JPH06151136A - Powder of metal-based permanent magnet material - Google Patents
Powder of metal-based permanent magnet materialInfo
- Publication number
- JPH06151136A JPH06151136A JP4328486A JP32848692A JPH06151136A JP H06151136 A JPH06151136 A JP H06151136A JP 4328486 A JP4328486 A JP 4328486A JP 32848692 A JP32848692 A JP 32848692A JP H06151136 A JPH06151136 A JP H06151136A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- permanent magnet
- powder
- based permanent
- magnet material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Hard Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁気特性に優れ、且つ
コストパフォーマンスにも優れた金属系永久磁石粉に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-based permanent magnet powder having excellent magnetic properties and cost performance.
【0002】[0002]
【従来の技術】近年、電子機器、電子部品の発展に伴っ
て、これらに使用される永久磁石材料も多様なものが用
いられている。これらの永久磁石材料の態様としては、
大別して粉末冶金法もしくは鋳造法に代表されるバルク
磁石と、永久磁石粉を結合剤によって成形せしめたボン
ド磁石がある。かかるボンド磁石は形状の自由度、寸法
精度の良さ、軽量、等の長所を生かして増加の一途にあ
る。2. Description of the Related Art In recent years, with the development of electronic devices and electronic parts, various permanent magnet materials have been used. Examples of these permanent magnet materials include:
Broadly classified, there are a bulk magnet represented by a powder metallurgy method or a casting method, and a bonded magnet obtained by molding a permanent magnet powder with a binder. The number of such bonded magnets is increasing owing to their advantages such as freedom of shape, good dimensional accuracy, and light weight.
【0003】かかるボンド磁石に使用される永久磁石材
料粉としては、ハードフェライト系、アルニコ系及び希
土類−遷移金属系が使用されており、例えば希土類−遷
移金属系としては、Sm−Co系の1−5型、2−17
型、Nd−Fe−B系、さらには最近発見され、現在研
究が進んでいるSm−Fe−N系などが実用化、または
開発されつつある。これらの内で高磁気特性を要求され
る場合は、希土類−遷移金属系磁石粉を用いている。As the permanent magnet material powder used for such a bonded magnet, hard ferrite type, alnico type and rare earth-transition metal type are used. For example, rare earth-transition metal type is Sm-Co type. -5 type, 2-17
Type, Nd-Fe-B system, and more recently, Sm-Fe-N system, which has been recently discovered and is currently being researched, are being put to practical use or being developed. When high magnetic properties are required among these, rare earth-transition metal magnet powder is used.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、従来の
永久磁石粉は、ハードフェライトは安価であるが磁気特
性が低く、アルニコ系は比較的安価であるが、磁気特性
のうち保磁力が低く、また希土類−遷移金属系は磁気特
性は高いもののかなり高価であるという問題がある。ま
た、従来のボンド磁石用磁粉は、いずれも冶金的手法に
よって製造されており、理論的に保有するiHcよりか
なり低いレベルのiHcしか実現されていない。この原
因は、冶金的手法の場合、合金もしくは酸化物を所望の
結晶系にするために、かなり高温での熱処理が必要であ
るため、内部に構造的な欠陥や、歪が残るためであると
考えられる。且つ、粉状とするためには、作製した合金
塊またはリボンを1mm以下の磁粉に粉砕する必要があ
るが、この場合はほとんどが機械的粉砕法によって磁粉
にしているのが現状である。このような機械的粉砕によ
っても磁粉内部に構造的な欠陥や歪が残るために、磁粉
のiHcは理論的な値より相当下回ったものしか実現さ
れていない。However, in the conventional permanent magnet powder, hard ferrite is inexpensive but has low magnetic properties, and alnico is relatively inexpensive, but coercive force is low among magnetic properties. The rare earth-transition metal system has a problem that it is quite expensive although it has high magnetic properties. In addition, all the conventional magnetic powders for bonded magnets are manufactured by a metallurgical method, and only iHc at a level considerably lower than theoretically held iHc is realized. This is because the metallurgical method requires heat treatment at a considerably high temperature in order to make the alloy or oxide into a desired crystal system, so that structural defects and strain remain inside. Conceivable. Moreover, in order to make powder, it is necessary to crush the produced alloy lump or ribbon into magnetic powder of 1 mm or less, but in this case, most of them are magnetic powder by the mechanical pulverization method at present. Due to structural defects and strains remaining inside the magnetic powder even by such mechanical pulverization, only iHc of the magnetic powder is significantly lower than the theoretical value.
