JPH06150936A - Battery member - Google Patents

Battery member

Info

Publication number
JPH06150936A
JPH06150936A JP4325952A JP32595292A JPH06150936A JP H06150936 A JPH06150936 A JP H06150936A JP 4325952 A JP4325952 A JP 4325952A JP 32595292 A JP32595292 A JP 32595292A JP H06150936 A JPH06150936 A JP H06150936A
Authority
JP
Japan
Prior art keywords
weight
less
nickel
stainless steel
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4325952A
Other languages
Japanese (ja)
Inventor
Takao Fukunaga
福永  孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP4325952A priority Critical patent/JPH06150936A/en
Publication of JPH06150936A publication Critical patent/JPH06150936A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a battery member for an organic electrolyte battery allowing no fusing even if 4V or more of battery voltage is applied, and being provided with practicality. CONSTITUTION:Stainless steel, composed of 16-20 percentage by weight of chromium, 11-17 percentage by weight of nickel, 3-6 percentage by weight of molybdenum, 0.08 percentage by weight or less of carbon, 1 percentage by weight or less of silicon, 2 percentage by weight or less of manganese, and the rest, iron, is used as a battery member.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はポータブル機器の駆動用
電源としての有機電解液電池の正極側の電池部材の改良
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a battery member on the positive electrode side of an organic electrolyte battery as a power source for driving a portable device.

【0002】[0002]

【従来の技術】近年、ラップトップコンピューター,ワ
ープロ等の携帯情報機器、カメラ一体型VTR,液晶テ
レビ等のAV機器や携帯電話等の移動通信機器等々のよ
うに、電源としての電池に対し大電流、大出力を要求す
る機器が多種多様に発達し、より高エネルギー密度の二
次電池が要望されている。さらに、機器が薄形化、小型
化するにつれ電池も薄形化、小型化が要求される。
2. Description of the Related Art In recent years, a large current is supplied to a battery as a power source such as a laptop computer, a portable information device such as a word processor, a camera-integrated VTR, an AV device such as a liquid crystal television, a mobile communication device such as a mobile phone, and the like. A wide variety of devices that require high output have been developed, and secondary batteries with higher energy density have been demanded. Further, as devices become thinner and smaller, batteries are also required to be thinner and smaller.

【0003】そして、それらの要求に応えるべく、種々
の新しい二次電池が提案されており、そのなかで、特開
昭55−136131に開示のごとく、正極活物質にL
xCoO2 を用いたものや、特開昭62−26456
0に開示のごとく、LiNix Co(1-x) (但し0<x
<0.27)を用いたもの、また、特開昭63−211
564に開示のごとくLix (Co1-y Fey )O
2 (式中、xは0〜1、yは0.05〜0.3)等を用
いた有機電解液二次電池の研究開発が近年盛んに行われ
ている。
In order to meet those demands, various new secondary batteries have been proposed. Among them, as disclosed in JP-A-55-136131, L is used as a positive electrode active material.
those using i x CoO 2 and JP-A-62-26456.
0, LiNi x Co (1-x) (where 0 <x
<0.27), and JP-A-63-212
Li x (Co 1-y Fe y ) O as disclosed in US Pat.
2 (wherein, x is 0 to 1, y is 0.05 to 0.3) and the like have been actively researched and developed in recent years.

【0004】それらの活物質を用いた電池は平均作動電
圧が3.6V程度と、ニッケル−カドミウム電池の1.
2Vと比較して約3倍の高い電圧を持つことから、電池
のより一層の高エネルギー密度化及び小型化が期待でき
る。
Batteries using these active materials have an average operating voltage of about 3.6 V, which is the same as that of nickel-cadmium batteries.
Since it has a voltage about 3 times higher than that of 2V, it can be expected that the battery has a higher energy density and a smaller size.

【0005】しかし、これらの活物質を正極に用いた場
合、充電するときには4V以上の高電圧を印加すること
から、これらの素子に用いられる正極側の集電体やセル
ハウジング等の材料には高度の電気化学的耐食性が要求
される。その材料として白金、金などの貴金属、アルミ
ニウム、タンタルなどのバルブ金属、あるいはカーボン
材料などが挙げられるが、これらは高度の耐食性はある
ものの、加工性、機械的強度、コストなどを満足できる
材料ではない。
However, when these active materials are used for the positive electrode, a high voltage of 4 V or more is applied during charging, so that the materials for the positive electrode side current collectors and cell housings used for these devices are A high degree of electrochemical corrosion resistance is required. Examples of such materials include precious metals such as platinum and gold, valve metals such as aluminum and tantalum, and carbon materials.These materials have a high degree of corrosion resistance, but are not materials that can satisfy workability, mechanical strength, cost, etc. Absent.

