温度1250℃以上、1360℃以下、酸素濃度1.5体積%以上、20体積%以下に保持する。 In one embodiment of the manufacturing method, the temperature of the MnZn-based ferrite raw material whose temperature is raised is maintained at a temperature of 1250° C. or higher and 1360° C. or lower and an oxygen concentration of 1.5% by volume or higher and 20% by volume or lower.

上記製造方法の一実施形態は、昇温後保持された前記MnZn系フェライト原料を冷却する際の、冷却温度1000℃以下の酸素濃度を300ppm以下にする。 In one embodiment of the above manufacturing method, the oxygen concentration at a cooling temperature of 1000° C. or less is 300 ppm or less when cooling the MnZn-based ferrite raw material held after the temperature rise.

本発明に係るMnZn系フェライトは、上述した本発明のMnZn系フェライトの製造方法を用いて製造したMnZn系フェライトであり、
前記MnZn系フェライト原料を焼結することにより得られる焼結体における、セッタ接地面のZnO含有量が、前記焼結体内部のZnO含有量に対して、95.0%以上であることを特徴とする。
The MnZn-based ferrite according to the present invention is a MnZn-based ferrite manufactured using the method for manufacturing the MnZn-based ferrite of the present invention described above,
In the sintered body obtained by sintering the MnZn-based ferrite raw material, the ZnO content of the setter contact surface is 95.0% or more with respect to the ZnO content inside the sintered body. and

本発明に係るMnZn系フェライトは、主成分100mol%中、Feを50.9~53.2mol%、ZnOを21.0~24.4mol%、残部のMnOとなる量で含有し、前記主成分の全量を100質量部としたときに、副成分としてSiOを0.000~0.009質量部、CaOを0.010~0.034質量部、Biを0.000~0.060質量部、MoOを0.000~0.039質量部含有し、
表面の少なくとも一部のZnO含有量が、内部のZnO含有量に対して、95.0%以上であることを特徴とする。
The MnZn-based ferrite according to the present invention contains 50.9 to 53.2 mol% of Fe 2 O 3 , 21.0 to 24.4 mol% of ZnO, and the balance of MnO in 100 mol% of the main component, When the total amount of the main components is 100 parts by mass, 0.000 to 0.009 parts by mass of SiO 2 , 0.010 to 0.034 parts by mass of CaO, and 0.000 parts by mass of Bi 2 O 3 are used as subcomponents. ~ 0.060 parts by mass, containing 0.000 to 0.039 parts by mass of MoO 3 ,
The ZnO content of at least part of the surface is characterized by being 95.0% or more of the ZnO content of the interior.

上記MnZn系フェライトの一実施形態は、23℃10kHzにおける比初透磁率μ’が12000以上である。 One embodiment of the MnZn-based ferrite has a relative initial permeability μ′ of 12000 or more at 23° C. and 10 kHz.

上記MnZn系フェライトの一実施形態は、キュリー温度が110℃以上であり、23℃200kHzにおける虚部の比初透磁率μ”が7500以上である。 An embodiment of the MnZn-based ferrite has a Curie temperature of 110° C. or more and a relative initial magnetic permeability μ″ of the imaginary part at 23° C. and 200 kHz of 7500 or more.

本発明に係るMnZn系フェライトは、主成分100mol%中、Feを50.6~53.7mol%、ZnOを18.0~20.0mol%、残部のMnOとなる量で含有し、前記主成分の全量を100質量部としたときに、副成分としてSiOを0.000~0.010質量部、CaOを0.015~0.030質量部、Biを0.001~0.030質量部、MoOを0.001~0.020質量部、Coを0.10~0.55質量部、TiOを0.10~2.50質量部含有し、
表面の少なくとも一部のZnO含有量が、内部のZnO含有量に対して、95.0%以上であることを特徴とする。
The MnZn-based ferrite according to the present invention contains 50.6 to 53.7 mol% of Fe 2 O 3 , 18.0 to 20.0 mol% of ZnO, and the balance of MnO in 100 mol% of the main component, When the total amount of the main components is 100 parts by mass, 0.000 to 0.010 parts by mass of SiO 2 , 0.015 to 0.030 parts by mass of CaO, and 0.001 part by mass of Bi 2 O 3 are used as subcomponents. ~0.030 parts by mass, 0.001 to 0.020 parts by mass of MoO3 , 0.10 to 0.55 parts by mass of Co2O3 , and 0.10 to 2.50 parts by mass of TiO2,
The ZnO content of at least part of the surface is characterized by being 95.0% or more of the ZnO content of the interior.

上記MnZn系フェライトの一実施形態は、23℃10kHzにおける比初透磁率μ’が8500以上である。 An embodiment of the MnZn-based ferrite has a relative initial permeability μ′ of 8500 or more at 23° C. and 10 kHz.

上記MnZn系フェライトの一実施形態は、キュリー温度が150℃以上であり、23℃500kHzにおける虚部の比初透磁率μ”が5500以上である。 An embodiment of the MnZn-based ferrite has a Curie temperature of 150° C. or more and a relative initial magnetic permeability μ″ of the imaginary part at 23° C. and 500 kHz of 5500 or more.

本発明に係るMnZn系フェライトは、主成分100mol%中、Feを50.5~54.0mol%、ZnOを11.0~18.0mol%、残部のMnOとなる量で含有し、前記主成分の全量を100質量部としたときに、副成分としてSiOを0.000~0.010質量部、CaOを0.015~0.030質量部、Biを0.001~0.030質量部、MoOを0.001~0.020質量部、Coを0.10~0.55質量部、TiOを0.10~2.50質量部含有し、
表面の少なくとも一部のZnO含有量が、内部のZnO含有量に対して、95.0%以上であることを特徴とする。
The MnZn-based ferrite according to the present invention contains 50.5 to 54.0 mol% of Fe 2 O 3 , 11.0 to 18.0 mol% of ZnO, and the balance of MnO in 100 mol% of the main component, When the total amount of the main components is 100 parts by mass, 0.000 to 0.010 parts by mass of SiO 2 , 0.015 to 0.030 parts by mass of CaO, and 0.001 part by mass of Bi 2 O 3 are used as subcomponents. ~0.030 parts by mass, 0.001 to 0.020 parts by mass of MoO3 , 0.10 to 0.55 parts by mass of Co2O3 , and 0.10 to 2.50 parts by mass of TiO2,
The ZnO content of at least part of the surface is characterized by being 95.0% or more of the ZnO content of the interior.

上記MnZn系フェライトの一実施形態は、23℃10kHzにおける比初透磁率μ’が7000以上である。 One embodiment of the MnZn-based ferrite has a relative initial permeability μ′ of 7000 or more at 23° C. and 10 kHz.

上記MnZn系フェライトの一実施形態は、キュリー温度が170℃以上であり、23℃900kHzにおける虚部の比初透磁率μ”が5000以上である。 An embodiment of the MnZn-based ferrite has a Curie temperature of 170° C. or more and a relative initial magnetic permeability μ″ of the imaginary part at 23° C. and 900 kHz of 5000 or more.

本発明に係るMnZn系フェライトは、主成分100mol%中、Feを51.3~54.5mol%、ZnOを9.0~14.3mol%、残部のMnOとなる量で含有し、前記主成分の全量を100質量部としたときに、副成分としてSiOを0.000~0.015質量部、CaOを0.020~0.060質量部、ZrOを0.030~0.070質量部、TiOを0.010~2.500質量部、Coを0.15~0.45質量部含有し、
表面の少なくとも一部のZnO含有量が、内部のZnO含有量に対して、95.0%以上であることを特徴とする。
The MnZn-based ferrite according to the present invention contains 51.3 to 54.5 mol% of Fe 2 O 3 , 9.0 to 14.3 mol% of ZnO, and the balance of MnO in 100 mol% of the main component, When the total amount of the main components is 100 parts by mass, 0.000 to 0.015 parts by mass of SiO 2 , 0.020 to 0.060 parts by mass of CaO, and 0.030 to 0.030 parts by mass of ZrO 2 are used as secondary components. .070 parts by weight, 0.010 to 2.500 parts by weight of TiO 2 , 0.15 to 0.45 parts by weight of Co 2 O 3 ,
The ZnO content of at least part of the surface is characterized by being 95.0% or more of the ZnO content of the interior.

上記MnZn系フェライトの一実施形態は、23℃10kHzにおける比初透磁率μ’が4500以上である。 One embodiment of the MnZn-based ferrite has a relative initial magnetic permeability μ′ of 4500 or more at 23° C. and 10 kHz.

上記MnZn系フェライトの一実施形態は、キュリー温度が200℃以上であり、23℃1.5MHzにおける虚部の比初透磁率μ”が3000以上である。 An embodiment of the MnZn-based ferrite has a Curie temperature of 200° C. or more and a relative initial magnetic permeability μ″ of the imaginary part at 23° C. and 1.5 MHz of 3000 or more.

本発明によれば、高い比初透磁率および高いキュリー温度を有するフェライトを製造可能なジルコニア質セッタ、当該セッタを用いて製造したMnZn系フェライト並びにその製造方法を提供することができる。 According to the present invention, it is possible to provide a zirconia setter capable of producing ferrite having a high relative initial permeability and a high Curie temperature, an MnZn-based ferrite produced using the setter, and a production method thereof.

上述したように、従来の技術では、主にフェライト組成に着目したものが多く、フェライトの製造に用いるセッタに着目したものは非常に少なかった。
本発明者らは、ジルコニア質セッタ中に含まれるCaO成分と、セッタ気孔率とを特定の範囲内にすることで、当該ジルコニア質セッタを用いて製造したフェライトが、高い比初透磁率及び高いキュリー温度を有することを新たに見出した。
ここで、磁界の強さHと磁束密度Bとの関係をB=μHで表した時の比例定数μを透磁率という。また、透磁率μを真空の透磁率μ=4π×10-7[H/m]で割ったものを比透磁率という。特に、初磁化曲線において、原点付近の微小磁界印加時における比透磁率のことを比初透磁率μ’という。また、キュリー温度とは、強磁性体が常磁性体に変わる温度のことを指す。キュリー温度は、JIS規格に準拠し測定を行うことができる。
As described above, many of the conventional techniques mainly focus on the ferrite composition, and very few focus on the setter used to manufacture ferrite.
The present inventors have found that by setting the CaO component contained in the zirconia setter and the setter porosity within specific ranges, the ferrite produced using the zirconia setter has a high relative initial permeability and a high It was newly found to have a Curie temperature.
Here, when the relationship between the strength H of the magnetic field and the magnetic flux density B is expressed by B=μH, the constant μ of proportionality is called magnetic permeability. Also, the relative magnetic permeability is obtained by dividing the magnetic permeability μ by the vacuum magnetic permeability μ 0 =4π×10 −7 [H/m]. In particular, in the initial magnetization curve, the relative magnetic permeability when a minute magnetic field is applied near the origin is referred to as the relative initial magnetic permeability μ'. The Curie temperature is the temperature at which a ferromagnetic material changes to a paramagnetic material. The Curie temperature can be measured according to JIS standards.

本発明に係るジルコニア質セッタを電子材料の焼成等に用いることで、上記各種特性を達成可能な、従来よりも幅広い組成のフェライトを製造することができる。さらに、当該フェライトの組成をより適切な範囲に設定することで、より高い比透磁率とより高いキュリー温度を兼ね備えたフェライトの提供が可能となる。 By using the zirconia setter according to the present invention for sintering electronic materials, etc., it is possible to produce ferrite having a wider range of compositions than conventional ferrites capable of achieving the various characteristics described above. Furthermore, by setting the composition of the ferrite to a more appropriate range, it is possible to provide ferrite having both a higher relative magnetic permeability and a higher Curie temperature.

以下、本発明に係るジルコニア質セッタ、MnZn系フェライトおよびその製造方法について説明する。
なお、数値範囲を示す「~」は特に断りがない限り、その下限値及び上限値を含むものとする。
The zirconia setter, MnZn-based ferrite, and method for producing the same according to the present invention will be described below.
In addition, unless otherwise specified, "-" indicating a numerical range includes its lower limit and upper limit.

<ジルコニア質セッタ>
本発明に係るジルコニア質セッタ(以下、本セッタとも記す)は、CaOの含有量が、0.28質量%以下であり、気孔率が、45.0体積%以下である。上記要件を満たすことにより、フェライト原料とセッタ成分との反応を抑制でき、高い比透磁率および高いキュリー温度を有するフェライトを製造できる。なお、当然ながら、本セッタの構成成分のうち、上記CaO(および後述する他の成分)以外の残部は、ZrOとなる。
<Zirconia Setter>
The zirconia setter according to the present invention (hereinafter also referred to as the "main setter") has a CaO content of 0.28% by mass or less and a porosity of 45.0% by volume or less. By satisfying the above requirements, the reaction between the ferrite raw material and the setter component can be suppressed, and ferrite having a high relative magnetic permeability and a high Curie temperature can be produced. Of course, among the constituent components of this setter, the balance other than CaO (and other components described later) is ZrO 2 .

より具体的には、セッタ中のCaOの含有量が、0.28質量%以下であれば、当該セッタを用いて製造したフェライトの23℃10kHzにおける比初透磁率μ’が高くなる。また、セッタ中のCaOの含有量は、0.14質量%以下が好ましく、0質量%である(すなわち、セッタ中にCaOを含有しない)ことがより好ましい。セッタ中のCaOの含有量が、0.14質量%以下であれば、当該セッタを用いて製造したフェライトの23℃10kHzにおける比初透磁率μ’がより高くなる。さらに、セッタ中にCaOを含有しなければ、当該セッタを用いて製造したフェライトの23℃10kHzにおける比初透磁率μ’および23℃200kHzにおける虚部の比初透磁率μ”がより高くなる。 More specifically, when the CaO content in the setter is 0.28% by mass or less, the ferrite manufactured using the setter has a high relative initial permeability μ′ at 23° C. and 10 kHz. The CaO content in the setter is preferably 0.14% by mass or less, more preferably 0% by mass (that is, the setter does not contain CaO). If the content of CaO in the setter is 0.14% by mass or less, the relative initial permeability μ′ at 23° C. and 10 kHz of the ferrite manufactured using the setter becomes higher. Furthermore, if CaO is not contained in the setter, the relative initial magnetic permeability μ′ at 23° C. 10 kHz and the relative initial magnetic permeability μ″ of the imaginary part at 23° C. 200 kHz of the ferrite produced using the setter are higher.

また、セッタの気孔率が、45.0体積%以下であれば、当該セッタを用いて製造したフェライトの23℃10kHzにおける比初透磁率μ’が高くなる。さらに、より高い比初透磁率を得る観点から、セッタの気孔率は、30.0体積%以下であることが好ましく、25.0体積%以下であることがより好ましく、12.0体積%以下であることがさらに好ましい。なお、セッタの気孔率が0体積%の場合も高い比初透磁率μ’を有するフェライトを容易に製造することができる。セッタの気孔率は、JIS R 2205-74に準拠して測定することができる。 Further, when the porosity of the setter is 45.0% by volume or less, the ferrite manufactured using the setter has a high relative initial permeability μ′ at 23° C. and 10 kHz. Furthermore, from the viewpoint of obtaining a higher relative initial permeability, the porosity of the setter is preferably 30.0% by volume or less, more preferably 25.0% by volume or less, and 12.0% by volume or less. is more preferable. Even when the porosity of the setter is 0% by volume, ferrite having a high relative initial permeability μ' can be easily produced. The porosity of the setter can be measured according to JIS R 2205-74.