【0005】[0005]
【課題を解決するための手段】本発明は、上記の様な従
来技術が有する問題を解決し、高い磁気特性を有し、コ
ストパフォーマンスに優れた金属系永久磁石粉を提供す
ることを目的とする。具体的には、本発明は、以下に述
べる方法により前述の従来技術の課題を解決するもので
ある。 (1)結晶構造が六方晶または正方晶または斜方晶であ
るとともにFe、Co、Ni、Mnの少なくとも1種以
上を主成分とし、且つB、C、N、P、Si、Al、T
i、Ge、Ga、V、Mo、Pt、Pd、Sn、Zr、
Nb、As、Ta、Hf、BiおよびCrから選択され
る1種以上の元素を含有させてなる平均粒子径が0.0
01〜10μmである金属系永久磁石材料粉。 (2)結晶型が、AuCu−I、AuCu3 −I、Mn
Bi、W2 C、CuPt、Ni2 Cr、Cr2 Al、C
uAu−II、WC、Fe2 P、ZnS、PbO、TiO
2 、FeS2 、β−U、Ag3 Mg、Ni3 V、Ni2
In、Fe3 Cのいずれか1種または複数の組合せであ
る(1)記載の金属系永久磁石材料粉。SUMMARY OF THE INVENTION It is an object of the present invention to solve the problems of the prior art as described above and to provide metal-based permanent magnet powder having high magnetic properties and excellent cost performance. To do. Specifically, the present invention solves the above-mentioned problems of the prior art by the method described below. (1) The crystal structure is a hexagonal crystal, a tetragonal crystal, or an orthorhombic crystal, at least one of Fe, Co, Ni, and Mn is a main component, and B, C, N, P, Si, Al, and T
i, Ge, Ga, V, Mo, Pt, Pd, Sn, Zr,
An average particle diameter of 0.0 containing one or more elements selected from Nb, As, Ta, Hf, Bi and Cr
Metal-based permanent magnet material powder having a particle size of 01 to 10 μm. (2) crystal type, AuCu-I, AuCu 3 -I , Mn
Bi, W 2 C, CuPt, Ni 2 Cr, Cr 2 Al, C
uAu-II, WC, Fe 2 P, ZnS, PbO, TiO
2 , FeS 2 , β-U, Ag 3 Mg, Ni 3 V, Ni 2
The metal-based permanent magnet material powder according to (1), which is one kind or a combination of a plurality of In and Fe 3 C.
【0006】[0006]
【作用】本発明のような構成とすることによって、高い
磁気特性を有し、且つ鉄合金を主体とした安価な原料を
使用することが可能であるという両利点を兼ね備えた、
高いコストパフォーマンスを有する金属系永久磁石粉を
提供することが出来る。With the structure of the present invention, it has both of the advantages that it has high magnetic properties and that it is possible to use an inexpensive raw material mainly composed of an iron alloy.
It is possible to provide metal-based permanent magnet powder having high cost performance.
【0007】[0007]
【実施例】以下、本発明を実施例により説明するが、本
発明はこれらにより何ら制限されるものではない。本発
明における、金属系磁石粉の結晶構造は六方晶、正方
晶、斜方晶のいずれかであることが必須である。これ
は、永久磁石材料として高い保持力を有するためには、
その結晶構造が一軸磁気異方性であることが必要であ
り、そのためにはより低対称性を有する結晶構造である
ことが重要であることによる。EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. In the present invention, it is essential that the crystal structure of the metal-based magnet powder be hexagonal, tetragonal or orthorhombic. This is because in order to have a high coercive force as a permanent magnet material,
This is because the crystal structure needs to have uniaxial magnetic anisotropy, and for that purpose, it is important that the crystal structure has lower symmetry.