【0006】[0006]

【発明が解決しようとする課題】よって、電池電圧が4
V以上印加されても溶解することなく、かつ、実用性を
備えた電池部材を得ることが課題となる。
Therefore, the battery voltage is 4
The problem is to obtain a battery member that is practical and does not dissolve even when a voltage of V or more is applied.

【0007】[0007]

【課題を解決するための手段】本発明はこのような課題
を解決するために鋭意工夫を重ねた結果、ステンレス鋼
を構成する元素のなかで、ニッケルとモリブデンが電気
化学的耐食性に大きく寄与することを見いだし、特にニ
ッケル11〜17重量%以上、モリブデン3〜6重量%
を含むステンレス鋼を正極部材に用いることにより高電
圧においても安定な有機電解液電池を提供せんとするも
のである。
The present invention has been devised to solve such problems, and as a result, nickel and molybdenum, among the elements constituting stainless steel, contribute greatly to the electrochemical corrosion resistance. Found that nickel 11-17% by weight or more, molybdenum 3-6% by weight
The present invention provides a stable organic electrolyte battery even at a high voltage by using a stainless steel containing a positive electrode member.

【0008】最初に予備実験として、各種ステンレス鋼
の電流−電位曲線を測定することにより、ステンレス鋼
を構成している元素の電気化学的耐食性に対する効果に
ついて明らかにした。
First, as a preliminary experiment, the effect of the elements constituting the stainless steel on the electrochemical corrosion resistance was clarified by measuring the current-potential curves of various stainless steels.

【0009】測定方法は次のようにして行った。試験装
置を図1に示す。(11)は試料金属で、すべてエメリ
ー研磨紙(#1000)で研磨した後、アセトン中での
超音波洗浄処理を行った。試料金属片の寸法は10mm×
50mm,厚み0.2mmであるが、実際に電極として作用
する部分は片面の10mm×10mmで、残りの部分はフッ
素樹脂テープ(12)で被覆した。(13)は材質にニ
ッケルを用いた対極で、寸法は30mm×30mm、厚み
0.3mm、(14)はリチウム金属を用いた参照電極
で、寸法は10mm×10mm、厚み0.2mmである。(1
5)はガラス製の電解セルである。(16)は電解セル
(15)の蓋である。(17)は電解液で、エチレンカ
ーボネートとジエチルカーボネートを体積比で1:1に
混合した溶媒に六フッ化燐酸リチウムを1モル/リット
ルの割合で溶解したものである。
The measuring method was as follows. The test apparatus is shown in FIG. (11) is a sample metal, which was all polished with emery polishing paper (# 1000) and then subjected to ultrasonic cleaning treatment in acetone. The size of the sample metal piece is 10 mm ×
Although the thickness is 50 mm and the thickness is 0.2 mm, the portion actually acting as an electrode is 10 mm × 10 mm on one side, and the remaining portion is covered with a fluororesin tape (12). (13) is a counter electrode using nickel as a material, the dimensions are 30 mm × 30 mm and thickness 0.3 mm, and (14) is a reference electrode using lithium metal, the dimensions are 10 mm × 10 mm and thickness 0.2 mm. (1
5) is an electrolytic cell made of glass. (16) is a lid of the electrolytic cell (15). (17) is an electrolytic solution in which lithium hexafluorophosphate is dissolved at a ratio of 1 mol / liter in a solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 1: 1.

【0010】電流−電位曲線は試料金属を定電位条件下
でアノード分極することにより測定した。また、このと
き、電流が流れはじめる電位をその試料金属の溶解電位
とした。この測定は露点−60℃以下に保ったアルゴン
ガスグローボックス中で実施した。
The current-potential curve was measured by anodic polarization of the sample metal under constant potential conditions. At this time, the potential at which the current started to flow was defined as the dissolution potential of the sample metal. This measurement was carried out in an argon gas glow box maintained at a dew point of -60 ° C or lower.