なお、本セッタは、ジルコニア質セッタであり、例えば、電子材料焼成用として使用することができる。本セッタ中の構成成分は、ZrOおよび上述したCaOの他に、例えば、Y,MgO,CeO,SiO等の従来公知の成分を含むことができる。これらの他の成分の含有量は適宜設定でき、特に限定されないが、例えば、以下の範囲にすることができる。すなわち、セッタ中のYの含有量を1.0質量%以上10.0質量%以下、MgOの含有量を1.0質量%以下、CeOの含有量を1.0質量%以下、SiOの含有量を10.0質量%以下とすることができる。
なお、本セッタは、これらの他の成分を含まなくてもよく、セッタ中にこれらの他の成分の配合量が少ない場合やこれらの他の成分を含まない場合に(即ち、他の成分の配合量が0質量%により近い程)、より高い比初透磁率を達成できる傾向がある。セッタが配合する各成分の組成に関しては、ICP分析により計測を行うことができる。
This setter is a zirconia setter and can be used, for example, for sintering electronic materials. In addition to ZrO 2 and CaO described above, the constituents of the setter can include conventionally known components such as Y 2 O 3 , MgO, CeO 2 and SiO 2 . The content of these other components can be set as appropriate and is not particularly limited, but can be within the following ranges, for example. That is, the content of Y 2 O 3 in the setter is 1.0% by mass or more and 10.0% by mass or less, the content of MgO is 1.0% by mass or less, and the content of CeO 2 is 1.0% by mass or less. , the content of SiO 2 can be 10.0 mass % or less.
The setter does not have to contain these other ingredients, and when the amount of these other ingredients mixed in the setter is small or when these other ingredients are not included (that is, when the other ingredients are The closer the blending amount is to 0% by mass, the higher the relative initial permeability tends to be achieved. The composition of each component compounded by the setter can be measured by ICP analysis.

本セッタは、従来公知の製造方法を用いて適宜製造でき、その製造方法は特に限定されない。例えば、本セッタを構成する各成分を配合したセッタ原料(粉体)を、油圧プレス等により所望の形状に成形し、乾燥および焼成することにより、本セッタを製造することができる。なお、その際の乾燥条件や焼成条件も適宜設定でき、特に限定されない。例えば、大気中、温度:1350~1600℃、時間:1~5時間の条件で焼成を行うことができる。 The setter can be appropriately manufactured using a conventionally known manufacturing method, and the manufacturing method is not particularly limited. For example, the setter raw material (powder) mixed with each component constituting the setter is formed into a desired shape by a hydraulic press or the like, dried, and fired to manufacture the setter. In addition, the drying conditions and baking conditions at that time can also be appropriately set, and are not particularly limited. For example, firing can be carried out in the atmosphere at a temperature of 1350 to 1600° C. for 1 to 5 hours.

<MnZn系フェライトの製造方法>
本発明に係るMnZn系フェライトの製造方法(以下、本製造方法とも記す)は、本発明に係るジルコニア質セッタを用いて、Fe(酸化鉄(III))とZnO(酸化亜鉛)とMnO(酸化マンガン)とを主成分とするMnZn系フェライト(MnZn系フェライトコア)を製造するものである。本製造方法は、キュリー温度が110℃~245℃となるフェライトに対して好ましく適用できる。本製造方法では、フェライトとセッタ成分との間の反応を抑制でき、フェライト表面の異常粒生成を抑制できる。その結果、得られるフェライトの比初透磁率の周波数特性が改善され、200kHz以上の周波数帯域における虚部の比初透磁率μ”を高めることができる。以下に、本製造方法について詳しく説明する。
<Method for producing MnZn ferrite>
The method for producing MnZn-based ferrite according to the present invention (hereinafter also referred to as the present production method) uses the zirconia setter according to the present invention to produce Fe 2 O 3 (iron oxide (III)) and ZnO (zinc oxide). A MnZn-based ferrite (MnZn-based ferrite core) containing MnO (manganese oxide) as a main component is produced. This production method can be preferably applied to ferrite having a Curie temperature of 110°C to 245°C. In this manufacturing method, the reaction between the ferrite and the setter component can be suppressed, and the formation of abnormal grains on the ferrite surface can be suppressed. As a result, the frequency characteristics of the relative initial permeability of the obtained ferrite are improved, and the relative initial permeability μ″ of the imaginary part in the frequency band of 200 kHz or higher can be increased. The manufacturing method will be described in detail below.

本製造方法は、混合工程、第1の乾燥および造粒工程、仮焼工程、解砕工程、第2の乾燥および造粒工程、成型工程、および焼結工程を有することができる。
まず、焼結後のフェライト組成が所望の組成となるように、各成分原料の粉末を秤量する。
次に、全ての原料粉末を混合して解砕し、混合粉末を得る(混合工程)。具体的には、アトライタ等の装置を用いて、混合粉末のメジアン径D50が所望の値(例えば、0.5μm以上、1.5μm以下)となるまで凝集した原料粉末を解砕混合する。なお、混合粉末の粒度分布は粒度分布測定装置で測定することができる。
The manufacturing method can have a mixing step, a first drying and granulating step, a calcining step, a crushing step, a second drying and granulating step, a molding step, and a sintering step.
First, powders of raw materials for each component are weighed so that the ferrite composition after sintering has a desired composition.
Next, all raw material powders are mixed and pulverized to obtain a mixed powder (mixing step). Specifically, using a device such as an attritor, the aggregated raw material powders are crushed and mixed until the median diameter D50 of the mixed powder reaches a desired value (for example, 0.5 μm or more and 1.5 μm or less). The particle size distribution of the mixed powder can be measured with a particle size distribution analyzer.

続いて、混合工程で得られた混合粉末に、適量(例えば、当該混合粉末の全質量を100質量部としたときに0.5~1.0質量部)のポリビニルアルコールなどのバインダーを加え、スプレードライヤーなどを用いて噴霧することで顆粒を得る(第1の乾燥および造粒工程)。 Subsequently, an appropriate amount of a binder such as polyvinyl alcohol is added to the mixed powder obtained in the mixing step (for example, 0.5 to 1.0 parts by mass when the total weight of the mixed powder is 100 parts by mass), Granules are obtained by spraying using a spray dryer or the like (first drying and granulation step).

次に、第1の乾燥および造粒工程により得られた顆粒を、例えば、空気雰囲気で、適切な温度および時間(例えば、温度750℃で1時間)仮焼して仮焼物を得る(仮焼工程)。 Next, the granules obtained by the first drying and granulation step are calcined, for example, in an air atmosphere at an appropriate temperature and time (for example, at a temperature of 750° C. for 1 hour) to obtain a calcined product (calcined process).

続いて、所望のキュリー温度および比初透磁率に併せて、所望量の他の成分(副成分)を得られた仮焼物に対して添加する。当該他の成分としては、例えば、SiO(二酸化ケイ素)、CaO(酸化カルシウム)(実際の添加時はCa(OH)の形態)、Bi(酸化ビスマス)、MoO(三酸化モリブデン)、ZrO(二酸化ジルコニウム)、TiO(酸化チタン)、Co(酸化コバルト)(実際の添加時はCoを形態)を用いることができる。そして、各添加物を添加した後、仮焼物を解砕して解砕粉末を得る(解砕工程)。具体的には、解砕工程において、解砕後の粒径のメジアン径D50が所望の値(例えば、0.5μm以上、1.0μm以下)になるまで仮焼物を解砕して解砕粉末を得る。 Subsequently, in accordance with the desired Curie temperature and relative initial permeability, desired amounts of other components (subcomponents) are added to the obtained calcined material. Examples of the other components include SiO 2 (silicon dioxide), CaO (calcium oxide) (in the form of Ca(OH) 2 when actually added), Bi 2 O 3 (bismuth oxide), MoO 3 (trioxide molybdenum), ZrO 2 (zirconium dioxide), TiO 2 (titanium oxide), Co 2 O 3 (cobalt oxide) (in the form of Co 3 O 4 when actually added) can be used. After adding each additive, the calcined material is pulverized to obtain a pulverized powder (pulverizing step). Specifically, in the crushing step, the calcined material is crushed until the median diameter D50 of the particle size after crushing reaches a desired value (for example, 0.5 μm or more and 1.0 μm or less) to obtain a crushed powder. get

次に、解砕工程において得られた解砕粉末に、適量(例えば、解砕粉末の全質量を100質量部としたときに、0.5~1.0質量部)のポリビニルアルコールなどのバインダーを加え、スプレードライヤーなどで噴霧することで顆粒を得る(第2の乾燥および造粒工程)。この際、顆粒のメジアン径D50は適宜設定できるが、例えば、40μm以上、200μm以下とすることができる。 Next, to the crushed powder obtained in the crushing step, an appropriate amount (for example, 0.5 to 1.0 parts by mass when the total weight of the crushed powder is 100 parts by mass) binder such as polyvinyl alcohol is added and sprayed with a spray dryer or the like to obtain granules (second drying and granulation step). At this time, the median diameter D50 of the granules can be appropriately set, and can be, for example, 40 μm or more and 200 μm or less.

続いて、第2の乾燥および造粒工程で得られた顆粒を所望の形状、例えば、外径が19mm、内径が13mm、高さが11mmのトロイダル型のコアに成形する(成型工程)。 The granules obtained in the second drying and granulation step are then formed into a desired shape, for example a toroidal core with an outer diameter of 19 mm, an inner diameter of 13 mm and a height of 11 mm (forming step).

次に、上述した構成の本発明に係るジルコニア質セッタ上に得られたコアを積載し、焼結炉を用いて焼結を行う(焼結工程)。
ここで、本製造方法では、MnZn系フェライト原料を焼結する際の、焼結条件としては、昇温温度域600℃以上1310℃以下における酸素濃度を5.0体積%以下にすることが好ましい。当該条件を満たすことにより、得られるフェライト(焼結体)内部のZnO成分に対するフェライト表面のZnO成分の割合をより高く、すなわち、焼結体内外のZnO成分の含有量差をより小さく抑制することができる。その結果、フェライト中の組成不均一に起因する内部応力の発生を容易に抑制でき、比初透磁率μ’および虚部の比初透磁率μ”の低下を容易に抑制できる。
Next, the obtained core is loaded on the zirconia setter according to the present invention having the above-described structure, and sintered using a sintering furnace (sintering step).
Here, in this production method, as the sintering conditions for sintering the MnZn-based ferrite raw material, it is preferable that the oxygen concentration in the temperature rise temperature range of 600° C. or higher and 1310° C. or lower is 5.0% by volume or less. . By satisfying the conditions, the ratio of the ZnO component on the surface of the ferrite to the ZnO component inside the obtained ferrite (sintered body) is increased, that is, the difference in the content of the ZnO component inside and outside the sintered body is suppressed to be smaller. can be done. As a result, it is possible to easily suppress the occurrence of internal stress due to nonuniform composition in the ferrite, and to easily suppress the decrease in the relative initial permeability μ′ and the relative initial permeability μ″ of the imaginary part.

また、本製造方法では、さらに、昇温されたMnZn系フェライト原料を、1250℃以上、1360℃以下、酸素濃度1.5体積%以上、20体積%以下に保持することが好ましい。当該条件を満たすことで、焼結体の結晶粒を容易に成長させることができる。 Further, in this manufacturing method, it is preferable to maintain the heated MnZn-based ferrite raw material at a temperature of 1250° C. or higher and 1360° C. or lower and an oxygen concentration of 1.5% by volume or higher and 20% by volume or lower. By satisfying the conditions, the crystal grains of the sintered body can be easily grown.

さらに、本製造方法では、昇温後保持された前記MnZn系フェライト原料を冷却する際の、冷却温度1000℃以下の酸素濃度を300ppm以下にすることが好ましい。当該条件を満たすことで、焼結体の結晶粒を容易に成長させることができる。 Furthermore, in the present manufacturing method, it is preferable that the oxygen concentration at a cooling temperature of 1000° C. or lower when cooling the MnZn-based ferrite raw material held after the temperature rise is 300 ppm or lower. By satisfying the conditions, the crystal grains of the sintered body can be easily grown.

以上より、本製造方法では、以下の焼結条件にて、フェライトを製造することが特に好ましい。すなわち、まずMnZn系フェライト原料を焼結する際の、昇温温度域600℃以上1310℃以下における酸素濃度を5.0体積%以下にする(昇温工程)。そして、昇温されたMnZn系フェライト原料を、温度1250℃以上、1360℃以下、酸素濃度1.5体積%以上、20体積%以下に保持する(温度保持工程)。続いて、焼結炉内の酸素濃度を焼結炉内の温度にあわせて(連続的に)減少させ、冷却温度1000℃以下の酸素濃度を300ppm以下にする(冷却工程)。
このような製造方法を用いることにより、焼結体の結晶粒を容易に成長させることができる。また、当該方法より、焼結中の温度や酸素濃度を所定の範囲内に制御することで、フェライト中の酸素空孔を減少させ、高温環境におけるCoイオンの拡散を抑制し、高温環境に長時間晒された場合でも、初期特性からの特性低下を抑制できる。なお、MnZn系フェライト中にTiOを含有させることにより、高温環境におけるCoイオンの拡散抑制効果をより高めることができる。
また、MnZn系フェライト原料(被焼成物)を本セッタ上に積載し、かつ上記製造条件を用いて焼結を行うことで、フェライト原料とセッタに含まれる成分との反応を容易に抑制でき、さらに飽和蒸気圧の高いZnO成分の減少を容易に抑制できる。結果として、比初透磁率μ’のみならず、上述したμ”の高いフェライトを容易に得ることができる。
From the above, it is particularly preferable to manufacture ferrite under the following sintering conditions in the present manufacturing method. That is, when sintering the MnZn-based ferrite raw material, the oxygen concentration in the temperature rising temperature range of 600° C. or higher and 1310° C. or lower is set to 5.0% by volume or less (heating step). Then, the MnZn-based ferrite raw material whose temperature has been raised is maintained at a temperature of 1250° C. or higher and 1360° C. or lower and an oxygen concentration of 1.5% by volume or higher and 20% by volume or lower (temperature holding step). Subsequently, the oxygen concentration in the sintering furnace is (continuously) decreased in accordance with the temperature in the sintering furnace, and the oxygen concentration at the cooling temperature of 1000° C. or less is 300 ppm or less (cooling step).
By using such a manufacturing method, the crystal grains of the sintered body can be easily grown. In addition, by controlling the temperature and oxygen concentration during sintering within a predetermined range, the method reduces the oxygen vacancies in the ferrite, suppresses the diffusion of Co ions in a high-temperature environment, and is long-lasting in a high-temperature environment. Even if it is exposed for a long time, it is possible to suppress deterioration in characteristics from the initial characteristics. By including TiO 2 in the MnZn-based ferrite, the effect of suppressing diffusion of Co ions in a high-temperature environment can be further enhanced.
In addition, by loading the MnZn-based ferrite raw material (sintered material) on the main setter and performing sintering using the above manufacturing conditions, the reaction between the ferrite raw material and the components contained in the setter can be easily suppressed. Furthermore, it is possible to easily suppress the reduction of the ZnO component having a high saturated vapor pressure. As a result, it is possible to easily obtain ferrite having a high relative initial permeability μ′ as well as a high μ″ as described above.