【0008】本発明の合金組成はFe、Co、Ni、M
nの内1種以上を主成分とするものであるが、Feを主
体とし、Feの一部をCoまたはNiで置換したものが
好ましい。これらの遷移金属の含有量は、50原子%以
上であることが好ましい。50原子%以下であると、飽
和磁化の大幅な低化を招く。また、Feの一部をCoま
たはNiで置換する場合の置換量はFeの50原子%以
内であることが好ましい。The alloy composition of the present invention is Fe, Co, Ni, M.
Although at least one of n is the main component, it is preferable that Fe is the main component and Fe is partially replaced with Co or Ni. The content of these transition metals is preferably 50 atomic% or more. When it is 50 atomic% or less, the saturation magnetization is significantly lowered. Further, when a part of Fe is replaced with Co or Ni, the substitution amount is preferably within 50 atomic% of Fe.
【0009】Fe、Co、Ni、Mnの内1種以上を主
成分とすることで金属系永久磁石粉を実現することが可
能であるが、より良好な磁気特性を実現するために、本
発明では添加剤を加えている。本発明における添加剤
は、B(ホウ素)、C(炭素)、N(窒素)、P(リ
ン)、Si(ケイ素)、Al(アルミニウム)、Ti
(チタン)、Ge(ゲルマニウム)、Ga(ガリウ
ム)、V(バナジウム)、Mo(モリブデン)、Pt
(白金)、Pd(パラジウム)、Sn(すず)、Zr
(ジルコニウム)、Nb(ニオブ)、As(ヒ素)、T
a(タンタル)、Hf(ハフニウム)、Bi(ビスマ
ス)またはCr(クロム)から選択される1種以上の元
素が選択されるが、その添加量は50原子%以下、特に
35原子%以下であることが好ましい。添加元素の含有
量が前記範囲を超えると、飽和磁化の大幅な低下を招
き、好ましくない。さらには、工業的に不可避な不純物
である酸素を組成上含むものも本発明に包含される。Although it is possible to realize a metal-based permanent magnet powder by using at least one of Fe, Co, Ni, and Mn as a main component, in order to achieve better magnetic characteristics, the present invention is used. Then, the additive is added. The additive in the present invention is B (boron), C (carbon), N (nitrogen), P (phosphorus), Si (silicon), Al (aluminum), Ti.
(Titanium), Ge (Germanium), Ga (Gallium), V (Vanadium), Mo (Molybdenum), Pt
(Platinum), Pd (palladium), Sn (tin), Zr
(Zirconium), Nb (niobium), As (arsenic), T
One or more elements selected from a (tantalum), Hf (hafnium), Bi (bismuth) or Cr (chromium) are selected, but the addition amount is 50 atomic% or less, particularly 35 atomic% or less. It is preferable. If the content of the additional element exceeds the above range, the saturation magnetization is significantly reduced, which is not preferable. Furthermore, the present invention also includes a composition containing oxygen which is an industrially unavoidable impurity.
【0010】本発明の金属系磁石粉の平均粒子径は、
0.001〜10μmの範囲であるが、好ましくは0.
005〜1μmであり、さらに好ましくは0.01〜
0.5μmである。平均粒子径が0.001μmを下回
ると、超常磁性的な振舞いが激しくなり、保磁力が極端
に低下する。また、10μmより大きいと多磁区粒子と
なり保磁力の低下を招く。The average particle size of the metal magnet powder of the present invention is
It is in the range of 0.001 to 10 μm, but preferably 0.
005 to 1 μm, more preferably 0.01 to
It is 0.5 μm. If the average particle size is less than 0.001 μm, superparamagnetic behavior becomes severe and the coercive force is extremely reduced. On the other hand, if it is larger than 10 μm, it becomes multi-domain particles, which causes a decrease in coercive force.