【0011】まず、ステンレス鋼中に含まれるクロムの
影響を調べた。
First, the influence of chromium contained in stainless steel was investigated.

【0012】試料金属として、クロムが11.5〜13
重量%,炭素が0.15重量%以下,シリコンが0.5
0重量%以下,マンガンが1.00重量%以下を含み残
部が鉄からなるステンレス鋼(1)、クロムが16〜1
8重量%,炭素が0.12重量%以下,シリコンが0.
75重量%以下,マンガンが1.00重量%以下を含み
残部が鉄からなるステンレス鋼(2)、クロムが23〜
27重量%,炭素が0.20重量%以下,シリコンが1
重量%以下,マンガンが1.00重量%以下を含み残部
が鉄からなるステンレス鋼(3)を定電位条件下でアノ
ード分極した。結果を図2に示す。図2より、クロムの
含有量の違いによる溶解電位の差は認められなかった。
As a sample metal, chromium is 11.5 to 13
Wt%, carbon less than 0.15 wt%, silicon 0.5
0% by weight or less, manganese 1.00% by weight or less and the balance iron, stainless steel (1), chromium 16 to 1
8% by weight, carbon less than 0.12% by weight, silicon less than 0.1%.
75% by weight or less, manganese 1.00% by weight or less and the balance being iron, stainless steel (2), chromium is 23 to
27 wt%, carbon less than 0.20 wt%, silicon 1
A stainless steel (3) containing 3 wt% or less and 1.00 wt% or less of manganese and the balance being iron was subjected to anodic polarization under constant potential conditions. The results are shown in Figure 2. From FIG. 2, no difference in the dissolution potential due to the difference in the chromium content was observed.

【0013】次に、ステンレス鋼中に含まれるニッケル
の影響を調べた。
Next, the influence of nickel contained in stainless steel was investigated.

【0014】試料金属としてクロムが16〜18重量
%,ニッケルが6〜8重量%,炭素が0.15重量%以
下,シリコンが1.00重量%以下,マンガンが2.0
0重量%以下を含み残部が鉄からなるステンレス鋼
(4)、クロムが18〜20重量%,ニッケルが8〜1
0.5重量%,炭素が0.08重量%以下,シリコンが
1.00重量%以下,マンガンが2.00重量%以下を
含み残部が鉄からなるステンレス鋼(5)、クロムが1
7〜19重量%Cr,ニッケルが10.5〜13重量%
Ni,炭素が0.12重量%以下,シリコンが1.00
重量%以下,マンガンが2.00重量%以下を含み残部
が鉄からなるステンレス鋼(6)を定電位条件下でアノ
ード分極した。結果を図3に示す。図3より、ニッケル
の含有量が多くなるにしたがい溶解電位が高くなってい
る。これより、ニッケルは電気化学的耐食性に寄与する
ことが判明した。
As a sample metal, chromium is 16 to 18% by weight, nickel is 6 to 8% by weight, carbon is 0.15% by weight or less, silicon is 1.00% by weight or less, and manganese is 2.0.
Stainless steel containing 0% by weight or less and the balance being iron (4), chromium 18 to 20% by weight, nickel 8 to 1
0.5% by weight, 0.08% by weight or less of carbon, 1.00% by weight or less of silicon, 2.00% by weight or less of manganese, and the balance is iron.
7 to 19% by weight Cr, nickel 10.5 to 13% by weight
Ni, carbon 0.12 wt% or less, silicon 1.00
Stainless steel (6) containing less than 20% by weight of manganese and less than 2.00% by weight of manganese and the balance of iron was subjected to anodic polarization under constant potential conditions. The results are shown in Fig. 3. From FIG. 3, the dissolution potential increases as the nickel content increases. From this, it was found that nickel contributes to the electrochemical corrosion resistance.

【0015】ステンレス鋼中に含まれるモリブデンの影
響を調べた。
The effect of molybdenum contained in stainless steel was investigated.