従来のMnZn系フェライトの製造方法の一例として、温度保持工程における温度を1380~1420℃の高温とすることで焼結体の結晶粒径を成長させ、飽和蒸気圧の高いZnO成分が焼結体から減少することを抑制するため、焼結体と同じ組成を有するフェライト粉末中に被焼成体を配置させて焼結する方法が知られている。しかしながら、本発明では、このような複雑でコストのかかる製造方法を用いることなく、上述したような簡単な方法で、高い比初透磁率を有するMnZn系フェライトを得ることが可能となる。 As an example of a conventional method for producing MnZn-based ferrite, the temperature in the temperature holding step is set to a high temperature of 1380 to 1420° C. to grow the crystal grain size of the sintered body, and the ZnO component having a high saturated vapor pressure is produced in the sintered body. In order to suppress the decrease from the sintered body, a method is known in which the body to be fired is placed in a ferrite powder having the same composition as the sintered body and sintered. However, in the present invention, it is possible to obtain a MnZn-based ferrite having a high relative initial permeability by the simple method as described above without using such a complicated and costly manufacturing method.

<MnZn系フェライト>
本発明に係るMnZn系フェライト(以下、本フェライトとも記す)は、上述した本発明に係るジルコニア質セッタを用いて、本発明に係るMnZn系フェライトの製造方法により製造することができる。
本フェライトは、以下の第1~第5のMnZn系フェライトを含むものである。なお、MnZn系フェライトは、主成分となるFe、MnOおよびZnOの組成比率によって、キュリー温度が特定される傾向がある。なお、フェライトが配合する各成分の組成に関しては、蛍光X線分析により計測を行うことができる。第2~第5のMnZn系フェライトは、キュリー温度が110℃~245℃となるように組成(主に主成分組成)を設定されている。MnZn系フェライトは、キュリー温度が高くなる程、常温(例えば、25℃)における結晶磁気異方性定数および磁歪定数の値が高くなるため、キュリー温度の上昇に伴い、比初透磁率は小さくなる傾向がある。しかしながら、本製造方法を用いて得られる本フェライトは、キュリー温度を高く維持した状態でも高い比初透磁率を有することができる。
本フェライトは、高いキュリー温度および高い比初透磁率を有することができるため、様々な使用温度環境に応じて、コモンモードチョークコイルやその他のコイルの磁芯として使用することができ、これらのコイルの高性能化を達成できる。
<MnZn ferrite>
The MnZn ferrite according to the present invention (hereinafter also referred to as the present ferrite) can be produced by the method for producing the MnZn ferrite according to the present invention using the above-described zirconia setter according to the present invention.
This ferrite includes the following first to fifth MnZn-based ferrites. The Curie temperature of MnZn-based ferrite tends to be specified by the composition ratio of Fe 2 O 3 , MnO and ZnO, which are the main components. In addition, the composition of each component in which ferrite is mixed can be measured by fluorescent X-ray analysis. The compositions (main component compositions) of the second to fifth MnZn ferrites are set so that the Curie temperature is 110.degree. C. to 245.degree. As the Curie temperature of the MnZn-based ferrite increases, the magnetocrystalline anisotropy constant and the magnetostriction constant at room temperature (for example, 25° C.) increase, so the relative initial permeability decreases as the Curie temperature increases. Tend. However, the present ferrite obtained by using the present manufacturing method can have a high relative initial permeability even when the Curie temperature is kept high.
Since this ferrite can have a high Curie temperature and a high relative initial permeability, it can be used as the magnetic core of common mode choke coils and other coils according to various operating temperature environments. high performance can be achieved.

(第1のMnZn系フェライト)
第1のMnZn系フェライト(以下、第1フェライトとも記す)は、上述した本製造方法を用いて製造することができ、第1のフェライト原料を焼結することにより得られる焼結体における、セッタ接地面のZnO含有量が、前記焼結体内部のZnO含有量に対して、95.0%以上となる。このようにフェライト内外のZnO比率が95.0%以上であれば、組成不均一に起因する内部応力の発生を抑制でき、比初透磁率の低下を容易に抑制できる。
(First MnZn-based ferrite)
The first MnZn-based ferrite (hereinafter also referred to as the first ferrite) can be manufactured using the present manufacturing method described above, and the setter in the sintered body obtained by sintering the first ferrite raw material The ZnO content of the ground plane is 95.0% or more of the ZnO content inside the sintered body. Thus, if the ZnO ratio inside and outside the ferrite is 95.0% or more, it is possible to suppress the occurrence of internal stress due to non-uniform composition, and easily suppress the decrease in the relative initial permeability.

(第2のMnZn系フェライト)
第2のMnZn系フェライト(以下、第2フェライトとも記す)は、主成分100mol%中、Feを50.9~53.2mol%、ZnOを21.0~24.4mol%、残部のMnOとなる量で含有する。また、第2フェライトは、前記主成分の全量を100質量部としたときに、副成分としてSiOを0.000~0.009質量部、CaOを0.010~0.034質量部、Biを0.000~0.060質量部、MoOを0.000~0.039質量部含有する。さらに、第2フェライトは、表面の少なくとも一部のZnO含有量が、内部のZnO含有量に対して、95.0%以上となる。
(Second MnZn-based ferrite)
The second MnZn-based ferrite (hereinafter also referred to as the second ferrite) contains 50.9 to 53.2 mol% of Fe 2 O 3 , 21.0 to 24.4 mol% of ZnO, and the balance of 100 mol% of the main component. It is contained in an amount that becomes MnO. Further, when the total amount of the main components is 100 parts by mass, the second ferrite contains 0.000 to 0.009 parts by mass of SiO 2 , 0.010 to 0.034 parts by mass of CaO, and 0.010 to 0.034 parts by mass of Bi as subcomponents. It contains 0.000 to 0.060 parts by mass of 2 O 3 and 0.000 to 0.039 parts by mass of MoO 3 . Furthermore, in the second ferrite, the ZnO content in at least part of the surface is 95.0% or more of the ZnO content in the interior.

主成分であるFe、ZnOおよびMnOの含有割合を上記範囲とすることで、所望のキュリー温度を容易に得ることができる。より具体的には、Feの含有割合が上記下限値以上であれば、キュリー温度が所望の温度よりも低下することを容易に防ぐことができる。また、Feの含有割合が上記上限値以下であれば、高い比初透磁率を容易に維持できる。さらに、ZnOの含有割合が上記下限値以上であれば、高い比初透磁率を容易に維持できる。また、ZnOの含有割合が上記上限値以下であれば、キュリー温度が所望の温度よりも低下することを容易に防ぐことができる。 A desired Curie temperature can be easily obtained by setting the content ratios of the main components Fe 2 O 3 , ZnO and MnO within the above ranges. More specifically, when the content of Fe 2 O 3 is equal to or higher than the above lower limit, it is possible to easily prevent the Curie temperature from falling below the desired temperature. Further, when the content of Fe 2 O 3 is equal to or less than the above upper limit, a high relative initial permeability can be easily maintained. Furthermore, if the content of ZnO is at least the above lower limit, a high relative initial permeability can be easily maintained. Further, when the content of ZnO is equal to or less than the above upper limit, it is possible to easily prevent the Curie temperature from falling below the desired temperature.

BiおよびMoOを上記範囲量含有することで、焼結体の結晶粒の成長を促進することができ、結果として、10kHzにおいて高い比初透磁率を得ることができる。ここで、Biは、フェライトの結晶粒径を不均一にする傾向がある。したがって、Biの添加量は最小限に抑えつつフェライトの結晶粒径を成長させることが好ましい。Biの含有割合が上記下限値以上であれば、十分な結晶粒成長が行われ、10kHzにおいて高い比初透磁率を得ることができる。また、Biの含有割合が上記上限値以下であれば、結晶粒径が均一な焼結体を容易に得ることができるため、周波数特性が低下することを容易に防ぐことができ、高いμ”を得るができる。また、MoOの含有割合が上記下限値以上であれば、結晶粒径が均一な焼結体を容易に得ることができるため、周波数特性が低下することを容易に防ぐことができ、高いμ”を得るができる。また、MoOの含有割合が上記上限値以下であれば、結晶粒成長が抑制されることなく、10kHzにおけるμ’値が低下することを容易に防ぐことができる。 By containing Bi 2 O 3 and MoO 3 in the amounts within the above ranges, the growth of crystal grains in the sintered body can be promoted, and as a result, a high relative initial permeability can be obtained at 10 kHz. Here, Bi 2 O 3 tends to make the grain size of ferrite non-uniform. Therefore, it is preferable to grow the grain size of ferrite while minimizing the amount of Bi 2 O 3 added. When the content of Bi 2 O 3 is equal to or higher than the above lower limit, sufficient crystal grain growth occurs, and a high relative initial permeability can be obtained at 10 kHz. Further, when the content of Bi 2 O 3 is equal to or less than the above upper limit, a sintered body having a uniform crystal grain size can be easily obtained, so that deterioration of frequency characteristics can be easily prevented. In addition, if the content of MoO3 is equal to or higher than the above lower limit, a sintered body with a uniform crystal grain size can be easily obtained, so deterioration of the frequency characteristics can be easily prevented. can be prevented, and a high μ” can be obtained. Further, when the content of MoO 3 is equal to or less than the above upper limit, grain growth is not suppressed, and a decrease in μ' value at 10 kHz can be easily prevented.

また、SiOおよびCaOを上記範囲量含有することで、フェライトの比抵抗が改善されるため、比初透磁率の周波数特性を向上し、200kHz以上の周波数領域におけるμ”値を高めることができる。より具体的には、SiOの含有割合が上記下限値以上であれば、200kHz~1.5MHzにおけるμ”値が低下することを容易に防ぐことができる。また、SiOの含有割合が上記上限値以下であれば、10kHzにおけるμ’値が低下することを容易に防ぐことができる。また、CaOの含有割合が上記下限値以上であれば、200kHz~1.5MHzにおけるμ”値が低下することを容易に防ぐことができる。また、CaOの含有割合が上記上限値以下であれば、10kHzにおけるμ’値が低下することを容易に防ぐことができる。 In addition, by containing SiO 2 and CaO in amounts within the above range, the specific resistance of ferrite is improved, so the frequency characteristics of the relative initial permeability can be improved, and the μ″ value in the frequency range of 200 kHz or higher can be increased. More specifically, when the content of SiO 2 is equal to or higher than the above lower limit, it is possible to easily prevent the μ″ value from decreasing at 200 kHz to 1.5 MHz. Further, if the content of SiO 2 is equal to or less than the above upper limit, it is possible to easily prevent the µ' value from decreasing at 10 kHz. In addition, if the CaO content is at least the above lower limit, it is possible to easily prevent a decrease in the μ″ value at 200 kHz to 1.5 MHz. Further, if the CaO content is below the above upper limit , the μ′ value at 10 kHz can be easily prevented from declining.

また、フェライト内外のZnO比率が95.0%以上であれば、組成不均一に起因する内部応力の発生を抑制でき、比初透磁率の低下を容易に抑制できる。 Further, if the ZnO ratio inside and outside the ferrite is 95.0% or more, it is possible to suppress the occurrence of internal stress due to non-uniform composition, and easily suppress the decrease in the relative initial permeability.

第2フェライトは、キュリー温度が110℃以上であることが好ましい。なお、第2フェライトのキュリー温度は、上述したように、例えば、245℃以下とすることができる。また、第2フェライトは、23℃10kHzにおける比初透磁率μ’が12000以上であることが好ましい。さらに、第2フェライトは、23℃200kHzにおける虚部の比初透磁率μ”が7500以上であることが好ましい。 The second ferrite preferably has a Curie temperature of 110° C. or higher. In addition, the Curie temperature of the second ferrite can be, for example, 245° C. or less as described above. Also, the second ferrite preferably has a relative initial magnetic permeability μ′ of 12000 or more at 23° C. and 10 kHz. Further, the second ferrite preferably has a relative initial magnetic permeability μ″ of the imaginary part at 23° C. and 200 kHz of 7500 or more.

(第3のMnZn系フェライト)
第3のMnZn系フェライト(以下、第3フェライトとも記す)は、主成分100mol%中、Feを50.6~53.7mol%、ZnOを18.0~20.0mol%、残部のMnOとなる量で含有する。また、第3フェライトは、前記主成分の全量を100質量部としたときに、副成分としてSiOを0.000~0.010質量部、CaOを0.015~0.030質量部、Biを0.001~0.030質量部、MoOを0.001~0.020質量部、Coを0.10~0.55質量部、TiOを0.10~2.50質量部含有する。さらに、第3フェライトは、表面の少なくとも一部のZnO含有量が、内部のZnO含有量に対して、95.0%以上となる。
(Third MnZn ferrite)
The third MnZn-based ferrite (hereinafter also referred to as the third ferrite) contains 50.6 to 53.7 mol% of Fe 2 O 3 , 18.0 to 20.0 mol% of ZnO, and the balance of 100 mol% of the main component. It is contained in an amount that becomes MnO. Further, when the total amount of the main components is 100 parts by mass, the third ferrite contains 0.000 to 0.010 parts by mass of SiO 2 , 0.015 to 0.030 parts by mass of CaO, Bi 0.001 to 0.030 parts by weight of 2O3 , 0.001 to 0.020 parts by weight of MoO3 , 0.10 to 0.55 parts by weight of Co2O3 , 0.10 to 2 parts by weight of TiO2 .50 parts by mass. Furthermore, in the third ferrite, the ZnO content of at least part of the surface is 95.0% or more of the ZnO content inside.

主成分であるFe、ZnOおよびMnOの含有割合を上記範囲とすることで、所望のキュリー温度を容易に得ることができる。より具体的には、Feの含有割合が上記下限値以上であれば、キュリー温度が所望の温度よりも低下することを容易に防ぐことができる。また、Feの含有割合が上記上限値以下であれば、高い比初透磁率を容易に維持できる。さらに、ZnOの含有割合が上記下限値以上であれば、高い比初透磁率を容易に維持できる。また、ZnOの含有割合が上記上限値以下であれば、キュリー温度が所望の温度よりも低下することを容易に防ぐことができる。 A desired Curie temperature can be easily obtained by setting the content ratios of the main components Fe 2 O 3 , ZnO and MnO within the above ranges. More specifically, when the content of Fe 2 O 3 is equal to or higher than the above lower limit, it is possible to easily prevent the Curie temperature from falling below the desired temperature. Further, when the content of Fe 2 O 3 is equal to or less than the above upper limit, a high relative initial permeability can be easily maintained. Furthermore, if the content of ZnO is at least the above lower limit, a high relative initial permeability can be easily maintained. Further, when the content of ZnO is equal to or less than the above upper limit, it is possible to easily prevent the Curie temperature from falling below the desired temperature.