【0011】また、本発明において作製した磁石粉の酸
化防止と凝集防止をするために、表面に有機被膜、無機
被膜、金属の酸化物を形成させてもかまわない。さらに
は、熱処理をした時に金属粒子の凝集、粒成長を防ぐた
めに、Al2 O3 、SiO2、TiO2 、等のセラミッ
クス被膜を金属粒子表面に被覆してもかまわない。In order to prevent oxidation and aggregation of the magnet powder produced in the present invention, an organic coating, an inorganic coating, or a metal oxide may be formed on the surface. Further, the surface of the metal particles may be coated with a ceramic coating of Al 2 O 3 , SiO 2 , TiO 2 or the like in order to prevent the metal particles from aggregating and growing when heat-treated.
【0012】本発明における金属粒子の形状は、球形、
楕円形、針状形、およびこれらに類似する形状が例示で
きる。これらの形状については目的に応じて適宜選択す
ることが出来る。The shape of the metal particles in the present invention is spherical,
An elliptical shape, a needle shape, and shapes similar to these can be exemplified. These shapes can be appropriately selected according to the purpose.
【0013】次に前記した金属系永久磁石粉の製法の一
実施態様について述べるが、本発明はこれらにより何ら
制限されるものではない。本発明における金属系永久磁
石粉は、溶液中に金属塩を溶解させ還元剤を加えること
によって直接金属微粒子を析出させる方法、溶液中に金
属塩を溶解させ沈殿剤を加えることで前駆体微粒子を析
出させた後に、該微粒子を還元する方法、通常の粉末冶
金的な方法によりバルク磁石を作製しこれを粉砕する方
法、または超急冷リボンを作製しこれを粉砕する方法を
用いて製造する事が出来る。本発明の平均粒子径を有す
る金属微粉を得るためには、前記の方法の内、溶液中で
の直接還元による方法と溶液中で前駆体微粒子を析出さ
せ、これを還元する方法が好ましい。次に、具体的な実
験手順とともにさらに詳細について述べる。Next, one embodiment of the method for producing the above-mentioned metallic permanent magnet powder will be described, but the present invention is not limited thereto. The metal-based permanent magnet powder in the present invention is a method of directly precipitating metal fine particles by dissolving a metal salt in a solution and adding a reducing agent, and a precursor fine particle by dissolving a metal salt in a solution and adding a precipitating agent. After precipitation, it may be produced by a method of reducing the fine particles, a method of producing a bulk magnet by an ordinary powder metallurgical method and crushing it, or a method of producing an ultra-quenched ribbon and crushing this. I can. In order to obtain the fine metal powder having the average particle diameter of the present invention, among the above methods, the method of direct reduction in a solution and the method of precipitating precursor fine particles in a solution and reducing the same are preferable. Next, a more detailed description will be given together with a specific experimental procedure.
【0014】(実施例1〜4)「表1」に示した合金組
成となるように、それぞれの金属元素を含む塩化物をイ
オン交換水に溶解させ、沈殿剤としてイオン交換水に溶
解させたNaOHを金属塩の1.5当量分を加え微粒子
の前駆体沈殿物を生成させた。次いで、前記前駆体微粒
子を水素気流中(500ml/分)で400℃×6時間
の熱処理により還元し、合金微粒子を得た。得られた合
金微粒子の磁気特性はVSMによって測定した。結果を
「表1」に示した。また、得られた合金微粒子の形態観
察を電子顕微鏡により行い、これより平均粒子径を求め
た。さらに、X線回折により合金微粉の結晶構造を同定
した。結果を「表1」に示した。(Examples 1 to 4) Chlorides containing respective metal elements were dissolved in ion-exchanged water so that the alloy compositions shown in "Table 1" were obtained, and dissolved in ion-exchanged water as a precipitant. 1.5 equivalents of metal salt was added to NaOH to form a fine particle precursor precipitate. Next, the precursor fine particles were reduced by heat treatment at 400 ° C. for 6 hours in a hydrogen stream (500 ml / min) to obtain alloy fine particles. The magnetic characteristics of the obtained alloy fine particles were measured by VSM. The results are shown in "Table 1". Further, the morphology of the obtained alloy fine particles was observed with an electron microscope, and the average particle diameter was determined from this. Furthermore, the crystal structure of the alloy fine powder was identified by X-ray diffraction. The results are shown in "Table 1".