【0016】試料金属としてクロムが17〜19重量
%,ニッケルが10.5〜13重量%,炭素が0.12
重量%以下,シリコンが1.00重量%以下,マンガン
が2.00重量%以下を含み残部が鉄からなるステンレ
ス鋼(6)、クロムが16〜18重量%,ニッケルが1
0〜14重量%,モリブデンが2〜3重量%,炭素が
0.08重量%以下,シリコンが1.00重量%以下,
マンガンが2.00重量%以下を含み残部が鉄からなる
ステンレス鋼(7)を定電位条件下でアノード分極し
た。結果を図4に示す。図4より、モリブデンを添加す
ることにより電気化学的耐食性が向上することが判明し
た。
As a sample metal, chromium is 17 to 19% by weight, nickel is 10.5 to 13% by weight, and carbon is 0.12.
Stainless steel (6) containing less than 1% by weight, less than 1.00% by weight of silicon, less than 2.00% by weight of manganese and the balance being iron, 16-18% by weight of chromium, 1% of nickel.
0-14% by weight, molybdenum 2-3% by weight, carbon 0.08% by weight or less, silicon 1.00% by weight or less,
A stainless steel (7) containing 2.00% by weight or less of manganese and the balance of iron was anodically polarized under a constant potential condition. The results are shown in Fig. 4. From FIG. 4, it was found that the addition of molybdenum improves the electrochemical corrosion resistance.

【0017】以上の結果より、ニッケルとモリブデンが
電気化学的耐食性に寄与することが明らかとなった。こ
れをもとに、ニッケルおよびモリブデンの含有量を種々
変えたステンレス鋼の電気化学的耐食性を評価した。
From the above results, it became clear that nickel and molybdenum contribute to the electrochemical corrosion resistance. Based on this, the electrochemical corrosion resistance of stainless steels with various contents of nickel and molybdenum was evaluated.

【0018】試料金属としてクロムが18〜20重量
%,ニッケルが11〜15重量%,モリブデンが3〜4
重量%,炭素が0.08重量%以下,シリコンが1.0
0重量%以下,マンガンが2.00重量%以下を含み残
部が鉄からなるステンレス鋼(8)、クロムが16〜1
8重量%,ニッケルが15〜17重量%,モリブデンが
4.5〜6重量%,炭素が0.08重量%以下,シリコ
ンが1.00重量%以下,マンガンが2.00重量%以
下を含み残部が鉄からなるステンレス鋼(9)を定電位
条件下でアノード分極した。結果を図5に示す。図5に
示すように、モリブデンを3〜4重量%,ニッケルを1
1〜15重量%含んだステンレス鋼(8)およびモリブ
デンを4.5〜6重量%,ニッケルを15〜17重量%
含んだステンレス鋼(9)は電気化学的耐食性が著しく
向上していることがわかる。
As a sample metal, chromium is 18 to 20% by weight, nickel is 11 to 15% by weight, and molybdenum is 3 to 4%.
% By weight, carbon less than 0.08% by weight, silicon 1.0
Stainless steel (0) containing 0 wt% or less, manganese 2.00 wt% or less, and the balance iron, and chromium 16 to 1
8% by weight, 15-17% by weight of nickel, 4.5-6% by weight of molybdenum, 0.08% by weight or less of carbon, 1.00% by weight or less of silicon, 2.00% by weight or less of manganese Stainless steel (9) with the balance being iron was subjected to anodic polarization under constant potential conditions. Results are shown in FIG. As shown in FIG. 5, 3-4% by weight of molybdenum and 1% of nickel are used.
4.5 to 6% by weight of stainless steel (8) and molybdenum containing 1 to 15% by weight, 15 to 17% by weight of nickel
It can be seen that the contained stainless steel (9) has remarkably improved electrochemical corrosion resistance.

【0019】[0019]

【作用】正極部材にニッケルを11〜17重量%、モリ
ブデンを3〜6重量%含むステンレス鋼を用いることに
より電気化学的耐食性が向上し、4V以上の電圧が印加
される有機電解液電池に使用しても電池部材の溶解がな
い。
The use of stainless steel containing 11 to 17% by weight of nickel and 3 to 6% by weight of molybdenum for the positive electrode member improves the electrochemical corrosion resistance and is used for an organic electrolyte battery to which a voltage of 4 V or more is applied. Even if it does not dissolve the battery member.

【0020】[0020]

【実施例】以下、本発明を図6に示すような有機電解液
電池を例にして詳細に説明する。 [実施例1]図6は本発明の実施例における電池の構造
図である。
EXAMPLES The present invention will be described in detail below by taking an organic electrolyte battery as shown in FIG. 6 as an example. [Embodiment 1] FIG. 6 is a structural view of a battery in an embodiment of the present invention.