BiおよびMoOを上記範囲量含有することで、焼結体の結晶粒の成長を促進することができ、結果として、10kHzにおいて高い比初透磁率を得ることができる。ここで、Biは、フェライトの結晶粒径を不均一にする傾向がある。したがって、Biの添加量は最小限に抑えつつフェライトの結晶粒径を成長させることが好ましい。Biの含有割合が上記下限値以上であれば、十分な結晶粒成長が行われ、10kHzにおいて高い比初透磁率を得ることができる。また、Biの含有割合が上記上限値以下であれば、結晶粒径が均一な焼結体を容易に得ることができるため、周波数特性が低下することを容易に防ぐことができ、高いμ”を得るができる。また、MoOの含有割合が上記下限値以上であれば、結晶粒径が均一な焼結体を容易に得ることができるため、周波数特性が低下することを容易に防ぐことができ、高いμ”を得るができる。また、MoOの含有割合が上記上限値以下であれば、結晶粒成長が抑制されることなく、10kHzにおけるμ’値が低下することを容易に防ぐことができる。 By containing Bi 2 O 3 and MoO 3 in the amounts within the above ranges, the growth of crystal grains in the sintered body can be promoted, and as a result, a high relative initial permeability can be obtained at 10 kHz. Here, Bi 2 O 3 tends to make the grain size of ferrite non-uniform. Therefore, it is preferable to grow the grain size of ferrite while minimizing the amount of Bi 2 O 3 added. When the content of Bi 2 O 3 is equal to or higher than the above lower limit, sufficient crystal grain growth occurs, and a high relative initial permeability can be obtained at 10 kHz. Further, when the content of Bi 2 O 3 is equal to or less than the above upper limit, a sintered body having a uniform crystal grain size can be easily obtained, so that deterioration of frequency characteristics can be easily prevented. In addition, if the content of MoO3 is equal to or higher than the above lower limit, a sintered body with a uniform crystal grain size can be easily obtained, so deterioration of the frequency characteristics can be easily prevented. can be prevented, and a high μ” can be obtained. Further, when the content of MoO 3 is equal to or less than the above upper limit, grain growth is not suppressed, and a decrease in μ' value at 10 kHz can be easily prevented.

また、SiOおよびCaOを上記範囲量含有することで、フェライトの比抵抗が改善されるため、比初透磁率の周波数特性を向上し、200kHz以上の周波数領域におけるμ”値を高めることができる。より具体的には、SiOの含有割合が上記下限値以上であれば、200kHz~1.5MHzにおけるμ”値が低下することを容易に防ぐことができる。また、SiOの含有割合が上記上限値以下であれば、10kHzにおけるμ’値が低下することを容易に防ぐことができる。また、CaOの含有割合が上記下限値以上であれば、200kHz~1.5MHzにおけるμ”値が低下することを容易に防ぐことができる。また、CaOの含有割合が上記上限値以下であれば、10kHzにおけるμ’値が低下することを容易に防ぐことができる。
さらに、Coを上記範囲量含有することで、広い温度範囲において結晶磁気異方性定数を小さくでき、より広い温度範囲において比初透磁率を高めることができる。
また、TiOをCoと上記範囲量で複合添加することで、高温環境におけるCoによるCoイオンの熱拡散を抑制でき、高温環境に長時間晒された場合でも初期特性からの特性低下を抑制できる。また、TiOはMnZn系フェライトに添加することで、2価と3価の金属イオン間の電子交換を抑制する効果があり、粒内抵抗を高める効果がある。ここで、例えば、第3フェライトのキュリー温度Tcが150℃以上(例えば、170℃以上)である場合、TiOの含有割合が上記下限値以上であれば、高温(例えば150℃)放置試験前後のμ’の変化率をより低く抑えることができる。また、この場合に、TiOの含有割合が上記上限値以下であれば、10kHzにおけるμ’値が低下するのを容易に防ぐことができる。さらに、第3フェライトのキュリー温度が200℃以上である場合、TiOの含有割合が上記下限値以上であれば、1.5MHzにおけるμ”値が低下するのを容易に防ぐことができる。また、この場合に、TiOの含有割合が上記上限値以下であれば、10kHzにおけるμ’値が低下するのを容易に防ぐことができる。
さらに、フェライト内外のZnO比率が95.0%以上であれば、組成不均一に起因する内部応力の発生を抑制でき、比初透磁率の低下を容易に抑制できる。
In addition, by containing SiO 2 and CaO in amounts within the above range, the specific resistance of ferrite is improved, so the frequency characteristics of the relative initial permeability can be improved, and the μ″ value in the frequency range of 200 kHz or higher can be increased. More specifically, when the content of SiO 2 is equal to or higher than the above lower limit, it is possible to easily prevent the μ″ value from decreasing at 200 kHz to 1.5 MHz. Further, if the content of SiO 2 is equal to or less than the above upper limit, it is possible to easily prevent the µ' value from decreasing at 10 kHz. In addition, if the CaO content is at least the above lower limit, it is possible to easily prevent a decrease in the μ″ value at 200 kHz to 1.5 MHz. Further, if the CaO content is below the above upper limit , the μ′ value at 10 kHz can be easily prevented from declining.
Furthermore, by containing Co 2 O 3 in the above range, the magnetocrystalline anisotropy constant can be reduced over a wide temperature range, and the relative initial permeability can be increased over a wider temperature range.
In addition, by adding TiO 2 and Co 2 O 3 in combination with Co 2 O 3 in the above range, the thermal diffusion of Co ions by Co 2 O 3 in a high temperature environment can be suppressed, and even when exposed to a high temperature environment for a long time, the initial characteristics can be improved. characteristic deterioration can be suppressed. In addition, TiO 2 has the effect of suppressing electron exchange between divalent and trivalent metal ions by adding it to the MnZn-based ferrite, and has the effect of increasing the intragranular resistance. Here, for example, when the Curie temperature Tc of the third ferrite is 150° C. or higher (eg, 170° C. or higher), if the content of TiO 2 is at least the above lower limit, the high temperature (eg, 150° C.) storage test , the rate of change of μ' can be kept lower. Further, in this case, if the content of TiO 2 is equal to or less than the above upper limit, it is possible to easily prevent the μ′ value from decreasing at 10 kHz. Furthermore, when the Curie temperature of the third ferrite is 200° C. or more, if the content of TiO 2 is at least the above lower limit, it is possible to easily prevent the μ″ value at 1.5 MHz from decreasing. In this case, if the content of TiO 2 is equal to or less than the above upper limit, it is possible to easily prevent the µ' value from decreasing at 10 kHz.
Furthermore, if the ZnO ratio inside and outside the ferrite is 95.0% or more, it is possible to suppress the occurrence of internal stress due to non-uniform composition, and it is possible to easily suppress the decrease in the relative initial permeability.

第3フェライトは、キュリー温度が150℃以上であることが好ましい。なお、第3フェライトのキュリー温度は、上述したように、例えば、245℃以下とすることができる。また、第3フェライトは、23℃10kHzにおける比初透磁率μ’が8500以上であることが好ましい。さらに、第3フェライトは、23℃500kHzにおける虚部の比初透磁率μ”が5500以上であることが好ましい。 The third ferrite preferably has a Curie temperature of 150° C. or higher. Note that the Curie temperature of the third ferrite can be set to, for example, 245° C. or less as described above. Also, the third ferrite preferably has a relative initial magnetic permeability μ′ of 8500 or more at 23° C. and 10 kHz. Further, the third ferrite preferably has a relative initial magnetic permeability μ″ of the imaginary part at 23° C. and 500 kHz of 5500 or more.

(第4のMnZn系フェライト)
第4のMnZn系フェライト(以下、第4フェライトとも記す)は、主成分100mol%中、Feを50.5~54.0mol%、ZnOを11.0~18.0mol%、残部のMnOとなる量で含有する。また、第4フェライトは、前記主成分の全量を100質量部としたときに、副成分としてSiOを0.000~0.010質量部、CaOを0.015~0.030質量部、Biを0.001~0.030質量部、MoOを0.001~0.020質量部、Coを0.10~0.55質量部、TiOを0.10~2.50質量部含有する。さらに、第4フェライトは、表面の少なくとも一部のZnO含有量が、内部のZnO含有量に対して、95.0%以上となる。
(Fourth MnZn ferrite)
The fourth MnZn-based ferrite (hereinafter also referred to as the fourth ferrite) contains 50.5 to 54.0 mol% of Fe 2 O 3 , 11.0 to 18.0 mol% of ZnO, and the balance of 100 mol% of the main component. It is contained in an amount that becomes MnO. Further, when the total amount of the main components is 100 parts by mass, the fourth ferrite contains 0.000 to 0.010 parts by mass of SiO 2 , 0.015 to 0.030 parts by mass of CaO, and 0.015 to 0.030 parts by mass of Bi as secondary components. 0.001 to 0.030 parts by weight of 2O3 , 0.001 to 0.020 parts by weight of MoO3 , 0.10 to 0.55 parts by weight of Co2O3 , 0.10 to 2 parts by weight of TiO2 .50 parts by mass. Furthermore, in the fourth ferrite, the ZnO content of at least part of the surface is 95.0% or more of the ZnO content of the inside.

主成分であるFe、ZnOおよびMnOの含有割合を上記範囲とすることで、所望のキュリー温度を容易に得ることができる。より具体的には、Feの含有割合が上記下限値以上であれば、キュリー温度が所望の温度よりも低下することを容易に防ぐことができる。また、Feの含有割合が上記上限値以下であれば、高い比初透磁率を容易に維持できる。さらに、ZnOの含有割合が上記下限値以上であれば、高い比初透磁率を容易に維持できる。また、ZnOの含有割合が上記上限値以下であれば、キュリー温度が所望の温度よりも低下することを容易に防ぐことができる。 A desired Curie temperature can be easily obtained by setting the content ratios of the main components Fe 2 O 3 , ZnO and MnO within the above ranges. More specifically, when the content of Fe 2 O 3 is equal to or higher than the above lower limit, it is possible to easily prevent the Curie temperature from falling below the desired temperature. Further, when the content of Fe 2 O 3 is equal to or less than the above upper limit, a high relative initial permeability can be easily maintained. Furthermore, if the content of ZnO is at least the above lower limit, a high relative initial permeability can be easily maintained. Further, when the content of ZnO is equal to or less than the above upper limit, it is possible to easily prevent the Curie temperature from falling below the desired temperature.

BiおよびMoOを上記範囲量含有することで、焼結体の結晶粒の成長を促進することができ、結果として、10kHzにおいて高い比初透磁率を得ることができる。ここで、Biは、フェライトの結晶粒径を不均一にする傾向がある。したがって、Biの添加量は最小限に抑えつつフェライトの結晶粒径を成長させることが好ましい。Biの含有割合が上記下限値以上であれば、十分な結晶粒成長が行われ、10kHzにおいて高い比初透磁率を得ることができる。また、Biの含有割合が上記上限値以下であれば、結晶粒径が均一な焼結体を容易に得ることができるため、周波数特性が低下することを容易に防ぐことができ、高いμ”を得るができる。また、MoOの含有割合が上記下限値以上であれば、結晶粒径が均一な焼結体を容易に得ることができるため、周波数特性が低下することを容易に防ぐことができ、高いμ”を得るができる。また、MoOの含有割合が上記上限値以下であれば、結晶粒成長が抑制されることなく、10kHzにおけるμ’値が低下することを容易に防ぐことができる。 By containing Bi 2 O 3 and MoO 3 in the amounts within the above ranges, the growth of crystal grains in the sintered body can be promoted, and as a result, a high relative initial permeability can be obtained at 10 kHz. Here, Bi 2 O 3 tends to make the grain size of ferrite non-uniform. Therefore, it is preferable to grow the grain size of ferrite while minimizing the amount of Bi 2 O 3 added. When the content of Bi 2 O 3 is equal to or higher than the above lower limit, sufficient crystal grain growth occurs, and a high relative initial permeability can be obtained at 10 kHz. Further, when the content of Bi 2 O 3 is equal to or less than the above upper limit, a sintered body having a uniform crystal grain size can be easily obtained, so that deterioration of frequency characteristics can be easily prevented. In addition, if the content of MoO3 is equal to or higher than the above lower limit, a sintered body with a uniform crystal grain size can be easily obtained, so deterioration of the frequency characteristics can be easily prevented. can be prevented, and a high μ” can be obtained. Further, when the content of MoO 3 is equal to or less than the above upper limit, grain growth is not suppressed, and a decrease in μ' value at 10 kHz can be easily prevented.

また、SiOおよびCaOを上記範囲量含有することで、フェライトの比抵抗が改善されるため、比初透磁率の周波数特性を向上し、200kHz以上の周波数領域におけるμ”値を高めることができる。より具体的には、SiOの含有割合が上記下限値以上であれば、200kHz~1.5MHzにおけるμ”値が低下することを容易に防ぐことができる。また、SiOの含有割合が上記上限値以下であれば、10kHzにおけるμ’値が低下することを容易に防ぐことができる。また、CaOの含有割合が上記下限値以上であれば、200kHz~1.5MHzにおけるμ”値が低下することを容易に防ぐことができる。また、CaOの含有割合が上記上限値以下であれば、10kHzにおけるμ’値が低下することを容易に防ぐことができる。
さらに、Coを上記範囲量含有することで、広い温度範囲において結晶磁気異方性定数を小さくでき、より広い温度範囲において比初透磁率を高めることができる。
また、TiOをCoと上記範囲量で複合添加することで、高温環境におけるCoによるCoイオンの熱拡散を抑制でき、高温環境に長時間晒された場合でも初期特性からの特性低下を抑制できる。また、TiOはMnZn系フェライトに添加することで、2価と3価の金属イオン間の電子交換を抑制する効果があり、粒内抵抗を高める効果がある。ここで、例えば、第4フェライトのキュリー温度Tcが150℃以上(例えば、170℃以上)である場合、TiOの含有割合が上記下限値以上であれば、高温(例えば150℃)放置試験前後のμ’の変化率をより低く抑えることができる。また、この場合に、TiOの含有割合が上記上限値以下であれば、10kHzにおけるμ’値が低下するのを容易に防ぐことができる。さらに、第4フェライトのキュリー温度が200℃以上である場合、TiOの含有割合が上記下限値以上であれば、1.5MHzにおけるμ”値が低下するのを容易に防ぐことができる。また、この場合に、TiOの含有割合が上記上限値以下であれば、10kHzにおけるμ’値が低下するのを容易に防ぐことができる。
さらに、フェライト内外のZnO比率が95.0%以上であれば、組成不均一に起因する内部応力の発生を抑制でき、比初透磁率の低下を容易に抑制できる。
In addition, by containing SiO 2 and CaO in amounts within the above range, the specific resistance of ferrite is improved, so the frequency characteristics of the relative initial permeability can be improved, and the μ″ value in the frequency range of 200 kHz or higher can be increased. More specifically, when the content of SiO 2 is equal to or higher than the above lower limit, it is possible to easily prevent the μ″ value from decreasing at 200 kHz to 1.5 MHz. Further, if the content of SiO 2 is equal to or less than the above upper limit, it is possible to easily prevent the µ' value from decreasing at 10 kHz. In addition, if the CaO content is at least the above lower limit, it is possible to easily prevent a decrease in the μ″ value at 200 kHz to 1.5 MHz. Further, if the CaO content is below the above upper limit , the μ′ value at 10 kHz can be easily prevented from declining.
Furthermore, by containing Co 2 O 3 in the above range, the magnetocrystalline anisotropy constant can be reduced over a wide temperature range, and the relative initial permeability can be increased over a wider temperature range.
In addition, by adding TiO 2 and Co 2 O 3 in combination with Co 2 O 3 in the above range, the thermal diffusion of Co ions by Co 2 O 3 in a high temperature environment can be suppressed, and even when exposed to a high temperature environment for a long time, the initial characteristics can be improved. characteristic deterioration can be suppressed. In addition, TiO 2 has the effect of suppressing electron exchange between divalent and trivalent metal ions by adding it to the MnZn-based ferrite, and has the effect of increasing the intragranular resistance. Here, for example, when the Curie temperature Tc of the fourth ferrite is 150° C. or higher (eg, 170° C. or higher), if the content of TiO 2 is at least the above lower limit, the high temperature (eg, 150° C.) storage test , the rate of change of μ' can be kept lower. Further, in this case, if the content of TiO 2 is equal to or less than the above upper limit, it is possible to easily prevent the μ′ value from decreasing at 10 kHz. Furthermore, when the Curie temperature of the fourth ferrite is 200° C. or more, if the content of TiO 2 is at least the above lower limit, it is possible to easily prevent the μ″ value at 1.5 MHz from decreasing. In this case, if the content of TiO 2 is equal to or less than the above upper limit, it is possible to easily prevent the µ' value from decreasing at 10 kHz.
Furthermore, if the ZnO ratio inside and outside the ferrite is 95.0% or more, it is possible to suppress the occurrence of internal stress due to non-uniform composition, and it is possible to easily suppress the decrease in the relative initial permeability.

第4フェライトは、キュリー温度が170℃以上であることが好ましい。なお、第4フェライトのキュリー温度は、上述したように、例えば、245℃以下とすることができる。また、第4フェライトは、23℃10kHzにおける比初透磁率μ’が7000以上であることが好ましい。さらに、第4フェライトは、23℃900kHzにおける虚部の比初透磁率μ”が5000以上であることが好ましい。 The fourth ferrite preferably has a Curie temperature of 170° C. or higher. Note that the Curie temperature of the fourth ferrite can be set to, for example, 245° C. or less as described above. Further, the fourth ferrite preferably has a relative initial magnetic permeability μ′ of 7000 or more at 23° C. and 10 kHz. Further, the fourth ferrite preferably has a relative initial magnetic permeability μ″ of the imaginary part at 23° C. and 900 kHz of 5000 or more.

(第5のMnZn系フェライト)
第5のMnZn系フェライト(以下、第5フェライトとも記す)は、主成分100mol%中、Feを51.3~54.5mol%、ZnOを9.0~14.3mol%、残部のMnOとなる量で含有する。また、第5フェライトは、前記主成分の全量を100質量部としたときに、副成分としてSiOを0.000~0.015質量部、CaOを0.020~0.060質量部、ZrOを0.030~0.070質量部、TiOを0.010~2.500質量部、Coを0.15~0.45質量部含有する。さらに、第5フェライトは、表面の少なくとも一部のZnO含有量が、内部のZnO含有量に対して、95.0%以上となる。
(Fifth MnZn ferrite)
The fifth MnZn-based ferrite (hereinafter also referred to as the fifth ferrite) contains 51.3 to 54.5 mol% of Fe 2 O 3 , 9.0 to 14.3 mol% of ZnO, and the balance of 100 mol% of the main component. It is contained in an amount that becomes MnO. Further, when the total amount of the main components is 100 parts by mass, the fifth ferrite contains 0.000 to 0.015 parts by mass of SiO 2 , 0.020 to 0.060 parts by mass of CaO, ZrO 0.030 to 0.070 parts by mass of 2 , 0.010 to 2.500 parts by mass of TiO 2 and 0.15 to 0.45 parts by mass of Co 2 O 3 . Furthermore, in the fifth ferrite, the ZnO content of at least part of the surface is 95.0% or more of the ZnO content of the inside.

主成分であるFe、ZnOおよびMnOの含有割合を上記範囲とすることで、所望のキュリー温度を容易に得ることができる。より具体的には、Feの含有割合が上記下限値以上であれば、キュリー温度が所望の温度よりも低下することを容易に防ぐことができる。また、Feの含有割合が上記上限値以下であれば、高い比初透磁率を容易に維持できる。さらに、ZnOの含有割合が上記下限値以上であれば、高い比初透磁率を容易に維持できる。また、ZnOの含有割合が上記上限値以下であれば、キュリー温度が所望の温度よりも低下することを容易に防ぐことができる。 A desired Curie temperature can be easily obtained by setting the content ratios of the main components Fe 2 O 3 , ZnO and MnO within the above ranges. More specifically, when the content of Fe 2 O 3 is equal to or higher than the above lower limit, it is possible to easily prevent the Curie temperature from falling below the desired temperature. Further, when the content of Fe 2 O 3 is equal to or less than the above upper limit, a high relative initial permeability can be easily maintained. Furthermore, if the content of ZnO is at least the above lower limit, a high relative initial permeability can be easily maintained. Further, when the content of ZnO is equal to or less than the above upper limit, it is possible to easily prevent the Curie temperature from falling below the desired temperature.

SiO、CaOおよびZrOを上記範囲量含有することで、フェライトの比抵抗が改善されるため、比初透磁率の周波数特性を向上し、200kHz以上の周波数領域におけるμ”値を高めることができる。より具体的には、SiOの含有割合が上記下限値以上であれば、200kHz~1.5MHzにおけるμ”値が低下することを容易に防ぐことができる。また、SiOの含有割合が上記上限値以下であれば、10kHzにおけるμ’値が低下することを容易に防ぐことができる。また、CaOの含有割合が上記下限値以上であれば、200kHz~1.5MHzにおけるμ”値が低下することを容易に防ぐことができる。また、CaOの含有割合が上記上限値以下であれば、10kHzにおけるμ’値が低下することを容易に防ぐことができる。また、ZrOの含有割合が上記下限値以上であれば、1.5MHzにおけるμ”値が低下することを容易に防ぐことができる。また、ZrOの含有割合が上記上限値以下であれば、10kHzにおけるμ’値が低下することを容易に防ぐことができる。
さらに、Coを上記範囲量含有することで、広い温度範囲において結晶磁気異方性定数を小さくでき、より広い温度範囲において比初透磁率を高めることができる。
また、TiOをCoと上記範囲量で複合添加することで、高温環境におけるCoによるCoイオンの熱拡散を抑制でき、高温環境に長時間晒された場合でも初期特性からの特性低下を抑制できる。また、TiOはMnZn系フェライトに添加することで、2価と3価の金属イオン間の電子交換を抑制する効果があり、粒内抵抗を高める効果がある。ここで、例えば、第5フェライトのキュリー温度Tcが150℃以上(例えば、170℃以上)である場合、TiOの含有割合が上記下限値以上であれば、高温(例えば150℃)放置試験前後のμ’の変化率をより低く抑えることができる。また、この場合に、TiOの含有割合が上記上限値以下であれば、10kHzにおけるμ’値が低下するのを容易に防ぐことができる。さらに、第5フェライトのキュリー温度が200℃以上である場合、TiOの含有割合が上記下限値以上であれば、1.5MHzにおけるμ”値が低下するのを容易に防ぐことができる。また、この場合に、TiOの含有割合が上記上限値以下であれば、10kHzにおけるμ’値が低下するのを容易に防ぐことができる。
さらに、フェライト内外のZnO比率が95.0%以上であれば、組成不均一に起因する内部応力の発生を抑制でき、比初透磁率の低下を容易に抑制できる。
By containing SiO 2 , CaO and ZrO 2 in amounts within the above ranges, the specific resistance of ferrite is improved, so the frequency characteristics of the relative initial permeability are improved, and the μ″ value in the frequency range of 200 kHz or higher can be increased. More specifically, when the content of SiO 2 is equal to or higher than the above lower limit, it is possible to easily prevent the μ″ value from decreasing at 200 kHz to 1.5 MHz. Further, if the content of SiO 2 is equal to or less than the above upper limit, it is possible to easily prevent the µ' value from decreasing at 10 kHz. In addition, if the CaO content is at least the above lower limit, it is possible to easily prevent a decrease in the μ″ value at 200 kHz to 1.5 MHz. Further, if the CaO content is below the above upper limit , the μ′ value at 10 kHz can be easily prevented from decreasing.In addition, if the content of ZrO 2 is equal to or higher than the above lower limit, the μ″ value at 1.5 MHz can be easily prevented from decreasing. can be done. Further, if the content of ZrO 2 is equal to or less than the above upper limit, it is possible to easily prevent the µ' value from decreasing at 10 kHz.
Furthermore, by containing Co 2 O 3 in the above range, the magnetocrystalline anisotropy constant can be reduced over a wide temperature range, and the relative initial permeability can be increased over a wider temperature range.
In addition, by adding TiO 2 and Co 2 O 3 in combination with Co 2 O 3 in the above range, the thermal diffusion of Co ions by Co 2 O 3 in a high temperature environment can be suppressed, and even when exposed to a high temperature environment for a long time, the initial characteristics can be improved. characteristic deterioration can be suppressed. In addition, TiO 2 has the effect of suppressing electron exchange between divalent and trivalent metal ions by adding it to the MnZn-based ferrite, and has the effect of increasing the intragranular resistance. Here, for example, when the Curie temperature Tc of the fifth ferrite is 150° C. or higher (eg, 170° C. or higher), if the content of TiO 2 is the above lower limit value or higher, the high temperature (eg, 150° C.) storage test , the rate of change of μ' can be kept lower. Further, in this case, if the content of TiO 2 is equal to or less than the above upper limit, it is possible to easily prevent the μ′ value from decreasing at 10 kHz. Furthermore, when the Curie temperature of the fifth ferrite is 200° C. or higher, if the content of TiO 2 is at least the above lower limit, it is possible to easily prevent the μ″ value at 1.5 MHz from decreasing. In this case, if the content of TiO 2 is equal to or less than the above upper limit, it is possible to easily prevent the µ' value from decreasing at 10 kHz.
Furthermore, if the ZnO ratio inside and outside the ferrite is 95.0% or more, it is possible to suppress the occurrence of internal stress due to non-uniform composition, and it is possible to easily suppress the decrease in the relative initial permeability.

第5フェライトは、キュリー温度が200℃以上であることが好ましい。なお、第5フェライトのキュリー温度は、上述したように、例えば、245℃以下とすることができる。また、第5フェライトは、23℃10kHzにおける比初透磁率μ’が4500以上であることが好ましい。さらに、第5フェライトは、23℃1.5MHzにおける虚部の比初透磁率μ”が3000以上であることが好ましい。 The fifth ferrite preferably has a Curie temperature of 200° C. or higher. Note that the Curie temperature of the fifth ferrite can be set to, for example, 245° C. or less as described above. Further, the fifth ferrite preferably has a relative initial magnetic permeability μ′ of 4500 or more at 23° C. and 10 kHz. Furthermore, the fifth ferrite preferably has a relative initial magnetic permeability μ″ of the imaginary part at 23° C. and 1.5 MHz of 3000 or more.

以下、実施例および比較例を挙げて本発明を具体的に説明する。なお、これらの記載により本発明を制限するものではない。 EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples. In addition, these descriptions do not limit the present invention.

[特性の評価方法]
まず、作製したフェライトの特性評価を行う際に使用する試料について説明する。後述する実施例および比較例で作製したフェライトを、外径が19mm、内径が13mm、および高さが11mmのトロイダル型のフェライトコアに成形した。このフェライトコアに線径が0.26mmの銅線を10回巻きつけて試料を作製し、インピーダンスアナライザを使用して比初透磁率μ’、虚部の比初透磁率μ”を測定した。尚、測定の際の電流値は0.2mAであった。
[Method for evaluating properties]
First, the samples used for evaluating the characteristics of the manufactured ferrite will be described. Ferrites produced in Examples and Comparative Examples described later were formed into toroidal ferrite cores having an outer diameter of 19 mm, an inner diameter of 13 mm, and a height of 11 mm. A copper wire having a wire diameter of 0.26 mm was wound 10 times around this ferrite core to prepare a sample, and the relative initial permeability μ′ and imaginary part relative initial permeability μ″ were measured using an impedance analyzer. In addition, the current value at the time of measurement was 0.2 mA.

[実施例1]
まず、焼結後のFe含有量が52.20mol%、ZnO含有量が22.50mol%、MnO含有量が25.30mol%として合計100mol%となるように、Fe、Mn、ZnOの各原料粉末を秤量した。
次に、これらの原料粉末を混合して、得られた混合物のメジアン径D50が0.5μm以上、1.5μm以下となるまでアトライタで解砕した。
続いて、得られた混合粉末の全質量を100質量部としたときに0.5質量部となるポリビニルアルコールを加え、スプレードライヤーで噴霧することで、顆粒を得た。
次に、当該顆粒を、空気雰囲気中で、750℃で1時間仮焼して仮焼物を得た。
得られた仮焼物の全質量を100質量部としたときに、焼結後のSiO含有量が0.005質量部となるように、SiOを仮焼物に添加した。同様に、焼結後のCaO含有量が0.021質量部になるように、Ca(OH)を添加し、焼結後のBi含有量が0.014質量部となるようにBiを添加した。さらに、焼結後のMoO含有量が0.003質量部となるように、MoOを仮焼物に添加した。
次に、得られた仮焼物と添加物との混合物を、解砕後の粒径のメジアン径D50が0.5μm以上、1.0μm以下になるように解砕機で解砕して解砕粉末を得た。
続いて、この解砕粉末に、解砕粉末の全質量を100質量部としたときに、1質量部となるポリビニルアルコールを加え、スプレードライヤーで噴霧することで顆粒を得た。このときの顆粒のメジアン径D50は110μmであった。
[Example 1]
First, Fe 2 O 3 and Mn were added so that the Fe 2 O 3 content after sintering was 52.20 mol %, the ZnO content was 22.50 mol %, and the MnO content was 25.30 mol %, resulting in a total of 100 mol %. Raw material powders of 3 O 4 and ZnO were weighed.
Next, these raw material powders were mixed and pulverized with an attritor until the median diameter D50 of the resulting mixture was 0.5 μm or more and 1.5 μm or less.
Subsequently, 0.5 part by mass of polyvinyl alcohol was added to the obtained mixed powder, and sprayed with a spray dryer to obtain granules.
Next, the granules were calcined at 750° C. for 1 hour in an air atmosphere to obtain a calcined material.
SiO 2 was added to the calcined material so that the SiO 2 content after sintering was 0.005 parts by mass when the total mass of the obtained calcined material was 100 parts by mass. Similarly, Ca(OH) 2 was added so that the CaO content after sintering was 0.021 parts by mass, and the Bi2O3 content after sintering was 0.014 parts by mass . Bi2O3 was added. Furthermore, MoO3 was added to the calcined material so that the MoO3 content after sintering was 0.003 parts by mass.
Next, the mixture of the obtained calcined material and additives is pulverized with a pulverizer so that the median diameter D50 of the particle size after pulverization is 0.5 μm or more and 1.0 μm or less to obtain a pulverized powder. got
Subsequently, to this crushed powder, 1 part by weight of polyvinyl alcohol was added to 100 parts by weight of the total weight of the crushed powder, and the mixture was sprayed with a spray dryer to obtain granules. The median diameter D50 of the granules at this time was 110 µm.

次に、焼結後のフェライトコアの外径が19mm、内径が13mm、高さが11mmのトロイダル型となるよう成形し、セッタ上に積載した。
このとき用いたセッタ成分の組成は、Y含有量が5.0質量%、CaO含有量が0.28質量%、MgO含有量が0.0質量%、CeO含有量が0.0質量%、SiO含有量が7.0質量%、残部がZrOであり、セッタ気孔率は25.0体積%であった。なお、セッタ成分の組成は、ICP分析により計測を行い、セッタ気孔率は、JIS R 2205-74に準拠して測定した。
Next, the sintered ferrite core was formed into a toroidal shape having an outer diameter of 19 mm, an inner diameter of 13 mm, and a height of 11 mm, and was mounted on a setter.
The composition of the setter component used at this time was 5.0 mass % Y 2 O 3 content, 0.28 mass % CaO content, 0.0 mass % MgO content, and 0.0 mass % CeO 2 content. 0% by mass, SiO2 content was 7.0% by mass, the balance was ZrO2 , and the setter porosity was 25.0% by volume. The composition of the setter component was measured by ICP analysis, and the setter porosity was measured according to JIS R 2205-74.

用いた焼結条件は、昇温温度域(昇温部)600℃以上1310℃以下における酸素濃度を5.0体積%以下とした。また、昇温されたフェライト原料を(保持部)温度1310℃で保持し、その際、酸素濃度を2.5体積%に設定した。さらに、その後、冷却温度1000℃になるまで、酸素濃度を温度に併せて連続的に減少させ、冷却温度域(冷却部)1000℃以下の酸素濃度を300ppm以下となるようにした。すなわち、600℃以上の昇温工程においては酸素濃度を5.0体積%以下、温度保持工程においては酸素濃度を2.5体積%、冷却工程においては300ppm以下となるように設定した。 The sintering conditions used were such that the oxygen concentration in the temperature rising temperature range (temperature rising portion) of 600° C. or higher and 1310° C. or lower was 5.0% by volume or less. Further, the ferrite raw material whose temperature was raised (holding portion) was held at a temperature of 1310° C., and the oxygen concentration was set to 2.5% by volume. Further, after that, the oxygen concentration was continuously decreased in accordance with the cooling temperature until the cooling temperature reached 1000° C., and the oxygen concentration in the cooling temperature range (cooling section) of 1000° C. or lower was set to 300 ppm or lower. That is, the oxygen concentration was set to 5.0% by volume or less in the heating process to 600° C. or higher, 2.5% by volume in the temperature holding process, and 300 ppm or less in the cooling process.

上記製造方法より得られたフェライトの23℃、10kHzにおける比初透磁率μ’は12,192であり、200kHzにおける虚部の比初透磁率μ”は8349であり、キュリー温度は126℃であった。なお、キュリー温度は、JIS規格に準拠し測定を行った。 The ferrite obtained by the above manufacturing method had a relative initial magnetic permeability μ′ of 12,192 at 23° C. and 10 kHz, a relative initial magnetic permeability μ″ of the imaginary part at 200 kHz of 8349, and a Curie temperature of 126° C. The Curie temperature was measured according to JIS standards.

[実施例2~16および比較例1~3]
セッタ成分組成およびセッタ気孔率を表1に示すように変更した以外は、実施例1と同様にして、実施例2~16および比較例1~3のMnZn系フェライトを作製し、それらの特性を測定した。
実施例1~16および比較例1~3で作製したセッタ成分の組成、セッタ気孔率、これらのセッタを用いて作製したフェライトの10kHzにおける比初透磁率μ’および200kHzにおける虚部の比初透磁率μ”(23℃)並びにキュリー温度を表1に示す。なお、実施例1~16において得られたフェライト表面の少なくとも一部のZnO含有量は、内部のZnO含有量に対して、95.0%以上であった。
[Examples 2 to 16 and Comparative Examples 1 to 3]
MnZn-based ferrites of Examples 2 to 16 and Comparative Examples 1 to 3 were produced in the same manner as in Example 1, except that the setter component composition and setter porosity were changed as shown in Table 1, and their properties were measured. It was measured.
The composition of the setter component and the setter porosity produced in Examples 1 to 16 and Comparative Examples 1 to 3, the relative initial permeability μ′ at 10 kHz and the imaginary part at 200 kHz of the ferrite produced using these setters The magnetic permeability μ″ (23° C.) and the Curie temperature are shown in Table 1. The ZnO content of at least a part of the ferrite surface obtained in Examples 1 to 16 was 95.0% with respect to the ZnO content inside. It was 0% or more.

Figure 2023097903000001
Figure 2023097903000001

表1に示すように、特定の成分組成および気孔率を有する本セッタを用いて、MnZn系フェライト原料の焼結を行うことにより、高い比初透磁率および高いキュリー温度を有するMnZn系フェライトを得ることができた。 As shown in Table 1, this setter having a specific composition and porosity is used to sinter an MnZn-based ferrite raw material to obtain an MnZn-based ferrite having a high relative initial permeability and a high Curie temperature. I was able to

[実施例17]
焼結条件において、昇温温度域600℃以上1310℃以下における酸素濃度を0.01体積%とした以外は、実施例1と同様にして、MnZn系フェライトを作製し、その特性を測定した。
上記製造方法より得られたフェライトの23℃、10kHzにおける比初透磁率μ’は12,082であり、200kHzにおける虚部の比初透磁率μ”は8345であり、キュリー温度は126℃であった。
[Example 17]
A MnZn-based ferrite was produced in the same manner as in Example 1, except that the oxygen concentration in the sintering temperature range of 600° C. to 1310° C. was 0.01% by volume, and its characteristics were measured.
The ferrite obtained by the above manufacturing method had a relative initial magnetic permeability μ′ of 12,082 at 23° C. and 10 kHz, a relative initial magnetic permeability μ″ of the imaginary part at 200 kHz of 8345, and a Curie temperature of 126° C. rice field.

[実施例18および19、比較例4]
焼結条件における、昇温温度域600℃以上1310℃以下の酸素濃度を、表2に示すように変更した以外は、実施例17と同様にして、実施例18および19、比較例4のMnZn系フェライトを作製し、それらの特性を測定した。
実施例17~19および比較例4で作製したMnZn系フェライトの焼結工程における昇温過程600℃~1310℃における酸素濃度、フェライト内部のZnO成分に対する表面のZnOの割合(ZnO比率)、フェライトの10kHzにおける比初透磁率μ’および200kHzにおける比初透磁率の虚部成分μ”(23℃)並びにキュリー温度を表2に示す。なお、フェライトの組成は、蛍光X線分析により計測を行った。
[Examples 18 and 19, Comparative Example 4]
MnZn of Examples 18 and 19 and Comparative Example 4 in the same manner as in Example 17 except that the oxygen concentration in the sintering temperature range of 600 ° C. or higher and 1310 ° C. or lower was changed as shown in Table 2. We fabricated system ferrites and measured their properties.
Oxygen concentration at 600 ° C to 1310 ° C in the temperature rising process in the sintering process of the MnZn-based ferrites produced in Examples 17 to 19 and Comparative Example 4, the ratio of surface ZnO to the ZnO component inside the ferrite (ZnO ratio), ferrite Table 2 shows the relative initial permeability μ′ at 10 kHz, the imaginary component μ″ (23° C.) of the relative initial permeability at 200 kHz, and the Curie temperature. The composition of ferrite was measured by fluorescent X-ray analysis. .

Figure 2023097903000002
Figure 2023097903000002

表2に示すように、特定の焼結条件により焼結を行うことによって、高い比初透磁率および高いキュリー温度を有するMnZn系フェライトを得ることができた。詳しくは、得られるフェライト(焼結体)内部のZnO成分に対するフェライト表面のZnO成分の割合をより高くすることによって、高い比初透磁率および高いキュリー温度が得られている。さらに、昇温温度域600℃以上1310℃以下における酸素濃度を5.0体積%以下にすることによって、比初透磁率の低下を抑制できている。 As shown in Table 2, by performing sintering under specific sintering conditions, a MnZn-based ferrite having a high relative initial permeability and a high Curie temperature could be obtained. Specifically, by increasing the ratio of the ZnO component on the surface of the ferrite to the ZnO component inside the obtained ferrite (sintered body), a high relative initial permeability and a high Curie temperature are obtained. Furthermore, by setting the oxygen concentration to 5.0% by volume or less in the temperature rise temperature range of 600° C. or higher and 1310° C. or lower, the decrease in the relative initial permeability can be suppressed.

[実施例20]
以下の点を変更した以外は、実施例1と同様にして、実施例20のMnZn系フェライトを作製し、その特性を測定した。
すなわち、各原料粉末の秤量の際に、焼結後のFe含有量が50.90mol%、ZnO含有量が22.50mol%、MnO含有量が26.60mol%として合計100mol%となるように、Fe、Mn、ZnOの各原料粉末を秤量した。
また、セッタ成分組成を、Y含有量が5.0質量%、CaO含有量が0.05質量%、MgO含有量が0.0質量%、CeO含有量が0.0質量%、SiO含有量が7.0質量%、残部がZrOとした。
[Example 20]
A MnZn-based ferrite of Example 20 was produced in the same manner as in Example 1, except that the following points were changed, and its characteristics were measured.
That is, when weighing each raw material powder, the Fe 2 O 3 content after sintering is 50.90 mol%, the ZnO content is 22.50 mol%, and the MnO content is 26.60 mol%, so that the total is 100 mol%. Raw material powders of Fe 2 O 3 , Mn 3 O 4 and ZnO were weighed as follows.
In addition, the setter component composition was such that the Y2O3 content was 5.0% by mass, the CaO content was 0.05% by mass, the MgO content was 0.0% by mass, and the CeO2 content was 0.0% by mass. , the SiO2 content was 7.0% by mass, and the balance was ZrO2 .

上記製造方法より得られたフェライトの23℃、10kHzにおける比初透磁率μ’は16,189であり、200kHzにおけるμ”は8583であり、キュリー温度は110℃であった。 The ferrite obtained by the above manufacturing method had a relative initial magnetic permeability μ' at 23°C and 10 kHz of 16,189, a μ″ at 200 kHz of 8583, and a Curie temperature of 110°C.

[実施例21~35および比較例5~13]
フェライト成分組成を表3に示すように変更した以外は、実施例20と同様にして、実施例21~35および比較例5~13のMnZn系フェライトを作製し、それらの特性を測定した。
実施例20~35および比較例5~13のフェライトの主成分および副成分組成、作製したフェライトの10kHzにおける比初透磁率μ’(23℃)、200kHzにおける比初透磁率の虚部成分μ”(23℃)、キュリー温度を表3に示す。なお、実施例20~35において得られたフェライト表面の少なくとも一部のZnO含有量は、内部のZnO含有量に対して、95.0%以上であった。
[Examples 21 to 35 and Comparative Examples 5 to 13]
MnZn ferrites of Examples 21 to 35 and Comparative Examples 5 to 13 were produced in the same manner as in Example 20, except that the ferrite component composition was changed as shown in Table 3, and their properties were measured.
Main component and subcomponent compositions of ferrites of Examples 20 to 35 and Comparative Examples 5 to 13, relative initial permeability μ′ (23° C.) of manufactured ferrites at 10 kHz, imaginary part component μ″ of relative initial permeability at 200 kHz (23 ° C.) and the Curie temperature are shown in Table 3. The ZnO content of at least a part of the ferrite surface obtained in Examples 20 to 35 is 95.0% or more with respect to the ZnO content inside. Met.

Figure 2023097903000003
Figure 2023097903000003

表3に示すように、本発明に係る第2のMnZn系フェライトは、高い比初透磁率および高いキュリー温度を有することがわかった。 As shown in Table 3, it was found that the second MnZn-based ferrite according to the present invention has a high relative initial permeability and a high Curie temperature.

[実施例36]
以下の点を変更した以外は、実施例1と同様にして、実施例36のMnZn系フェライトを作製し、その特性を測定した。
すなわち、各原料粉末の秤量の際に、焼結後のFe含有量が50.60mol%、ZnO含有量が18.50mol%、MnO含有量が30.90mol%として合計100mol%となるように、Fe、Mn、ZnOの各原料粉末を秤量した。
また、得られた仮焼物の全質量を100質量部としたときに、焼結後のSiO含有量が0.004質量部となるように、SiOを仮焼物に添加した。同様に、焼結後のCaO含有量が0.021質量部になるように、Ca(OH)を添加し、焼結後のBi含有量が0.014質量部となるようにBiを添加した。さらに、焼結後のMoO含有量が0.003質量部となるように、MoOを仮焼物に添加し、焼結後のCoが0.29質量部となるように、Coを添加し、焼結後のTiO含有量が0.75質量部となるように、TiOを仮焼物に添加した。
さらに、用いたセッタ成分の組成を、Y含有量が5.0質量%、CaO含有量が0.05質量%、MgO含有量が0.0質量%、CeO含有量が0.0質量%、SiO含有量が7.0質量%、残部がZrOとした。
[Example 36]
A MnZn-based ferrite of Example 36 was produced in the same manner as in Example 1, except that the following points were changed, and its characteristics were measured.
That is, when weighing each raw material powder, the Fe 2 O 3 content after sintering is 50.60 mol%, the ZnO content is 18.50 mol%, and the MnO content is 30.90 mol%, so that the total is 100 mol%. Raw material powders of Fe 2 O 3 , Mn 3 O 4 and ZnO were weighed as follows.
Further, SiO 2 was added to the calcined material so that the SiO 2 content after sintering was 0.004 parts by mass when the total mass of the obtained calcined material was 100 parts by mass. Similarly, Ca(OH) 2 was added so that the CaO content after sintering was 0.021 parts by mass, and the Bi2O3 content after sintering was 0.014 parts by mass . Bi2O3 was added. Furthermore, MoO 3 was added to the calcined material so that the MoO 3 content after sintering was 0.003 parts by mass, and Co was added so that the Co 2 O 3 after sintering was 0.29 parts by mass. 3 O 4 was added, and TiO 2 was added to the calcined product so that the TiO 2 content after sintering was 0.75 parts by mass.
Furthermore, the composition of the setter component used was such that Y 2 O 3 content was 5.0% by mass, CaO content was 0.05% by mass, MgO content was 0.0% by mass, and CeO 2 content was 0.05% by mass. 0 wt%, SiO2 content was 7.0 wt%, balance was ZrO2 .

上記製造方法より得られたフェライトの23℃、10kHzにおける比初透磁率μ’は8,642、500kHzにおける虚部の比初透磁率μ”は5,635、キュリー温度は150℃であった。
また、このフェライトにおける150℃1000hrの高温放置試験前後の120℃におけるμ’の変化率は-5.1%であった。
The ferrite obtained by the above manufacturing method had a relative initial magnetic permeability μ' of 8,642 at 23°C and 10 kHz, a relative initial magnetic permeability μ" of the imaginary part at 500 kHz of 5,635, and a Curie temperature of 150°C.
In addition, the rate of change in μ′ at 120° C. before and after the high temperature storage test at 150° C. for 1000 hours in this ferrite was −5.1%.

[実施例37~53および比較例14~28]
フェライトの主成分および副成分の組成を表4に示すように変更した以外は、実施例36と同様にして、実施例37~53および比較例14~28のMnZn系フェライトを作製し、それらの特性を測定した。
実施例36~53、および比較例14~28のフェライトの主成分、副成分、10kHzにおける比初透磁率μ’(23℃)、500kHzにおける比初透磁率の虚部成分μ”(23℃)、150℃の恒温槽(空気雰囲気)に1000時間放置した後の比初透磁率μ’(120℃)が放置する前の比初透磁率μ’(120℃)に対して変化した割合、キュリー温度を表4に示す。なお、実施例36~53において得られたフェライト表面の少なくとも一部のZnO含有量は、内部のZnO含有量に対して、95.0%以上であった。
[Examples 37-53 and Comparative Examples 14-28]
MnZn ferrites of Examples 37 to 53 and Comparative Examples 14 to 28 were produced in the same manner as in Example 36, except that the compositions of the main components and subcomponents of the ferrite were changed as shown in Table 4. properties were measured.
Main components, secondary components, relative initial permeability μ′ (23° C.) at 10 kHz, imaginary part component μ″ (23° C.) of relative initial permeability at 500 kHz of ferrites of Examples 36 to 53 and Comparative Examples 14 to 28 , the rate at which the relative initial permeability μ' (120°C) after being left in a constant temperature bath (air atmosphere) at 150°C for 1000 hours changed relative to the relative initial permeability μ' (120°C) before being left, Curie The temperatures are shown in Table 4. The ZnO content in at least part of the ferrite surface obtained in Examples 36 to 53 was 95.0% or more of the ZnO content in the interior.

Figure 2023097903000004
Figure 2023097903000004

表4に示すように、本発明に係る第3のMnZn系フェライトは、高い比初透磁率および高いキュリー温度を有することがわかった。 As shown in Table 4, it was found that the third MnZn-based ferrite according to the present invention has a high relative initial permeability and a high Curie temperature.

[実施例54]
以下の点を変更した以外は、実施例1と同様にして、実施例54のMnZn系フェライトを作製し、その特性を測定した。
すなわち、各原料粉末の秤量の際に、焼結後のFe含有量が50.50mol%、ZnO含有量が16.00mol%、MnO含有量が33.50mol%として合計100mol%となるように、Fe、Mn、ZnOの各原料粉末を秤量した。
また、仮焼物の全質量を100質量部としたときに、焼結後のSiO含有量が0.004質量部となるように、SiOを仮焼物に添加した。同様に、焼結後のCaO含有量が0.021質量部になるように、Ca(OH)を添加し、焼結後のBi含有量が0.014質量部となるようにBiを添加した。さらに、焼結後のMoO含有量が0.003質量部となるように、MoOを添加し、焼結後のCoが0.290質量部となるように、Coを添加し、焼結後のTiO含有量が1.000質量部となるように、TiOを仮焼物に添加した。
さらに、用いたセッタ成分の組成を、Y含有量が5.0質量%、CaO含有量が0.05質量%、MgO含有量が0.0質量%、CeO含有量が0.0質量%、SiO含有量が7.0質量%、残部がZrOとした。
[Example 54]
A MnZn-based ferrite of Example 54 was produced in the same manner as in Example 1, except that the following points were changed, and its characteristics were measured.
That is, when weighing each raw material powder, the Fe 2 O 3 content after sintering is 50.50 mol%, the ZnO content is 16.00 mol%, and the MnO content is 33.50 mol%, so that the total is 100 mol%. Raw material powders of Fe 2 O 3 , Mn 3 O 4 and ZnO were weighed as follows.
Further, SiO 2 was added to the calcined material so that the SiO 2 content after sintering was 0.004 parts by mass when the total mass of the calcined material was 100 parts by mass. Similarly, Ca(OH) 2 was added so that the CaO content after sintering was 0.021 parts by mass, and the Bi2O3 content after sintering was 0.014 parts by mass . Bi2O3 was added. Furthermore, MoO3 is added so that the MoO3 content after sintering is 0.003 parts by mass, and Co3O4 is added so that the Co2O3 after sintering is 0.290 parts by mass. was added, and TiO 2 was added to the calcined product so that the TiO 2 content after sintering was 1.000 parts by mass.
Furthermore, the composition of the setter component used was such that Y 2 O 3 content was 5.0% by mass, CaO content was 0.05% by mass, MgO content was 0.0% by mass, and CeO 2 content was 0.05% by mass. 0 wt%, SiO2 content was 7.0 wt%, balance was ZrO2 .

上記製造方法より得られたフェライトの23℃、10kHzにおける比初透磁率μ’は7,151、900kHzにおける虚部の比初透磁率μ”は5,327、キュリー温度は170℃であった。
また、このフェライトにおける150℃1000hrの高温放置試験前後の120℃のμ’の変化率は-4.8%であった。
The ferrite obtained by the above manufacturing method had a relative initial magnetic permeability μ' at 23°C and 10 kHz of 7,151, a relative initial magnetic permeability μ" of the imaginary part at 900 kHz of 5,327, and a Curie temperature of 170°C.
The change rate of μ' at 120° C. before and after the high temperature storage test at 150° C. for 1000 hours in this ferrite was −4.8%.

[実施例55~71および比較例29~43]
フェライトの主成分および副成分の組成を表5に示すように変更した以外は、実施例54と同様にして、実施例55~71および比較例29~43のMnZn系フェライトを作製し、それらの特性を測定した。
実施例54~71および比較例29~43のフェライトの主成分、副成分、10kHzにおける比初透磁率μ’(23℃)、900kHzにおける比初透磁率の虚部成分μ”(23℃)、150℃の恒温槽(空気雰囲気)に1000時間放置した後の比初透磁率μ’(120℃)が放置する前の比初透磁率μ’(120℃)に対して変化した割合、キュリー温度を表5に示す。なお、実施例54~71において得られたフェライト表面の少なくとも一部のZnO含有量は、内部のZnO含有量に対して、95.0%以上であった。
[Examples 55-71 and Comparative Examples 29-43]
MnZn-based ferrites of Examples 55 to 71 and Comparative Examples 29 to 43 were produced in the same manner as in Example 54, except that the compositions of the main and subcomponents of the ferrite were changed as shown in Table 5. properties were measured.
The main components and subcomponents of the ferrites of Examples 54 to 71 and Comparative Examples 29 to 43, the relative initial permeability μ′ (23° C.) at 10 kHz, the imaginary part component μ″ (23° C.) of the relative initial permeability at 900 kHz, Curie temperature are shown in Table 5. The ZnO content of at least a portion of the ferrite surface obtained in Examples 54 to 71 was 95.0% or more of the ZnO content inside.

Figure 2023097903000005
Figure 2023097903000005

表5に示すように、本発明に係る第4のMnZn系フェライトは、高い比初透磁率および高いキュリー温度を有することがわかった。 As shown in Table 5, it was found that the fourth MnZn-based ferrite according to the present invention has a high relative initial permeability and a high Curie temperature.

[実施例72]
以下の点を変更した以外は、実施例1と同様にして、実施例72のMnZn系フェライトを作製し、その特性を測定した。
すなわち、各原料粉末の秤量の際に、焼結後のFe含有量が51.30mol%、ZnO含有量が11.50mol%、MnO含有量が37.20mol%として合計100mol%となるように、Fe、Mn、ZnOの各原料粉末を秤量した。
また、仮焼物の全質量を100質量部としたときに、焼結後のSiO含有量が0.007質量部となるように、SiOを仮焼物に添加した。同様に、焼結後のCaO含有量が0.040質量部になるように、Ca(OH)を添加し、焼結後のZrO含有量が0.050質量部となるようにZrOを添加した。さらに、焼結後のTiO含有量が0.200質量部となるように、TiOを添加し、焼結後のCoが0.300質量部となるように、Coを仮焼物に添加した。
さらに、用いたセッタ成分の組成は、Y含有量が5.0質量%、CaO含有量が0.05質量%、MgO含有量が0.0質量%、CeO含有量が0.0質量%、SiO含有量が7.0質量%、残部がZrOであった。
[Example 72]
A MnZn-based ferrite of Example 72 was produced in the same manner as in Example 1, except that the following points were changed, and its characteristics were measured.
That is, when weighing each raw material powder, the Fe 2 O 3 content after sintering is 51.30 mol%, the ZnO content is 11.50 mol%, and the MnO content is 37.20 mol%, so that the total is 100 mol%. Raw material powders of Fe 2 O 3 , Mn 3 O 4 and ZnO were weighed as follows.
Further, SiO 2 was added to the calcined material so that the SiO 2 content after sintering was 0.007 parts by mass when the total mass of the calcined material was 100 parts by mass. Similarly, Ca(OH) 2 was added so that the CaO content after sintering was 0.040 parts by mass, and ZrO2 was added so that the ZrO2 content after sintering was 0.050 parts by mass. was added. Furthermore, TiO2 is added so that the TiO2 content after sintering is 0.200 parts by mass, and Co3O4 is added so that the Co2O3 after sintering is 0.300 parts by mass . was added to the calcined product.
Furthermore, the setter component used had a composition of 5.0 mass % Y 2 O 3 content, 0.05 mass % CaO content, 0.0 mass % MgO content, and 0.0 mass % CeO 2 content. 0% by weight, SiO2 content was 7.0% by weight, the balance was ZrO2 .

上記製造方法より得られたフェライトの23℃、10kHzにおける比初透磁率μ’は4,856であり、1.5MHzにおける虚部の比初透磁率μ”は3,612であり、キュリー温度は201℃であり、飽和磁束密度は501mTであった。 The ferrite obtained by the above manufacturing method has a relative initial magnetic permeability μ′ of 4,856 at 23° C. and 10 kHz, a relative initial magnetic permeability μ″ of the imaginary part at 1.5 MHz of 3,612, and a Curie temperature of The temperature was 201° C. and the saturation magnetic flux density was 501 mT.

[実施例73~89および比較例44~56]
フェライトの主成分および副成分の組成を表6に示すように変更した以外は、実施例72と同様にして、実施例73~89および比較例44~56のMnZn系フェライトを作製し、それらの特性を測定した。
実施例72~89および比較例44~56のフェライトの主成分、副成分、10kHzにおける比初透磁率μ’(23℃)、1.5MHzにおける比初透磁率の虚部成分μ”(23℃)、10kHzにおける比初透磁率(150℃)、キュリー温度、飽和磁束密度(23℃)を表6に示す。ここで、当該飽和磁束密度は、各例より得られたMnZn系フェライトをリングコアとし、当該リングコアに1次巻き線を50回、2次巻き線を20回巻き付け、直流磁界1196A/mを印可したときに測定される飽和磁束密度である。なお、実施例72~89において得られたフェライト表面の少なくとも一部のZnO含有量は、内部のZnO含有量に対して、95.0%以上であった。
[Examples 73-89 and Comparative Examples 44-56]
MnZn-based ferrites of Examples 73 to 89 and Comparative Examples 44 to 56 were produced in the same manner as in Example 72, except that the compositions of the main and subcomponents of the ferrite were changed as shown in Table 6. properties were measured.
Main components, subcomponents, relative initial permeability μ′ (23° C.) at 10 kHz, imaginary part component μ″ (23° C.) of relative initial permeability at 1.5 MHz of ferrites of Examples 72 to 89 and Comparative Examples 44 to 56 ), the relative initial permeability (150 ° C.), the Curie temperature, and the saturation magnetic flux density (23 ° C.) at 10 kHz are shown in Table 6. Here, the saturation magnetic flux density is obtained using the MnZn-based ferrite obtained in each example as a ring core. , The saturation magnetic flux density measured when the primary winding is wound 50 times and the secondary winding is wound 20 times around the ring core, and a DC magnetic field of 1196 A / m is applied.In addition, obtained in Examples 72 to 89 The ZnO content of at least a portion of the ferrite surface was 95.0% or more with respect to the ZnO content inside.

Figure 2023097903000006
Figure 2023097903000006

表6に示すように、本発明に係る第5のMnZn系フェライトは、高い比初透磁率および高いキュリー温度を有することがわかった。 As shown in Table 6, it was found that the fifth MnZn-based ferrite according to the present invention has a high relative initial permeability and a high Curie temperature.

このように、本発明に係るジルコニア質セッタを用いることによって、高い比初透磁率および高いキュリー温度を有するMnZn系フェライトを提供することができた。 Thus, by using the zirconia setter according to the present invention, it was possible to provide an MnZn ferrite having a high relative initial permeability and a high Curie temperature.

なお、本発明は上記実施形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することができる。 It should be noted that the present invention is not limited to the above embodiments, and can be modified as appropriate without departing from the scope of the invention.

Claims (21)

CaOの含有量は0.28質量%以下であり、気孔率は45.0体積%以下であることを特徴とする、ジルコニア質セッタ。 A zirconia setter characterized by having a CaO content of 0.28% by mass or less and a porosity of 45.0% by volume or less. CaOを含有しない、請求項1に記載のジルコニア質セッタ。 2. The zirconia setter of claim 1, which does not contain CaO. 気孔率が、25.0体積%以下である、請求項1または2に記載のジルコニア質セッタ。 3. The zirconia setter according to claim 1, having a porosity of 25.0% by volume or less. の含有量が1.0質量%以上10.0質量%以下、MgOの含有量が1.0質量%以下、CeOの含有量が1.0質量%以下、SiOの含有量が10.0質量%以下である、請求項1~3のいずれか一項に記載のジルコニア質セッタ。 The content of Y 2 O 3 is 1.0% by mass or more and 10.0% by mass or less, the content of MgO is 1.0% by mass or less, the content of CeO 2 is 1.0% by mass or less, and the content of SiO 2 A zirconia setter according to any one of claims 1 to 3, wherein the amount is 10.0% by weight or less. FeとZnOとMnOとを主成分とするMnZn系フェライトを、請求項1~4のいずれか一項に記載のジルコニア質セッタを用いて製造することを特徴とするMnZn系フェライトの製造方法。 Production of MnZn-based ferrite characterized by producing MnZn-based ferrite containing Fe 2 O 3 , ZnO and MnO as main components by using the zirconia setter according to any one of claims 1 to 4. Method. 前記MnZn系フェライト原料を焼結する際の、昇温温度域600℃以上1310℃以下における酸素濃度を5.0体積%以下にする、請求項5に記載のMnZn系フェライトの製造方法。 6. The method for manufacturing an MnZn-based ferrite according to claim 5, wherein the oxygen concentration in the temperature rising temperature range of 600° C. or higher and 1310° C. or lower is set to 5.0% by volume or less when sintering the MnZn-based ferrite raw material. 昇温された前記MnZn系フェライト原料を、温度1250℃以上、1360℃以下、酸素濃度1.5体積%以上、20体積%以下に保持する、請求項6に記載のMnZn系フェライトの製造方法。 7. The method for producing an MnZn-based ferrite according to claim 6, wherein the temperature of the MnZn-based ferrite raw material whose temperature has been raised is maintained at a temperature of 1250° C. or higher and 1360° C. or lower and an oxygen concentration of 1.5% by volume or higher and 20% by volume or lower. 昇温後保持された前記MnZn系フェライト原料を冷却する際の、冷却温度1000℃以下の酸素濃度を300ppm以下にする、請求項7に記載のMnZn系フェライトの製造方法。 8. The method for producing MnZn ferrite according to claim 7, wherein the oxygen concentration at a cooling temperature of 1000[deg.] C. or less is 300 ppm or less when cooling the MnZn ferrite raw material held after raising the temperature. 請求項5~8のいずれか一項に記載のMnZn系フェライトの製造方法を用いて製造したMnZn系フェライトであって、
前記MnZn系フェライト原料を焼結することにより得られる焼結体における、セッタ接地面のZnO含有量が、前記焼結体内部のZnO含有量に対して、95.0%以上であることを特徴とするMnZn系フェライト。
An MnZn-based ferrite manufactured using the method for manufacturing an MnZn-based ferrite according to any one of claims 5 to 8,
In the sintered body obtained by sintering the MnZn-based ferrite raw material, the ZnO content of the setter contact surface is 95.0% or more with respect to the ZnO content inside the sintered body. MnZn-based ferrite.
主成分100mol%中、Feを50.9~53.2mol%、ZnOを21.0~24.4mol%、残部のMnOとなる量で含有し、前記主成分の全量を100質量部としたときに、副成分としてSiOを0.000~0.009質量部、CaOを0.010~0.034質量部、Biを0.000~0.060質量部、MoOを0.000~0.039質量部含有し、
表面の少なくとも一部のZnO含有量が、内部のZnO含有量に対して、95.0%以上であることを特徴とするMnZn系フェライト。
In 100 mol% of the main component, 50.9 to 53.2 mol% of Fe 2 O 3 , 21.0 to 24.4 mol% of ZnO, and the balance is MnO, and the total amount of the main component is 100 parts by mass. 0.000 to 0.009 parts by mass of SiO 2 , 0.010 to 0.034 parts by mass of CaO, 0.000 to 0.060 parts by mass of Bi 2 O 3 , and MoO 3 as subcomponents. Contains 0.000 to 0.039 parts by mass,
A MnZn-based ferrite, wherein the ZnO content of at least part of the surface is 95.0% or more of the ZnO content of the interior.
23℃10kHzにおける比初透磁率μ’が12000以上である、請求項10に記載のMnZn系フェライト。 11. The MnZn-based ferrite according to claim 10, having a relative initial permeability μ' of 12000 or more at 23° C. and 10 kHz. キュリー温度が110℃以上であり、23℃200kHzにおける虚部の比初透磁率μ”が7500以上である、請求項10または11に記載のMnZn系フェライト。 12. The MnZn ferrite according to claim 10, which has a Curie temperature of 110[deg.] C. or more and a relative initial magnetic permeability [mu]'' of the imaginary part at 23[deg.] C. and 200 kHz of 7500 or more. 主成分100mol%中、Feを50.6~53.7mol%、ZnOを18.0~20.0mol%、残部のMnOとなる量で含有し、前記主成分の全量を100質量部としたときに、副成分としてSiOを0.000~0.010質量部、CaOを0.015~0.030質量部、Biを0.001~0.030質量部、MoOを0.001~0.020質量部、Coを0.10~0.55質量部、TiOを0.10~2.50質量部含有し、
表面の少なくとも一部のZnO含有量が、内部のZnO含有量に対して、95.0%以上であることを特徴とするMnZn系フェライト。
In 100 mol% of the main component, 50.6 to 53.7 mol% of Fe 2 O 3 , 18.0 to 20.0 mol% of ZnO, and the balance is MnO, and the total amount of the main component is 100 parts by mass. 0.000 to 0.010 parts by mass of SiO 2 , 0.015 to 0.030 parts by mass of CaO, 0.001 to 0.030 parts by mass of Bi 2 O 3 , and MoO 3 as subcomponents. 0.001 to 0.020 parts by mass, 0.10 to 0.55 parts by mass of Co 2 O 3 and 0.10 to 2.50 parts by mass of TiO 2
A MnZn-based ferrite, wherein the ZnO content of at least part of the surface is 95.0% or more of the ZnO content of the interior.
23℃10kHzにおける比初透磁率μ’が8500以上である、請求項13に記載のMnZn系フェライト。 14. The MnZn-based ferrite according to claim 13, having a relative initial permeability μ' at 23°C and 10 kHz of 8500 or more. キュリー温度が150℃以上であり、23℃500kHzにおける虚部の比初透磁率μ”が5500以上である、請求項13または14に記載のMnZn系フェライト。 15. The MnZn-based ferrite according to claim 13 or 14, having a Curie temperature of 150° C. or more and a relative initial magnetic permeability μ″ of the imaginary part at 23° C. and 500 kHz of 5500 or more. 主成分100mol%中、Feを50.5~54.0mol%、ZnOを11.0~18.0mol%、残部のMnOとなる量で含有し、前記主成分の全量を100質量部としたときに、副成分としてSiOを0.000~0.010質量部、CaOを0.015~0.030質量部、Biを0.001~0.030質量部、MoOを0.001~0.020質量部、Coを0.10~0.55質量部、TiOを0.10~2.50質量部含有し、
表面の少なくとも一部のZnO含有量が、内部のZnO含有量に対して、95%以上であることを特徴とするMnZn系フェライト。
In 100 mol% of the main component, 50.5 to 54.0 mol% of Fe 2 O 3 , 11.0 to 18.0 mol% of ZnO, and the balance is MnO, and the total amount of the main component is 100 parts by mass. 0.000 to 0.010 parts by mass of SiO 2 , 0.015 to 0.030 parts by mass of CaO, 0.001 to 0.030 parts by mass of Bi 2 O 3 , and MoO 3 as subcomponents. 0.001 to 0.020 parts by mass, 0.10 to 0.55 parts by mass of Co 2 O 3 and 0.10 to 2.50 parts by mass of TiO 2
A MnZn-based ferrite, wherein the ZnO content of at least part of the surface is 95% or more of the ZnO content of the interior.
23℃10kHzにおける比初透磁率μ’が7000以上である、請求項16に記載のMnZn系フェライト。 17. The MnZn-based ferrite according to claim 16, which has a relative initial permeability μ' of 7000 or more at 23° C. and 10 kHz. キュリー温度が170℃以上であり、23℃900kHzにおける虚部の比初透磁率μ”が5000以上である、請求項16または17に記載のMnZn系フェライト。 18. The MnZn ferrite according to claim 16 or 17, which has a Curie temperature of 170° C. or more and a relative initial magnetic permeability μ″ of the imaginary part at 23° C. and 900 kHz of 5000 or more. 主成分100mol%中、Feを51.3~54.5mol%、ZnOを9.0~14.3mol%、残部のMnOとなる量で含有し、前記主成分の全量を100質量部としたときに、副成分としてSiOを0.000~0.015質量部、CaOを0.020~0.060質量部、ZrOを0.030~0.070質量部、TiOを0.010~2.500質量部、Coを0.15~0.45質量部含有し、
表面の少なくとも一部のZnO含有量が、内部のZnO含有量に対して、95.0%以上であることを特徴とするMnZn系フェライト。
In 100 mol% of the main component, 51.3 to 54.5 mol% of Fe 2 O 3 , 9.0 to 14.3 mol% of ZnO, and the balance is MnO, and the total amount of the main component is 100 parts by mass. 0.000 to 0.015 parts by mass of SiO2 , 0.020 to 0.060 parts by mass of CaO, 0.030 to 0.070 parts by mass of ZrO2 , and 0 parts by mass of TiO2 as secondary components. .010 to 2.500 parts by mass, containing 0.15 to 0.45 parts by mass of Co 2 O 3 ,
A MnZn-based ferrite, wherein the ZnO content of at least part of the surface is 95.0% or more of the ZnO content of the interior.
23℃10kHzにおける比初透磁率μ’が4500以上である、請求項19に記載のMnZn系フェライト。 20. The MnZn-based ferrite according to claim 19, having a relative initial permeability μ' at 23°C and 10 kHz of 4500 or more. キュリー温度が200℃以上であり、23℃1.5MHzにおける虚部の比初透磁率μ”が3000以上である、請求項19または20に記載のMnZn系フェライト。 21. The MnZn ferrite according to claim 19 or 20, which has a Curie temperature of 200[deg.] C. or more and a relative initial magnetic permeability [mu]'' of the imaginary part at 23[deg.] C. and 1.5 MHz of 3000 or more.
JP2021214278A 2021-12-28 2021-12-28 Method for producing zirconia setter and MnZn ferrite Active JP7117447B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021214278A JP7117447B1 (en) 2021-12-28 2021-12-28 Method for producing zirconia setter and MnZn ferrite
CN202211699203.5A CN116354715A (en) 2021-12-28 2022-12-28 Zirconia-based setter plate, mnZn ferrite, and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021214278A JP7117447B1 (en) 2021-12-28 2021-12-28 Method for producing zirconia setter and MnZn ferrite

Publications (2)

Publication Number Publication Date
JP7117447B1 JP7117447B1 (en) 2022-08-12
JP2023097903A true JP2023097903A (en) 2023-07-10

Family

ID=82799058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021214278A Active JP7117447B1 (en) 2021-12-28 2021-12-28 Method for producing zirconia setter and MnZn ferrite

Country Status (2)

Country Link
JP (1) JP7117447B1 (en)
CN (1) CN116354715A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183462A (en) * 1988-01-14 1989-07-21 Murata Mfg Co Ltd Calcination of mn-zn ferrite
JPH04359413A (en) * 1991-06-05 1992-12-11 Kawasaki Steel Corp Method of manufacturing soft-ferrite
JPH08183656A (en) * 1994-12-28 1996-07-16 Kawasaki Steel Corp Production of manganese-zinc based ferrite
JP2002316870A (en) * 2001-04-19 2002-10-31 Nitsukatoo:Kk Member for heat treatment consisting of zirconia sintered compact
JP2006165479A (en) * 2004-12-10 2006-06-22 Tdk Corp Ferrite core and line filter
JP2008081339A (en) * 2006-09-26 2008-04-10 Sony Corp Low loss ferrite material, and its production method
JP2017165598A (en) * 2016-03-14 2017-09-21 東京窯業株式会社 Burning tool
JP2020142950A (en) * 2019-03-06 2020-09-10 株式会社ニッカトー Heat treatment member composed of zirconia sintered body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183462A (en) * 1988-01-14 1989-07-21 Murata Mfg Co Ltd Calcination of mn-zn ferrite
JPH04359413A (en) * 1991-06-05 1992-12-11 Kawasaki Steel Corp Method of manufacturing soft-ferrite
JPH08183656A (en) * 1994-12-28 1996-07-16 Kawasaki Steel Corp Production of manganese-zinc based ferrite
JP2002316870A (en) * 2001-04-19 2002-10-31 Nitsukatoo:Kk Member for heat treatment consisting of zirconia sintered compact
JP2006165479A (en) * 2004-12-10 2006-06-22 Tdk Corp Ferrite core and line filter
JP2008081339A (en) * 2006-09-26 2008-04-10 Sony Corp Low loss ferrite material, and its production method
JP2017165598A (en) * 2016-03-14 2017-09-21 東京窯業株式会社 Burning tool
JP2020142950A (en) * 2019-03-06 2020-09-10 株式会社ニッカトー Heat treatment member composed of zirconia sintered body

Also Published As

Publication number Publication date
CN116354715A (en) 2023-06-30
JP7117447B1 (en) 2022-08-12

Similar Documents

Publication Publication Date Title
JP5332254B2 (en) Ferrite sintered body
JP2005213100A (en) METHOD OF MANUFACTURING MnZn FERRITE AND MnZn FERRITE
JP3584438B2 (en) Mn-Zn ferrite and method for producing the same
CN106915956A (en) MnZnLi based ferrites, magnetic core and transformer
JP3584439B2 (en) Mn-Zn ferrite and method for producing the same
WO2004028997A1 (en) Ferrite material
US20070205390A1 (en) Mn-Zn BASED FERRITE MATERIAL
JP2007112695A (en) METHOD FOR PRODUCING Mn FERRITE
JP5089963B2 (en) Method for producing MnZnNi ferrite
JP4826093B2 (en) Ferrite, electronic component and manufacturing method thereof
JP3588693B2 (en) Mn-Zn ferrite and method for producing the same
JP2010206064A (en) Radio wave absorber and method of manufacturing the same
JP5019023B2 (en) Mn-Zn ferrite material
JP3418827B2 (en) Mn-Zn ferrite and method for producing the same
JP3288113B2 (en) Mn-Zn ferrite magnetic material
JP7117447B1 (en) Method for producing zirconia setter and MnZn ferrite
JP2004247370A (en) MnZn FERRITE
JP2011246343A (en) Ferrite sintered compact and noise filter equipped with the same
WO2022070634A1 (en) MnZn-BASED FERRITE AND METHOD OF MANUFACTURING SAME
JP5882811B2 (en) Ferrite sintered body and pulse transformer core comprising the same
JP2004247371A (en) MnZn FERRITE
JP3446082B2 (en) Mn-Zn ferrite and method for producing the same
JP5845137B2 (en) Method for producing Mn-Zn ferrite
JPH11307336A (en) Manufacture of soft magnetic ferrite
JP2008169072A (en) Mn-Zn FERRITE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220114

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220801

R150 Certificate of patent or registration of utility model

Ref document number: 7117447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150