【0015】(実施例5〜6)「表1」に示した合金組
成となるように、それぞれの金属元素を含む金属プロポ
キシド〔Fe(O−n−C3 H7 )3 、Co(O−n−
C3 H7 )3 、B−(O−n−C3 H7 OH)3 、PO
−(n−C3 H7 OH)3 〕をn−C3 H7 OHに所定
量混合させ均一溶液を調整した。次ぎに、調整した溶液
を80℃に保持しながら、蒸留水とn−C3 H7 OHと
混合した溶液を加え、加水分解により沈殿物を生成させ
た。生成した沈殿物を遠心分離により取り出した後に、
100℃で乾燥させ前駆体微粒子を得た。次いで、水素
気流中(500ml/分)で400℃×6時間の熱処理
によって合金微粒子を得た。得られた合金微粒子の磁気
特性と平均粒子径および結晶構造を実施例1と同様の方
法で測定し、結果を「表1」に示した。[0015] (Example 5-6) "Table 1" so that the alloy compositions shown in, the metal containing the respective metal element propoxide [Fe (O-n-C 3 H 7) 3, Co (O -N-
C 3 H 7) 3, B- (O-n-C 3 H 7 OH) 3, PO
- a (n-C 3 H 7 OH ) 3 ] was prepared a homogeneous solution by a predetermined amount mixed in n-C 3 H 7 OH. Next, while maintaining the adjusted solution at 80 ° C., a solution prepared by mixing distilled water and n-C 3 H 7 OH was added, and a precipitate was generated by hydrolysis. After removing the generated precipitate by centrifugation,
It was dried at 100 ° C. to obtain precursor fine particles. Then, alloy fine particles were obtained by heat treatment at 400 ° C. for 6 hours in a hydrogen stream (500 ml / min). The magnetic properties, average particle size, and crystal structure of the obtained alloy fine particles were measured by the same method as in Example 1, and the results are shown in "Table 1".
【0016】(実施例7)「表1」に示した合金組成と
なるように、それぞれの金属元素を含む塩化物をイオン
交換水に溶解させ、沈殿剤としてイオン交換水に溶解さ
せたNaOHを金属塩の1.5当量分を加え微粒子の前
駆体沈殿物を生成させた。次いで、前記前駆体微粒子を
水素気流中(500ml/分)で400℃×6時間の熱
処理により還元し、合金微粒子を得た。得られた合金微
粒子をアンモニア雰囲気で500℃×5時間の熱処理を
施し、窒素を拡散させた。窒素を拡散させた合金微粒子
の窒素含有量とFeとCoの含有量を分析した結果、
「表1」に示した組成となった。かかる窒素含有合金微
粒子の磁気特性と平均粒子径および結晶構造を実施例1
と同様の方法で測定し、結果を「表1」に示した。Example 7 A chloride containing each metal element was dissolved in ion-exchanged water so that the alloy composition shown in Table 1 was obtained, and NaOH dissolved in the ion-exchanged water was used as a precipitant. 1.5 equivalents of the metal salt was added to generate a fine particle precursor precipitate. Next, the precursor fine particles were reduced by heat treatment at 400 ° C. for 6 hours in a hydrogen stream (500 ml / min) to obtain alloy fine particles. The obtained alloy fine particles were heat-treated at 500 ° C. for 5 hours in an ammonia atmosphere to diffuse nitrogen. As a result of analyzing the nitrogen content and the Fe and Co contents of the alloy particles in which nitrogen is diffused,
The composition shown in "Table 1" was obtained. The magnetic properties, average particle size, and crystal structure of the nitrogen-containing alloy fine particles are shown in Example 1.
Measurement was carried out in the same manner as in, and the results are shown in "Table 1".