【0021】図6において(21)は正極であり、次の
ようにして作製した。まず、活物質であるLiCoO2
85重量部にグラファイト10重量部、ポリフッ化ビ
ニリデン5重量部をN−メチル−2−ピロリドンを加え
て混合してスラリー状合剤を作った。それを板厚み0.
1mmのクロムが18〜20重量%,ニッケルが11〜1
5重量%,モリブデンが3〜4重量%,炭素が0.08
重量%以下,シリコンが1.00重量%以下,マンガン
が2.00重量%以下を含み残部が鉄からなるステンレ
ス鋼(8)をエキスパンド加工した正極集電体に塗布
し、乾燥、圧延を施した後、厚み0.47mm、幅14m
m、長さ52mmの短冊状の極板を得た。正極1枚の活物
質の重量は0.82g で理論電気容量は225mAh であ
るが、実際充放電が行われるのは0.4価程度であるの
で放電電気量は90mAh となる。(22)は負極で、平
均粒径6ミクロンの塊状グラファイトを94重量部、結
着剤としてのポリフッ化ビニリデン6重量部を加え、N
−メチル−2−ピロリドンを加えて混合してスラリー状
合剤を作り、それを厚み1.02mm、目付け350g/cm
2 のニッケルの発泡体に塗布し、乾燥、圧延を施した
後、厚み0.35mm、幅14mm、長さ52mmの短冊状の
極板を得た。負極1枚の活物質の重量は0.35gであ
る。
In FIG. 6, (21) is a positive electrode, which was manufactured as follows. First, the active material LiCoO 2
To 85 parts by weight of graphite, 10 parts by weight of graphite and 5 parts by weight of polyvinylidene fluoride were added and mixed with N-methyl-2-pyrrolidone to prepare a slurry mixture. The plate thickness is 0.
18 to 20% by weight of 1 mm of chromium and 11 to 1 of nickel
5 wt%, molybdenum 3-4 wt%, carbon 0.08
Wt% or less, 1.00 wt% or less of silicon, 2.00 wt% or less of manganese, and the balance is iron. Stainless steel (8) is applied to the expanded positive electrode current collector, dried and rolled. After that, thickness 0.47mm, width 14m
A strip-shaped electrode plate having a length of m and a length of 52 mm was obtained. Although the weight of the active material of one positive electrode is 0.82 g and the theoretical electric capacity is 225 mAh, the amount of electricity discharged is 90 mAh because the actual charge and discharge is about 0.4 valence. (22) is a negative electrode, to which 94 parts by weight of massive graphite having an average particle size of 6 microns and 6 parts by weight of polyvinylidene fluoride as a binder were added, and N
-Methyl-2-pyrrolidone was added and mixed to form a slurry mixture, which had a thickness of 1.02 mm and a basis weight of 350 g / cm.
After being applied to the nickel foam of No. 2 , dried and rolled, a strip-shaped electrode plate having a thickness of 0.35 mm, a width of 14 mm and a length of 52 mm was obtained. The weight of the active material for one negative electrode is 0.35 g.

【0022】正極と負極の電極構成は正極が4枚、負極
が5枚である。(23)はセパレータで、厚み0.13
mm、目付け50 g/m2 のポリプロピレン製不織布を用
い、(21)の正極に被覆し、端部をヒートシールし
た。
The positive electrode and the negative electrode are composed of four positive electrodes and five negative electrodes. (23) is a separator having a thickness of 0.13
A polypropylene non-woven fabric having a weight of 50 g / m 2 and a weight of 50 g / m 2 was coated on the positive electrode of (21) and the ends were heat-sealed.

【0023】これらの電極群を、鉄にニッケルメッキを
施した電池ケース(24)に挿入した後、それぞれの正
極から取り出したステンレス鋼(8)で作製したリード
(25)を束ねて鉄にニッケルを施した封口板(26)
に、ガラスシール(27)を介して埋め込んだハーメチ
ック端子(28)にスポット溶接した。また、各負極か
ら取り出したニッケル製の負極リード(29)は、束ね
て電池ケース(24)にスポット溶接した。
After inserting these electrode groups into a battery case (24) in which iron is plated with nickel, the leads (25) made of stainless steel (8) taken out from the respective positive electrodes are bundled to form nickel on the iron. Sealing plate (26)
Then, spot welding was performed on the hermetic terminal (28) embedded through the glass seal (27). The nickel negative electrode leads (29) taken out from each negative electrode were bundled and spot-welded to the battery case (24).

【0024】これらの作業を行った後、エチレンカーボ
ネートとジエチルカーボネートを体積比で1:1に混合
した溶媒に六フッ化燐酸リチウムを1モル/リットルの
割合で溶解した電解液を注入し、封口板(26)を電池
ケース(24)上端の開口部にはめ込み、周囲をレーザ
ーで溶接した。こうして組立てた電池の寸法は、厚み6
mm、幅14mm、長さ60mmである。但し、長さにおいて
は、正極端子部分の寸法は除いている。
After carrying out these operations, an electrolytic solution prepared by dissolving lithium hexafluorophosphate at a ratio of 1 mol / liter in a solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 1: 1 is injected and the sealing is performed. The plate (26) was fitted into the opening at the upper end of the battery case (24), and the periphery was welded with a laser. The size of the assembled battery is 6
mm, width 14 mm, length 60 mm. However, in terms of length, the dimensions of the positive electrode terminal portion are excluded.

【0025】このようにして作成した電池において、電
流100mAで充電終止電圧4.2V、放電終止電圧2.
7Vで500サイクル繰り返した後、電池を解体し正極
集電体およびリードの腐食状態を顕微鏡で観察した。そ
の結果、腐食は観察されなかった。 [実施例2]クロムが16〜18重量%,ニッケルが1
5〜17重量%,モリブデンが4.5〜6重量%,炭素
が0.08重量%以下,シリコンが1.00重量%以
下,マンガンが2.00重量%以下を含み残部が鉄から
なるステンレス鋼(9)を正極集電体およびリードとし
て用いる以外は実施例1と同様にして電池を組立て、充
放電を実施例1と同じく500サイクル繰り返した。そ
して、試験後の電池を解体し、集電体およびリードの腐
食を顕微鏡で観察した。その結果、腐食は観察されなか
った。 [比較例]比較として、クロムが11.5〜13重量
%,炭素が0.15重量%以下,シリコンが0.50重
量%以下,マンガンが1.00重量%以下を含み残部が
鉄からなるステンレス鋼(1)、クロムが16〜18重
量%,炭素が0.12重量%以下,シリコンが0.75
重量%以下,マンガンが1.00重量%以下を含み残部
が鉄からなるステンレス鋼(2)、クロムが23〜27
重量%,炭素が0.20重量%以下,シリコンが1重量
%以下,マンガンが1.00重量%以下を含み残部が鉄
からなるステンレス鋼(3)、クロムが16〜18重量
%,ニッケルが6〜8重量%,炭素が0.15重量%以
下,シリコンが1.00重量%以下,マンガンが2.0
0重量%以下を含み残部が鉄からなるステンレス鋼
(4)、クロムが18〜20重量%,ニッケルが8〜1
0.5重量%,炭素が0.08重量%以下,シリコンが
1.00重量%以下,マンガンが2.00重量%以下を
含み残部が鉄からなるステンレス鋼(5)、クロムが1
7〜19重量%Cr,ニッケルが10.5〜13重量%
Ni,炭素が0.12重量%以下,シリコンが1.00
重量%以下,マンガンが2.00重量%以下を含み残部
が鉄からなるステンレス鋼(6)、クロムが16〜18
重量%,ニッケルが10〜14重量%,モリブデンが2
〜3重量%,炭素が0.08重量%以下,シリコンが
1.00重量%以下,マンガンが2.00重量%以下を
含み残部が鉄からなるステンレス鋼(7)を正極集電体
およびリードとして用いる以外は実施例と同様にして電
池を組立て、充放電を実施例と同じく500サイクル繰
り返した。そして、試験後の電池を解体し、集電体およ
びリードの腐食を顕微鏡で観察した。その結果、集電体
およびリード表面に多くの孔食が観察された。また、負
極側の金属部材表面には析出物が観察された。
In the battery thus produced, the charge end voltage is 4.2 V and the discharge end voltage is 2. 0 at a current of 100 mA.
After repeating 500 cycles at 7V, the battery was disassembled and the corrosion state of the positive electrode current collector and the lead was observed with a microscope. As a result, no corrosion was observed. [Example 2] 16 to 18% by weight of chromium and 1 of nickel
5 to 17% by weight, 4.5 to 6% by weight of molybdenum, 0.08% by weight or less of carbon, 1.00% by weight or less of silicon, 2.00% by weight or less of manganese, and the balance stainless steel consisting of iron. A battery was assembled in the same manner as in Example 1 except that steel (9) was used as the positive electrode current collector and the lead, and charging / discharging was repeated for 500 cycles as in Example 1. Then, the battery after the test was disassembled, and corrosion of the current collector and the lead was observed with a microscope. As a result, no corrosion was observed. [Comparative Example] For comparison, chromium is 11.5 to 13% by weight, carbon is 0.15% by weight or less, silicon is 0.50% by weight or less, manganese is 1.00% by weight or less, and the balance is iron. Stainless steel (1), 16-18 wt% chromium, 0.12 wt% or less carbon, 0.75 silicon
Stainless steel (2) containing less than 1% by weight of manganese and less than 1.00% by weight of manganese and the balance being iron, and chromium of 23 to 27.
%, Carbon is 0.20 wt% or less, silicon is 1 wt% or less, manganese is 1.00 wt% or less, and the balance is stainless steel (3) consisting of iron, chromium is 16 to 18 wt%, nickel is 6-8 wt%, carbon less than 0.15 wt%, silicon less than 1.00 wt%, manganese 2.0
Stainless steel containing 0% by weight or less and the balance being iron (4), chromium 18 to 20% by weight, nickel 8 to 1
0.5% by weight, 0.08% by weight or less of carbon, 1.00% by weight or less of silicon, 2.00% by weight or less of manganese, and the balance is iron.
7 to 19% by weight Cr, nickel 10.5 to 13% by weight
Ni, carbon 0.12 wt% or less, silicon 1.00
Stainless steel (6) with weight% or less, manganese 2.00% or less and the balance being iron, and chromium 16 to 18
% By weight, nickel 10-14% by weight, molybdenum 2
~ 3 wt%, carbon 0.08 wt% or less, silicon 1.00 wt% or less, manganese 2.00 wt% or less, and the balance stainless steel (7) positive electrode current collector and lead A battery was assembled in the same manner as in the example except that it was used as above, and charging / discharging was repeated 500 cycles as in the example. Then, the battery after the test was disassembled, and corrosion of the current collector and the lead was observed with a microscope. As a result, many pitting corrosions were observed on the surface of the current collector and the lead. In addition, a deposit was observed on the surface of the metal member on the negative electrode side.

【0026】[0026]

【発明の効果】以上述べたように、本発明によれば、正
極部材にニッケルを11〜17重量%、モリブデンを
3.5〜6重量%含むステンレス鋼を用いることによ
り、4V以上の電圧が印加されても電池部材の溶解がな
い優れた特性を有する有機電解液電池を提供できる。
As described above, according to the present invention, by using stainless steel containing 11 to 17% by weight of nickel and 3.5 to 6% by weight of molybdenum for the positive electrode member, a voltage of 4 V or more can be obtained. It is possible to provide an organic electrolyte battery having excellent characteristics in which the battery member does not dissolve even when applied.

【図面の簡単な説明】[Brief description of drawings]

【図1】ステンレス鋼の電流−電位曲線を測定する試験
装置を示した図。
FIG. 1 is a diagram showing a test apparatus for measuring a current-potential curve of stainless steel.

【図2】ステンレス鋼(1)、(2)及び(3)の電流
−電位曲線。
FIG. 2 is a current-potential curve of stainless steels (1), (2) and (3).

【図3】ステンレス鋼(4)、(5)及び(6)の電流
電位曲線。
FIG. 3: Current-potential curves of stainless steel (4), (5) and (6).

【図4】ステンレス鋼(6)及び(7)の電流−電位曲
線。
FIG. 4: Current-potential curves for stainless steels (6) and (7).

【図5】ステンレス鋼(8)及び(9)の電流−電位曲
線。
FIG. 5: Current-potential curves for stainless steel (8) and (9).

【図6】本発明の実施例および比較例における電池の構
造断面図。
FIG. 6 is a structural cross-sectional view of batteries in Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

11 試料金属 12 フッ素樹脂テープ 13 ニッケルの対極 14 リチウムの参照極 15 電解セル 16 電解セルの蓋 17 電解液 21 正極 22 負極 23 セパレータ 24 電池ケース 25 正極リード 26 封口板 27 ガラスシール 28 ハーメチック端子 29 負極リード 11 Sample Metal 12 Fluorocarbon Resin Tape 13 Nickel Counter Electrode 14 Lithium Reference Electrode 15 Electrolytic Cell 16 Electrolytic Cell Lid 17 Electrolyte 21 Positive Electrode 22 Negative Electrode 23 Separator 24 Battery Case 25 Positive Electrode Lead 26 Sealing Plate 27 Glass Seal 28 Hermetic Terminal 29 Negative Electrode Reed

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電池電圧が4V以上の有機電解液電池の正
極側に用いられる電池部材であって、クロムが16〜2
0重量%、ニッケルが11〜17重量%、モリブデンが
3〜6重量%、炭素が0.08重量%以下、シリコンが
1重量%以下、マンガンが2重量%以下で残部が鉄から
なるステンレス鋼であることを特徴とする電池部材。
1. A battery member used on the positive electrode side of an organic electrolyte battery having a battery voltage of 4 V or more, wherein chromium is 16 to 2
0% by weight, 11-17% by weight of nickel, 3-6% by weight of molybdenum, 0.08% by weight or less of carbon, 1% by weight or less of silicon, 2% by weight or less of manganese, and the balance stainless steel consisting of iron. Is a battery member.
JP4325952A 1992-11-11 1992-11-11 Battery member Pending JPH06150936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4325952A JPH06150936A (en) 1992-11-11 1992-11-11 Battery member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4325952A JPH06150936A (en) 1992-11-11 1992-11-11 Battery member

Publications (1)

Publication Number Publication Date
JPH06150936A true JPH06150936A (en) 1994-05-31

Family

ID=18182444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4325952A Pending JPH06150936A (en) 1992-11-11 1992-11-11 Battery member

Country Status (1)

Country Link
JP (1) JPH06150936A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188128A (en) * 1998-12-24 2000-07-04 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2006164527A (en) * 2004-12-02 2006-06-22 Matsushita Electric Ind Co Ltd Flat type nonaqueous electrolytic solution battery
JP2007328978A (en) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2009076467A (en) * 2008-11-28 2009-04-09 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188128A (en) * 1998-12-24 2000-07-04 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2006164527A (en) * 2004-12-02 2006-06-22 Matsushita Electric Ind Co Ltd Flat type nonaqueous electrolytic solution battery
JP2007328978A (en) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2009076467A (en) * 2008-11-28 2009-04-09 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US5296319A (en) Non-aqueous electrolyte secondary battery
Iwakura et al. The possible use of polymer gel electrolytes in nickel/metal hydride battery
Zhou et al. Development of reliable lithium microreference electrodes for long-term in situ studies of lithium-based battery systems
JPH10507587A (en) Nickel alloy electrodes for electrochemical devices
JPS6117102B2 (en)
CN109301207A (en) A kind of surface layer doping Ce3+And surface layer coats CeO2NCM tertiary cathode material and preparation method thereof
JP4830207B2 (en) battery
JPH1021898A (en) Lithium battery
JPH03285262A (en) Manufacture of positive electrode for nonaqueous electrolytic secondary battery
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JPH06150936A (en) Battery member
JP3426901B2 (en) Non-aqueous electrolyte secondary battery
JPH10188977A (en) Lithium secondary battery
Giner et al. The Sealed Nickel‐Hydrogen Secondary Cell
JPH0554910A (en) Manufacture of nonaqueous secondary battery
JPH06267542A (en) Nonaqueous electrolyte battery
JPH02204976A (en) Electrochenical battery and its manufacture
JPS58163188A (en) Organic electrolyte secondary cell
JPH08180875A (en) Lithium secondary battery
JPH0212776A (en) Nonaqueous electrolyte secondary battery
JPH04188571A (en) Secondary battery with non-aqueous electrolyte
JP5165875B2 (en) Non-aqueous electrolyte battery
JPH08162154A (en) Secondary battery having nonaqueous solvent electrolyt
JPH1064542A (en) Nonaqueous electrolyte secondary battery
JPH11283671A (en) Organic electrolyte secondary battery