【0017】(比較例1)「表1」に示した合金組成と
なるように、それぞれの金属元素を含む塩化物をイオン
交換水に溶解させ、沈殿剤としてイオン交換水に溶解さ
せたNaOHを金属塩の1.5当量分を加え微粒子の前
駆体沈殿物を生成させた。次いで、前記前駆体微粒子を
水素気流中(500ml/分)で400℃×6時間の熱
処理により還元し、合金微粒子を得た。得られた合金微
粒子の磁気特性、平均粒子径および結晶構造を実施例1
と同様の方法で測定した。結果を「表1」に示した。(Comparative Example 1) A chloride containing each metal element was dissolved in ion-exchanged water so as to have the alloy composition shown in "Table 1", and NaOH dissolved in the ion-exchanged water was used as a precipitating agent. 1.5 equivalents of the metal salt was added to generate a fine particle precursor precipitate. Next, the precursor fine particles were reduced by heat treatment at 400 ° C. for 6 hours in a hydrogen stream (500 ml / min) to obtain alloy fine particles. The magnetic properties, average particle size and crystal structure of the obtained alloy fine particles are shown in Example 1.
It measured by the method similar to. The results are shown in "Table 1".
【0018】[0018]
【表1】 [Table 1]
【0019】上記の比較により、本発明の磁石粉は従来
の磁石粉に比べて良好な磁気特性を有していることが分
かる。From the above comparison, it can be seen that the magnet powder of the present invention has better magnetic characteristics than the conventional magnet powder.
【0020】[0020]
【発明の効果】本発明によれば、高磁気特性を有し且つ
安価なコストパフォーマンスに優れた金属系永久磁石材
料粉を得ることが出来る。したがって、従来のハードフ
ェライト系やアルニコ系、希土類−遷移金属系の永久磁
石材料粉では実現困難であった安価な原材料を使用しな
がら高い磁気特性を実現するという課題が達成でき、永
久磁石材料の工業的使用における制約を大きく緩和する
ことが可能となって、永久磁石材料の用途の拡大が図れ
る。According to the present invention, it is possible to obtain a metal-based permanent magnet material powder which has high magnetic characteristics and is inexpensive and excellent in cost performance. Therefore, the problem of achieving high magnetic properties while using inexpensive raw materials, which was difficult to achieve with conventional hard ferrite-based, alnico-based, and rare earth-transition metal-based permanent magnet material powders, can be achieved. It is possible to greatly alleviate restrictions in industrial use, and expand the applications of permanent magnet materials.
Claims (2)
方晶であるとともにFe、Co、Ni、Mnの少なくと
も1種以上を主成分とし、且つB、C、N、P、Si、
Al、Ti、Ge、Ga、V、Mo、Pt、Pd、S
n、Zr、Nb、As、Ta、Hf、BiまたはCrか
ら選択される1種以上の元素を含有させてなる平均粒子
径が0.001〜10μmである金属系永久磁石材料
粉。1. A crystal structure of hexagonal crystal, tetragonal crystal or orthorhombic crystal, at least one of Fe, Co, Ni and Mn as a main component, and B, C, N, P, Si,
Al, Ti, Ge, Ga, V, Mo, Pt, Pd, S
Metal-based permanent magnet material powder having an average particle size of 0.001 to 10 μm, containing one or more elements selected from n, Zr, Nb, As, Ta, Hf, Bi or Cr.
I、MnBi、W2C、CuPt、Ni2 Cr、Cr2
Al、CuAu−II、WC、Fe2 P、ZnS、Pb
O、TiO2 、FeS2 、β−U、Ag3 Mg、Ni3
V、Ni2 In、Fe3 Cのいずれか1種または複数種
の組合せである請求項1記載の金属系永久磁石材料粉。2. The crystal form is AuCu-I or AuCu 3-.
I, MnBi, W 2 C, CuPt, Ni 2 Cr, Cr 2
Al, CuAu-II, WC, Fe 2 P, ZnS, Pb
O, TiO 2 , FeS 2 , β-U, Ag 3 Mg, Ni 3
The metal-based permanent magnet material powder according to claim 1, which is one kind or a combination of plural kinds of V, Ni 2 In, and Fe 3 C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4328486A JPH06151136A (en) | 1992-11-12 | 1992-11-12 | Powder of metal-based permanent magnet material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4328486A JPH06151136A (en) | 1992-11-12 | 1992-11-12 | Powder of metal-based permanent magnet material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06151136A true JPH06151136A (en) | 1994-05-31 |
Family
ID=18210818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4328486A Pending JPH06151136A (en) | 1992-11-12 | 1992-11-12 | Powder of metal-based permanent magnet material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06151136A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112522636A (en) * | 2020-11-13 | 2021-03-19 | 山东麦格智芯机电科技有限公司 | Nb-doped Fe-Cr-Co permanent magnetic alloy and preparation method thereof |
JP2021523576A (en) * | 2018-05-15 | 2021-09-02 | マックスプランク−ゲセルシャフト・ツール・フェーデルング・デル・ヴィッセンシャフテン・エー・ファウ | Rare earth metal-free hard magnet |
CN118398367A (en) * | 2024-05-14 | 2024-07-26 | 广能亿能(北京)核能科技有限公司 | Method for improving loss performance of permanent magnet through ion implantation and permanent magnet |
-
1992
- 1992-11-12 JP JP4328486A patent/JPH06151136A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021523576A (en) * | 2018-05-15 | 2021-09-02 | マックスプランク−ゲセルシャフト・ツール・フェーデルング・デル・ヴィッセンシャフテン・エー・ファウ | Rare earth metal-free hard magnet |
CN112522636A (en) * | 2020-11-13 | 2021-03-19 | 山东麦格智芯机电科技有限公司 | Nb-doped Fe-Cr-Co permanent magnetic alloy and preparation method thereof |
CN118398367A (en) * | 2024-05-14 | 2024-07-26 | 广能亿能(北京)核能科技有限公司 | Method for improving loss performance of permanent magnet through ion implantation and permanent magnet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10332661B2 (en) | Rare earth-free permanent magnetic material | |
JPH11186016A (en) | Rare-earth element-iron-boron permanent magnet and its manufacture | |
EP0680054B1 (en) | RE-Fe-B magnets and manufacturing method for the same | |
JPH01219143A (en) | Sintered permanent magnet material and its production | |
CA2017616A1 (en) | Magnetic alloy compositions and permanent magnets | |
JPH06151136A (en) | Powder of metal-based permanent magnet material | |
JPH08181009A (en) | Permanent magnet and its manufacturing method | |
JP3331306B2 (en) | Rare earth element / iron / boron permanent magnet alloy powder manufacturing method and rare earth / iron / boron permanent magnet alloy powder | |
Jin et al. | Microstructure and magnetic properties of (Pr, Tb) 2 (Fe, Nb, Zr) 14B/α-Fe nanocomposites | |
JPH06163233A (en) | Bonded magnet | |
JPH0146575B2 (en) | ||
JP4166478B2 (en) | Method for producing rare earth iron nitrogen-based magnetic powder | |
JPH06151133A (en) | Manufacture of magnet powder | |
JPH06163230A (en) | Method of manufacturing magnetic powder for bonded magnet | |
WO2023054035A1 (en) | Rare earth magnet material, and magnet | |
JPH06163231A (en) | Magnetic powder for bonded magnet and manufacture thereof | |
JP7556248B2 (en) | Sm-Fe-N magnetic material and its manufacturing method | |
JPS62257704A (en) | Permanent magnet | |
JPH06151135A (en) | Manufacture magnet powder | |
JP2001217109A (en) | Magnet composition and bonded magnet using the same | |
JPH11273920A (en) | R-tm-b permanent magnet | |
JP3053344B2 (en) | Rare earth magnet manufacturing method | |
JP3959124B2 (en) | Method for improving nitriding rate of rare earth-iron magnet alloy | |
JP2022096382A (en) | Rare earth magnet and manufacturing method thereof | |
JP2001217108A (en) | Magnet composition and bonded magnet using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |