JPH06148367A - Nuclear reactor - Google Patents

Nuclear reactor

Info

Publication number
JPH06148367A
JPH06148367A JP4293473A JP29347392A JPH06148367A JP H06148367 A JPH06148367 A JP H06148367A JP 4293473 A JP4293473 A JP 4293473A JP 29347392 A JP29347392 A JP 29347392A JP H06148367 A JPH06148367 A JP H06148367A
Authority
JP
Japan
Prior art keywords
core
reactor
vessel
coolant
primary coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4293473A
Other languages
Japanese (ja)
Inventor
Sadao Hattori
禎男 服部
Morihiko Sato
守彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Central Research Institute of Electric Power Industry
Original Assignee
Toshiba Corp
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Central Research Institute of Electric Power Industry filed Critical Toshiba Corp
Priority to JP4293473A priority Critical patent/JPH06148367A/en
Priority to US08/097,833 priority patent/US5420897A/en
Priority to FR9309410A priority patent/FR2697104B1/en
Publication of JPH06148367A publication Critical patent/JPH06148367A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To contrive large enlargement of nuclear reactor output by equipping a plurality of reactor core vessels housing independent reactor cores in a nuclear reactor vessel and an intermediate cooler for heat-exchanging a primary coolant for a secondary coolant. CONSTITUTION:When a nuclear reactor is started, a primary coolant 26 is supplied to a reactor core vessel 31 through an inflow nozzle 36 from a high pressure plenum 29 in the lower part of a nuclear reactor vessel 25. Heating is performed due to nuclear reaction heat at the time when the coolant 26 passes reactor cores 35 in each vessel 31 and it is discharged from an outflow port 37 to an upper plenum 28. A primary coolant of high temperature guided to a plenum 28 is guided to an intermediate heat exchanger 45 from an inflow port 48 of an intermediate cooler 32 and passes through the tube bundle of the heat exchanger 45. At the time the primary coolant is heat-exchanged for the secondary coolant and cooled therewith. The secondary coolant heated with the exchanger 45 is transmitted to a steam generator 51 through an inflow and outflow tube 52 and feed water is heated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は液体金属冷却方式の原
子炉に係り、特に原子炉容器内にモジュール炉心を収容
した炉心容器を複数台備えた原子炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid metal cooling type nuclear reactor, and more particularly to a nuclear reactor provided with a plurality of core vessels each containing a module core in a nuclear reactor vessel.

【0002】[0002]

【従来の技術】液体金属冷却方式の原子炉は高速増殖炉
として従来から知られている。この高速増殖炉の代表的
な構成例を図6に示す。
2. Description of the Related Art A liquid metal cooling type nuclear reactor is conventionally known as a fast breeder reactor. A typical configuration example of this fast breeder reactor is shown in FIG.

【0003】図6は、液体金属冷却方式の原子炉のう
ち、タンク型原子炉を示す縦断面図であり、この原子炉
は原子炉建屋1内に原子炉室2が生体遮蔽壁3に囲まれ
て建物ベースマット4上に形成されており、原子炉室2
内に一次冷却材容器としての原子炉容器5が格納されて
いる。
FIG. 6 is a vertical cross-sectional view showing a tank type reactor among liquid metal cooling type reactors. In this reactor, a reactor room 2 is surrounded by a biological shield wall 3 in a reactor building 1. And is formed on the building base mat 4 and the reactor room 2
A reactor vessel 5 as a primary coolant vessel is housed inside.

【0004】原子炉容器5内には液体金属ナトリウム等
の液体金属が一次冷却材6として充填され、原子炉容器
5の中央部に炉心7が収容される。この炉心7には多数
の核燃料が装荷されるとともに、原子炉容器5内は炉心
7を境にして上部プレナム8aと下部プレナム8bとに
区画される。炉心7は炉心支持構造物9により原子炉容
器5に支持される。
A liquid metal such as liquid metal sodium is filled as a primary coolant 6 in the reactor vessel 5, and a reactor core 7 is housed in the central portion of the reactor vessel 5. A large number of nuclear fuels are loaded in the core 7, and the inside of the reactor vessel 5 is divided into an upper plenum 8a and a lower plenum 8b with the core 7 as a boundary. The core 7 is supported on the reactor vessel 5 by a core support structure 9.

【0005】炉心7の上方には制御棒駆動装置を備えた
炉心上部機構10が設けられる。この炉心上部機構10
は原子炉容器5の頂部を覆う上蓋としての遮蔽プラグ1
1に支持される一方、この遮蔽プラグ11には一次冷却
材と二次冷却材とを熱交換させる中間熱交換器12や一
次冷却材を原子炉容器5内で循環させる循環ポンプ13
が炉心7の周辺にそれぞれ設けられる。
Above the core 7, there is provided an upper core mechanism 10 having a control rod driving device. This core upper mechanism 10
Is a shield plug 1 as an upper lid that covers the top of the reactor vessel 5.
While being supported by 1, the shield plug 11 has an intermediate heat exchanger 12 for exchanging heat between the primary coolant and the secondary coolant, and a circulation pump 13 for circulating the primary coolant in the reactor vessel 5.
Are provided around the core 7, respectively.

【0006】中間熱交換器12は二次冷却材の流出入管
14を介して蒸気発生器15に接続され、この蒸気発生
器15で図示しない蒸気タービンを駆動させる蒸気を発
生させるようになっている。
The intermediate heat exchanger 12 is connected to a steam generator 15 through a secondary coolant inflow / outflow pipe 14, and the steam generator 15 generates steam for driving a steam turbine (not shown). .

【0007】このタンク型原子炉においては、原子炉の
起動により、炉心7での核反応により加熱された一次冷
却材6は上部プレナム8aから中間熱交換器12に流入
し、この中間熱交換器12で二次冷却材と熱交換されて
冷却される。
In this tank-type nuclear reactor, the primary coolant 6 heated by the nuclear reaction in the core 7 flows into the intermediate heat exchanger 12 from the upper plenum 8a when the nuclear reactor is started, and the intermediate heat exchanger 12 is heated. At 12, it is cooled by exchanging heat with the secondary coolant.

【0008】中間熱交換器12で冷却された一次冷却材
6は、続いて下部プレナム8bを経て循環ポンプ13に
案内され、この循環ポンプ13で昇圧される。昇圧され
た一次冷却材6は炉心7下方の高圧プレナム8cに吐出
され、この高圧プレナム8cから再び炉心7に導かれる
ようになっている。
The primary coolant 6 cooled by the intermediate heat exchanger 12 is subsequently guided to the circulation pump 13 via the lower plenum 8b and is pressurized by the circulation pump 13. The pressurized primary coolant 6 is discharged to the high pressure plenum 8c below the core 7, and is guided to the core 7 again from this high pressure plenum 8c.

【0009】一方、中間熱交換器12で一次冷却材6と
熱交換して加熱された二次冷却材は流出入管1の流出管
を通って蒸気発生器15に送られ、この蒸気発生器15
で給水を加熱し、図示しない蒸気タービンを駆動させる
蒸気を発生させている。蒸気発生器15で熱交換して冷
却された二次冷却材は再び流出入管14を通って中間熱
交換器12に戻され、二次冷却材の閉じた循環ループを
形成している。
On the other hand, the secondary coolant heated by exchanging heat with the primary coolant 6 in the intermediate heat exchanger 12 is sent to the steam generator 15 through the outflow pipe of the inflow / outflow pipe 1, and this steam generator 15
The feed water is heated by this to generate steam for driving a steam turbine (not shown). The secondary coolant cooled by heat exchange in the steam generator 15 is returned to the intermediate heat exchanger 12 through the inflow / outflow pipe 14 to form a closed circulation loop of the secondary coolant.

【0010】[0010]

【発明が解決しようとする課題】従来の液体金属冷却方
式のタンク型原子炉においては、原子炉容器5内の中央
部に単一炉心7を収容しており、この炉心7は原子炉出
力の増大に伴って大形化している。
In the conventional liquid metal cooling type tank reactor, a single reactor core 7 is housed in the central portion of the reactor vessel 5, and the reactor core 7 has a reactor power output. It is becoming larger as it grows.

【0011】従来の液体金属冷却型原子炉は、原子炉容
器5内に単一の炉心を収容し、原子炉出力の大出力化に
伴い、単一炉心をキープして大形化するので、炉心の制
御が複雑になるとともに、炉心の一部に万一異常が生じ
た場合、大形の炉心全体の挙動に影響を与えるため、炉
心全体の核反応を停止させる必要がある。
In the conventional liquid metal cooling type nuclear reactor, a single core is housed in the reactor vessel 5, and as the output of the reactor increases, the size of the single core is kept large. The control of the core becomes complicated, and if an abnormality occurs in a part of the core, it affects the behavior of the whole large core, so it is necessary to stop the nuclear reaction of the whole core.

【0012】また、従来の原子炉は、単一炉心7をキー
プして炉心の大形化を図っているので、炉心支持構造物
9等の炉心構造物が大きくなり、炉心構造物の保守・点
検・修理や交換時には、大掛りな取外し・取付作業が必
要となる。
Further, in the conventional nuclear reactor, since the single core 7 is kept to increase the size of the core, the core support structure 9 and other core structures become large and maintenance / maintenance of the core structure is improved. Large-scale removal / installation work is required for inspection / repair or replacement.

【0013】炉心支持構造物9の取外しや取付作業を行
なう場合、炉心支持構造物9そのものの取扱いの他に、
炉心全体を原子炉容器5外に退避させたり、一次冷却材
である液体金属の排出や保管のための装置を別途設置す
る必要がある。
When the core support structure 9 is removed or installed, in addition to handling the core support structure 9 itself,
It is necessary to evacuate the entire reactor core to the outside of the reactor vessel 5, or to separately install a device for discharging and storing the liquid metal that is the primary coolant.

【0014】さらに、従来の原子炉では、単一炉心をキ
ープして大形化するので、炉心7の出力停止は原子力発
電プラント全体の停止に繋り、経済的に大きな負担とな
る。また、原子炉の炉心を単一としているので、原子力
発電プラントのプラント出力に応じた炉心設計や核的臨
界実験をその都度行なう必要があり、炉心特性の実証費
が嵩む等の問題があった。
Further, in the conventional nuclear reactor, since the single core is kept and is enlarged, the output stop of the core 7 leads to the stop of the whole nuclear power plant, which is a heavy economical burden. Also, since the reactor core is single, it is necessary to carry out a core design and a nuclear criticality experiment each time according to the plant output of the nuclear power plant, which causes a problem that the verification cost of the core characteristics increases. .

【0015】この発明は、上述した事情を考慮してなれ
さたもので、複数台の炉心容器の組合せにより原子炉出
力の大出力化を図ることができるとともに、原子炉出力
が増大しても炉心制御の容易性を確保できる原子炉を提
供することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and it is possible to increase the reactor output by combining a plurality of core vessels and to increase the reactor output. An object of the present invention is to provide a nuclear reactor capable of ensuring ease of core control.

【0016】この発明の他の目的は、炉心容器へのアク
セス性を改善し、炉心容器等の炉心構造物の取外し、取
付作業を簡素化し、炉心構造物の交換を簡単かつ容易に
行なうことができる原子炉を提供することにある。
Another object of the present invention is to improve the accessibility to the core vessel, simplify the removal and installation work of the core structure such as the core vessel, and easily and easily replace the core structure. It is to provide a reactor that can.

【0017】この発明のさらに他の目的は、炉心の運転
を一部停止させたままプラントの出力運転を可能とした
原子炉を提供することにある。
Still another object of the present invention is to provide a nuclear reactor capable of operating the output of a plant while partially stopping the operation of the core.

【0018】この発明の別の目的は、単基原子炉出力が
大きなプラントになっても新たな炉心設計や核的臨界実
験を回避でき、炉心特性の実証費を大幅に低減させるこ
とができる原子炉を提供することにある。
Another object of the present invention is to avoid a new core design and a nuclear criticality experiment even in a plant with a large single reactor output, and to significantly reduce the verification cost of core characteristics. To provide a furnace.

【0019】[0019]

【課題を解決するための手段】この発明に係る原子炉
は、上述した課題を解決するために、請求項1に記載し
たように、原子炉容器に一次冷却材を充填させるととも
に、上記原子炉容器内に、独立した炉心を収容した複数
台の炉心容器と、前記一次冷却材を二次冷却材と熱交換
させる中間熱交換器を備えた中間冷却機とをそれぞれ設
置したものである。
In order to solve the above-mentioned problems, a nuclear reactor according to the present invention has a reactor vessel filled with a primary coolant as described in claim 1, and the above-mentioned nuclear reactor. A plurality of core vessels containing independent cores and an intercooler equipped with an intermediate heat exchanger for exchanging heat between the primary coolant and the secondary coolant are installed in the vessel.

【0020】また、この発明に係る原子炉は、上述した
課題を解決するために、請求項1の記載内容に加えて請
求項2に記載したように、各炉心容器の上部に炉心内に
制御棒を出し入れする制御棒駆動装置をそれぞれ設けた
ものである。
Further, in order to solve the above-mentioned problems, the nuclear reactor according to the present invention is controlled in the core above each core vessel as described in claim 2 in addition to the contents of claim 1. Control rod drive devices for moving the rods in and out are respectively provided.

【0021】さらに、上述した課題を解決するために、
この発明に係る原子炉は、請求項3に記載したように、
原子炉容器の内周壁に沿って内側に炉心容器を複数台列
状に設置するとともに、上記炉心容器側の環状帯の内側
に中間冷却機を設置し、この中間冷却機は一次冷却材と
二次冷却材とを熱交換させる中間熱交換器の下部に一次
冷却材の循環ポンプを設けたものである。
Further, in order to solve the above-mentioned problems,
A nuclear reactor according to the present invention has the following features.
A plurality of core vessels are installed in a row along the inner peripheral wall of the reactor vessel, and an intercooler is installed inside the annular zone on the core vessel side. A circulation pump for the primary coolant is provided below the intermediate heat exchanger for exchanging heat with the secondary coolant.

【0022】さらにまた、上述した課題を解決するため
に、この発明に係る原子炉は、請求項4に記載したよう
に、原子炉容器の内周壁に沿って内側に炉心容器を複数
台列状に配置するとともに、上記炉心容器列の環状帯の
内側に中間熱交換器を設置し、さらに前記各炉心容器の
下部に一次冷却材を循環させる循環ポンプを設けたもの
である。
Further, in order to solve the above-mentioned problems, the reactor according to the present invention has a plurality of core vessels arranged inside along the inner peripheral wall of the reactor vessel as described in claim 4. In addition, the intermediate heat exchanger is installed inside the annular zone of the core vessel row, and the circulation pump for circulating the primary coolant is provided under each core vessel.

【0023】また、この発明に係る原子炉は、上述した
課題を解決するために、請求項5に記載したように、原
子炉容器の上部開口部は上蓋で閉塞される一方、この遮
蔽プラグに形成された貫通口に炉心容器が着脱自在に設
けられ、原子炉容器内に設置される炉心容器の個数を選
定自在としたものである。
Further, in order to solve the above-mentioned problems, the nuclear reactor according to the present invention, as described in claim 5, has the upper opening of the nuclear reactor vessel closed by the upper lid, while A core vessel is detachably provided in the formed through-hole, and the number of core vessels installed in the reactor vessel can be freely selected.

【0024】[0024]

【作用】請求項1に記載した原子炉では、一次冷却材を
充填した原子炉容器内に、モジュール炉心を収容した炉
心容器を複数台設置したので、複数台の炉心容器の組合
せにより、原子炉出力の大出力化を図ることができる一
方、1台当りの炉心容器に収容されるモジュール炉心は
小形のものでよいので、核的特性の単純な小形炉心の制
御でよく、炉心運転制御が容易になる。
In the reactor according to the first aspect of the present invention, a plurality of core vessels containing the module cores are installed in the reactor vessel filled with the primary coolant. While the power output can be increased, the module core that is housed in each core container can be small, so it is possible to control a small core with simple nuclear characteristics and easy core operation control. become.

【0025】また、請求項2に記載した原子炉では、各
炉心容器の上部に制御棒駆動装置をそれぞれ設け、この
制御棒駆動装置で各炉心容器内の炉心の運転制御を独立
して行なうことができるので、炉心の運転を一部停止さ
せたまま、プラント出力運転を行なうことができる。逆
に、単基原子炉出力が大きなプラントでも、炉心の部分
停止運転が可能になる。
Further, in the nuclear reactor described in claim 2, a control rod driving device is provided above each core vessel, and the control rod driving device independently controls the operation of the core in each core vessel. Therefore, the plant output operation can be performed with the operation of the core partially stopped. On the contrary, even in a plant with a large output of a single reactor, partial shutdown operation of the core becomes possible.

【0026】また、請求項3に記載した原子炉では、原
子炉容器の内周壁に沿って内側に炉心容器を複数台設置
したので、炉心容器を周辺配置とすることができ、炉心
容器へのアクセス性が改善される一方、炉心容器列の環
状帯内側に配置される中間冷却機は、中間熱交換器と一
次冷却材の循環ポンプとを合体させた機器構成としたの
で、炉心容器列の内側領域で機器配置スペースを確保す
ることができる。
Further, in the reactor according to the third aspect, since a plurality of core vessels are installed inside along the inner peripheral wall of the reactor vessel, the core vessels can be arranged in the periphery, and While the accessibility is improved, the intercooler arranged inside the annular zone of the core vessel row has an equipment configuration in which the intermediate heat exchanger and the circulation pump of the primary coolant are combined, so that A device arrangement space can be secured in the inner area.

【0027】さらに、請求項4に記載した原子炉では、
請求項3に記載したものと同様、炉心容器を原子炉容器
内で周辺配置とすることで炉心容器へのアクセス性が改
善される一方、炉心容器は炉心下部に一次冷却材の循環
ポンプを備えたので、炉心容器列によって形成される環
状帯の内側に中間熱交換器の設置スペースを充分に確保
することができる。また、循環ポンプに万一異常が生じ
ても、異常が生じた循環ポンプに繋るモジュール炉心を
停止させるだけで、他のモジュール炉心は停止させるこ
となく、原子炉の運転を継続させることができる。
Further, in the nuclear reactor described in claim 4,
Similar to the one described in claim 3, the accessibility to the core vessel is improved by arranging the core vessel in the periphery of the reactor vessel, while the core vessel is provided with a circulation pump for the primary coolant in the lower part of the core. Therefore, a sufficient installation space for the intermediate heat exchanger can be secured inside the annular band formed by the core vessel rows. Further, even if an abnormality occurs in the circulation pump, it is possible to continue the operation of the reactor without stopping the other module cores only by stopping the module core connected to the circulation pump in which the abnormality occurs. .

【0028】さらにまた、請求項5に記載したように、
原子炉容器の上部開口部を覆う上蓋に形成される貫通口
に炉心容器を着脱自在に設けることにより、個々の炉心
容器は上蓋の貫通口を介して挿入や取外しを行なうこと
ができる。したがって、単基原子炉出力が大きなプラン
トの炉心構造物の交換を、小形・軽量な炉心構造物の取
扱いで行なうことができる。
Furthermore, as described in claim 5,
By detachably providing the core vessel in the through hole formed in the upper lid that covers the upper opening of the reactor vessel, each core vessel can be inserted or removed through the through hole in the upper lid. Therefore, it is possible to replace the core structure of a plant having a large output of a single reactor by handling the small and lightweight core structure.

【0029】また、炉心容器の個数や炉心運転の選択・
組合せにより、所要の原子炉出力を得ることができる。
その際、炉心容器は全て同一炉心設計とすることがで
き、プラント出力に応じた炉心設計を単一設計炉心の組
合せで得ることができるので、新たな炉心設計や核的臨
界実験が不要となり、炉心特性の実証費を大幅に低減さ
せることができる。
Further, selection of the number of core vessels and core operation
Depending on the combination, the required reactor power can be obtained.
At that time, all the core vessels can have the same core design, and the core design according to the plant output can be obtained by combining the single design cores, so that a new core design and a nuclear critical experiment are unnecessary, It is possible to significantly reduce the verification cost of core characteristics.

【0030】炉心容器に収容されるモジュール炉心を、
予め複数種類用意し、複数種の炉心容器を組み合せた構
成としてもよい。
The module core accommodated in the core container is
A plurality of types may be prepared in advance and a plurality of types of core vessels may be combined.

【0031】[0031]

【実施例】以下、この発明に係る原子炉の一実施例につ
いて添付図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a nuclear reactor according to the present invention will be described below with reference to the accompanying drawings.

【0032】図1は、この発明を液体金属冷却方式のタ
ンク型原子炉に適用した実施例を示す。この原子炉は、
原子炉建屋20内に原子炉室21が形成される。この原
子炉室21はコンクリート製の生体遮蔽壁22および生
体遮蔽天井壁23に囲まれて建物ベースマット24上に
形成され、内部にタンク型一次冷却材容器としての原子
炉容器25が格納される。
FIG. 1 shows an embodiment in which the present invention is applied to a liquid metal cooling type tank reactor. This reactor is
A reactor room 21 is formed in the reactor building 20. The reactor room 21 is formed on a building base mat 24 by being surrounded by a living body shielding wall 22 and a living body shielding ceiling wall 23 made of concrete, and a reactor vessel 25 as a tank type primary coolant container is stored inside. .

【0033】原子炉容器25内には液体金属ナトリウム
等の液体金属が一次冷却材26として充填され、原子炉
容器25内に圧力隔壁27により上部プレナム28と下
部の高圧プレナム29とに区画される。
A liquid metal such as liquid metal sodium is filled as a primary coolant 26 in the reactor vessel 25, and is divided into an upper plenum 28 and a lower high pressure plenum 29 by a pressure partition wall 27 in the reactor vessel 25. .

【0034】原子炉容器25の頂部開口部は、遮蔽プラ
グとしての上蓋30で覆われる一方、この上蓋30に形
成される貫通口に炉心容器31と中間冷却機32がそれ
ぞれ鉛直に配置される。上蓋30は生体遮蔽天井壁23
の一部を構成しており、炉心容器31や中間冷却機32
は原子炉容器25の上部鏡板を貫いて容器内部に垂設さ
れる。
The top opening of the reactor vessel 25 is covered with an upper lid 30 as a shielding plug, and a core vessel 31 and an intercooler 32 are vertically arranged at through holes formed in the upper lid 30. The upper lid 30 is a living body shielding ceiling wall 23
Part of the core vessel 31 and the intercooler 32.
Is hung vertically inside the vessel through the upper end plate of the reactor vessel 25.

【0035】炉心容器31は原子炉容器25の内周壁に
沿って内側に複数台、例えば図2に示すように9台が円
周方向に列状に配置され、炉心容器列の環状帯の内側に
1台(基)または複数台、例えば3台の中間冷却機32
が配置される。
A plurality of core vessels 31 are arranged inside along the inner peripheral wall of the reactor vessel 25, for example, 9 in a circumferential direction as shown in FIG. One (base) or a plurality of, for example, three intercoolers 32
Are placed.

【0036】各炉心容器31は内部に燃料棒および制御
棒で構成される炉心(モジュール炉心)35がそれぞれ
収容される一方、炉心容器31の胴部下端部に流入ノズ
ル36が胴部上部に流出ポート37がそれぞれ形成され
る。流入ノズル36は圧力隔壁27の取付部開口に係合
して下部の高圧プレナム29内に開口し、流出ポート3
7は上部プレナム28に開口している。
Each core vessel 31 contains therein a core (module core) 35 composed of fuel rods and control rods, while an inflow nozzle 36 flows out at the lower end of the body of the core vessel 31 to the upper part of the body. Ports 37 are formed respectively. The inflow nozzle 36 engages with the attachment opening of the pressure partition 27 and opens into the lower high pressure plenum 29, and the outflow port 3
7 is open to the upper plenum 28.

【0037】炉心容器31の上部開口部には炉心遮蔽プ
ラグ40が取り付けられ、この炉心遮蔽プラグ40の上
部に制御棒駆動装置41が設けられる。この制御棒駆動
装置41により制御棒42の炉心35への出し入れが制
御されるようになっている。また、中間冷却機32は円
筒状中間冷却容器44を備え、この中間冷却容器44内
に一次冷却材と二次冷却材を熱交換させる中間熱交換器
45と一次冷却材を強制循環させる循環ポンプ46とが
収容される。循環ポンプ46は電磁ポンプで構成され、
中間熱交換器45の下方に設置される。
A core shield plug 40 is attached to the upper opening of the core vessel 31, and a control rod drive device 41 is provided on the core shield plug 40. The control rod drive device 41 controls the movement of the control rod 42 into and out of the core 35. Further, the intercooler 32 includes a cylindrical intercooling container 44, and an intermediary heat exchanger 45 for exchanging heat between the primary cooling material and the secondary cooling material in the intercooling container 44 and a circulation pump for forcibly circulating the primary cooling material. And 46 are accommodated. The circulation pump 46 is composed of an electromagnetic pump,
It is installed below the intermediate heat exchanger 45.

【0038】循環ポンプ46の下部には流出ノズル47
が形成され、この流出ノズル47は圧力隔壁27の取付
開口部に嵌合支持されて下部の高圧プレナム29内に開
口している。また、中間冷却容器44は中間熱交換器4
5の上方で流入ポート48が形成されており、流入ポー
ト48は上部プレナム28内に開口している。
An outlet nozzle 47 is provided below the circulation pump 46.
The outflow nozzle 47 is fitted and supported in the mounting opening of the pressure partition wall 27 and opens in the lower high pressure plenum 29. Further, the intermediate cooling container 44 is the intermediate heat exchanger 4
An inflow port 48 is formed above 5, and the inflow port 48 opens into the upper plenum 28.

【0039】また中間冷却容器44の上部開口部には中
間冷却機遮蔽プラグ50が設けられ、この遮蔽プラグ5
0の上部に蒸気発生器51に接続される二次冷却材の流
出入配管52が設けられる。流出入配管52は蒸気発生
器51と中間熱交換器45とを接続して、二次冷却材を
循環させる閉じた循環ループを形成している。蒸気発生
器51で図示しない蒸気タービンを駆動させる蒸気が発
生せしめられるようになっている。
An intercooler shield plug 50 is provided at the upper opening of the intercooler container 44.
A secondary coolant inflow / outflow pipe 52 connected to the steam generator 51 is provided at the upper part of 0. The inflow / outflow pipe 52 connects the steam generator 51 and the intermediate heat exchanger 45 to form a closed circulation loop for circulating the secondary coolant. The steam generator 51 is adapted to generate steam for driving a steam turbine (not shown).

【0040】この原子炉が起動されると、原子炉容器2
5下部の高圧プレナム29から流入ノズル36を通って
炉心容器31内に一次冷却材26が供給される。供給さ
れた一次冷却材26は各炉心容器31内の炉心35を通
過する際に核反応熱により加熱され、流出ポート37か
ら上部プレナム28内に排出される。
When this reactor is started, the reactor vessel 2
The primary coolant 26 is supplied from the high pressure plenum 29 at the lower part of the No. 5 through the inflow nozzle 36 into the core vessel 31. The supplied primary coolant 26 is heated by nuclear reaction heat when passing through the core 35 in each core vessel 31, and is discharged from the outflow port 37 into the upper plenum 28.

【0041】上部プレナム28に案内された高温の一次
冷却材は中間冷却機32の流入ポート48から中間熱交
換器45に案内され、中間熱交換器45の管束を通過す
る。その際に一次冷却材は二次冷却材と熱交換され、冷
却される。二次冷却材を加熱して自ら冷却された一次冷
却材26は循環ポンプ46である電磁ポンプで昇圧さ
れ、流出ノズル47から高圧プレナム29内に戻され
る。
The high temperature primary coolant guided to the upper plenum 28 is guided from the inflow port 48 of the intercooler 32 to the intermediate heat exchanger 45 and passes through the tube bundle of the intermediate heat exchanger 45. At that time, the primary coolant exchanges heat with the secondary coolant and is cooled. The primary coolant 26, which has been cooled by heating the secondary coolant, is pressurized by an electromagnetic pump, which is a circulation pump 46, and returned from the outflow nozzle 47 into the high pressure plenum 29.

【0042】一方、中間冷却機32の中間熱交換器45
で加熱された二次冷却材は流出入管(流出管)52を通
って蒸気発生器51に送られ、ここで給水を加熱し、図
示しない蒸気タービンを駆動させる蒸気を得るようにな
っている。
On the other hand, the intermediate heat exchanger 45 of the intermediate cooler 32
The secondary coolant heated in (1) is sent to the steam generator 51 through the inflow / outflow pipe (outflow pipe) 52, where the feed water is heated and steam for driving a steam turbine (not shown) is obtained.

【0043】給水を加熱することにより冷却された二次
冷却材は続いて流出入管(流入管)52を通って中間冷
却機32の中間熱交換器45に戻される。
The secondary coolant cooled by heating the feed water is subsequently returned to the intermediate heat exchanger 45 of the intercooler 32 through the inflow / outflow pipe (inflow pipe) 52.

【0044】この原子炉では、一次冷却材容器としての
原子炉容器25内に複数台の炉心容器31が収容され、
炉心容器31内に形成されるモジュール炉心35一個当
りの熱出力を例えば10万KWの小形炉心とすれば、図
1および図2に示すように原子炉容器25内に9台の炉
心容器31を収容した原子炉の熱出力は9台×10万K
W=90万KWの大出力(単基原子炉出力)が得られ
る。したがって、従来の液体金属冷却方式の原子炉のよ
うに原子炉容器内に単一の大形炉心を収容したものと異
なって核的抑制が容易な小形炉心の組合せとなり、小形
炉心35の特性を活かして単基原子炉出力の大きなプラ
ントが得られ、しかもその炉心35の運転制御を容易に
行なうことができる。
In this reactor, a plurality of core vessels 31 are housed in a reactor vessel 25 as a primary coolant vessel,
If the heat output per module core 35 formed in the core vessel 31 is, for example, a small core of 100,000 KW, nine core vessels 31 are provided in the reactor vessel 25 as shown in FIGS. 1 and 2. The thermal output of the contained reactor is 9 units × 100,000K
A large output of W = 900,000 KW (single unit reactor output) can be obtained. Therefore, unlike a conventional liquid metal cooling type reactor in which a single large reactor core is housed in a reactor vessel, a small reactor core combination that facilitates nuclear suppression is provided, and the characteristics of the small reactor core 35 are reduced. Taking advantage of this, a plant having a large output of a single reactor can be obtained, and the operation control of the core 35 can be easily performed.

【0045】例えば炉心35一個当りの熱出力を10万
KWの小形炉心とした場合、炉心容器31の外径寸法を
1.5m以内に納めることができる。
For example, in the case of a small core having a heat output of 100,000 KW per core 35, the outer diameter of the core vessel 31 can be kept within 1.5 m.

【0046】このため、原子炉容器25内に複数台の炉
心容器31を収容し、単基原子炉出力を大出力化して
も、炉心支持構造物などの炉心構造物の大形化を回避で
き、小形の炉心構造物とすることができるので、その取
外しや交換が可能となる。また、原子炉容器25の内周
壁に沿って炉心容器31を配置することにより、炉心容
器31へのアクセス性が改善される。特に、生体遮蔽天
井壁23上面において、個々のモジュール炉心35への
燃料交換装置(図示せず)のアクセス性や個々の炉心支
持構造物を含む炉心容器31の取外しや交換のためのア
クセス性が改善され、良好となる。
Therefore, even if a plurality of core vessels 31 are accommodated in the reactor vessel 25 and the output of the single reactor is increased, the enlargement of the core support structure and other core structures can be avoided. Since it can be a small-sized core structure, it can be removed and replaced. Further, by disposing the core vessel 31 along the inner peripheral wall of the reactor vessel 25, accessibility to the core vessel 31 is improved. In particular, on the upper surface of the living body shielding ceiling wall 23, the accessibility of the fuel exchange device (not shown) to the individual module cores 35 and the accessibility for the removal and replacement of the core vessel 31 including the individual core support structures are improved. Improved and good.

【0047】また、炉心容器31列の環状帯の内側に配
置される中間冷却機32は、中間熱交換器45と循環ポ
ンプ46とを合体させた機器構成としたので、炉心容器
列の内側領域で機器配置スペースを充分に確保すること
ができる。
Further, since the intercooler 32 arranged inside the annular band of the row of core vessels 31 has a device structure in which the intermediate heat exchanger 45 and the circulation pump 46 are combined, the inner region of the row of core vessels is formed. It is possible to secure a sufficient space for equipment placement.

【0048】図3および図4はこの発明に係る原子炉の
他の実施例を示すものである。
FIGS. 3 and 4 show another embodiment of the nuclear reactor according to the present invention.

【0049】この実施例に示された原子炉は、原子炉容
器内に収容される炉心容器60と中間冷却機61の構造
と設置台数を異にしたもので、他の構成は、図1および
図2に示したものと異ならないので、共通部材には同一
符号を付して説明を省略する。
The nuclear reactor shown in this embodiment is different in the structure and the number of installed core vessels 60 and intercoolers 61 housed in the reactor vessel. Since it is not different from that shown in FIG. 2, common members are denoted by the same reference numerals, and description thereof will be omitted.

【0050】この原子炉は原子炉容器25内に内周壁に
沿って内側に複数台(基)、例えば10台の炉心容器6
0を円周方向に列状に設置させるとともに、各炉心容器
60内の上部に炉心62を、下部に電磁ポンプである循
環ポンプ63をそれぞれ収容したものである。
This reactor includes a plurality of reactors (groups) inside the reactor vessel 25 along the inner peripheral wall, for example, 10 reactor core vessels 6
0s are arranged in a row in the circumferential direction, and a core 62 is housed in the upper part of each core vessel 60, and a circulation pump 63, which is an electromagnetic pump, is housed in the lower part.

【0051】炉心容器60は循環ポンプ63の下方に流
入ノズル36を形成し、この流入ノズル36が圧力隔壁
27の取付部に形成される開口部に嵌合して支持され、
この流入ノズル36を介して下部プレナム29に連通し
ている。
The core vessel 60 has an inflow nozzle 36 formed below the circulation pump 63, and the inflow nozzle 36 is fitted into and supported by an opening formed in the mounting portion of the pressure partition wall 27.
The inflow nozzle 36 communicates with the lower plenum 29.

【0052】また、炉心容器60は炉心62の上方で流
出ポート37が形成され、循環ポンプ63で昇圧され、
炉心62で加熱された一次冷却材26が流出ポート37
を通って上部プレナム28に案内されるようになってい
る。
In the core vessel 60, the outflow port 37 is formed above the core 62 and the pressure is increased by the circulation pump 63.
The primary coolant 26 heated by the core 62 flows out of the outflow port 37.
Through the upper plenum 28.

【0053】一方、複数台の炉心容器60を円周方向に
列状に配列した環状帯の内側には1台または複数台
(基)の中間冷却材61が配置される。この中間冷却機
61は円筒状の中間冷却容器65内に収容される中間熱
交換器66であり、この中間熱交換器66の下方に流出
ノズル47が、その上方に流入ポート48がそれぞれ形
成される。
On the other hand, one or more (base) intermediate coolants 61 are arranged inside the annular band in which a plurality of core vessels 60 are arranged in a row in the circumferential direction. The intermediate cooler 61 is an intermediate heat exchanger 66 housed in a cylindrical intermediate cooling container 65. An outflow nozzle 47 is formed below the intermediate heat exchanger 66, and an inflow port 48 is formed above the intermediate heat exchanger 66. It

【0054】しかして、上部プレナム28に案内された
高温の一次冷却材26は中間冷却機61の流入ポート4
8を通って中間熱交換器66に案内され、この中間熱交
換器66で一次冷却材26と二次冷却材とを熱交換して
いる。二次冷却材を加熱して冷却された一次冷却材26
は続いて中間冷却機61の流出ノズル47から下部プレ
ナム29内に流出され、この下部プレナム29から再び
炉心容器60の流入ノズル36に吸い込まれる。
Therefore, the high temperature primary coolant 26 guided to the upper plenum 28 is transferred to the inflow port 4 of the intercooler 61.
8 is guided to an intermediate heat exchanger 66, and the intermediate heat exchanger 66 exchanges heat between the primary coolant 26 and the secondary coolant. Primary coolant 26 cooled by heating the secondary coolant
Is then discharged from the outflow nozzle 47 of the intercooler 61 into the lower plenum 29, and is again sucked into the inflow nozzle 36 of the core vessel 60 from the lower plenum 29.

【0055】一方、中間熱交換器66で熱交換され、温
度上昇した二次冷却材は、流出入管52を通って蒸気発
生器51に送られ、この蒸気発生器51で給水を加熱し
て蒸気タービン(図示せず)を駆動させる蒸気を発生さ
せている。給水を加熱して温度降下した二次冷却材は流
出入管52を通って中間熱交換器66に再び戻され、閉
じた二次冷却材の循環ループを形成している。
On the other hand, the secondary coolant that has undergone heat exchange in the intermediate heat exchanger 66 and has risen in temperature is sent to the steam generator 51 through the inflow / outflow pipe 52, and the steam generator 51 heats the feed water to steam. It produces steam that drives a turbine (not shown). The secondary coolant whose temperature has been lowered by heating the feed water is returned again to the intermediate heat exchanger 66 through the inflow / outflow pipe 52 to form a closed secondary coolant circulation loop.

【0056】この原子炉では、図1および図2に示した
実施例で得られる作用効果に加え、個々の炉心容器61
に備えられる循環ポンプ63に異常が生じた場合、この
循環ポンプ63に繋る炉心62のみの出力を制御棒駆動
装置41の作動により停止させ、対応する循環ポンプ6
3だけを停止させることにより、他の炉心は停止させる
必要はなく、プラントの運転をそのまま継続させること
ができる。
In this reactor, in addition to the effects obtained in the embodiment shown in FIGS. 1 and 2, the individual core vessels 61 are
When an abnormality occurs in the circulation pump 63 provided in the, the output of only the core 62 connected to this circulation pump 63 is stopped by the operation of the control rod drive device 41, and the corresponding circulation pump 6
By stopping only No. 3, it is not necessary to stop the other cores, and the plant operation can be continued as it is.

【0057】図5(A)および(B)はこの発明に係る
原子炉のさらに他の実施例を示す原子炉上部の平面図で
ある。
FIGS. 5 (A) and 5 (B) are plan views of the upper part of a nuclear reactor showing still another embodiment of the nuclear reactor according to the present invention.

【0058】図5(A)および(B)は原子炉出力変更
例を示すもので、図5(A)では原子炉容器25内に9
台(基)の同一設計の炉心容器31を収容しており、図
5(B)では6台(基)の炉心容器31を収容してい
る。
FIGS. 5 (A) and 5 (B) show an example of changing the reactor output. In FIG.
The (core) core vessels 31 of the same design are accommodated, and in FIG. 5 (B), the six (core) core vessels 31 are accommodated.

【0059】各炉心容器31はいずれも同一の炉心設計
により構成され、例えば炉心1基(個)の熱出力を10
万KWとすれば、図5(A)の原子炉では90万KWの
単基原子炉出力が得られ、図5(B)の原子炉では60
万KWの単基原子炉出力が得られる。したがって、同一
炉心設計では実証されたモジュール炉心の個数の組合せ
で、種々の原子炉出力の選定が可能となる。
Each core vessel 31 has the same core design, and for example, the heat output of one core (piece) is 10
If it is 10,000 KW, the reactor of FIG. 5 (A) can obtain a single-unit reactor output of 900,000 KW, and the reactor of FIG.
A single reactor power output of 10,000 KW can be obtained. Therefore, various reactor powers can be selected by combining the number of module cores that have been proved in the same core design.

【0060】なお、この発明の実施例の説明では、炉心
容器内に形成される炉心を、同一炉心設計で実証された
モジュール小形炉心を用いる例を説明したが、複数種の
熱出力を有する実証済みの小形炉心を予め用意するよう
にしてもよい。
In the description of the embodiments of the present invention, the core formed in the core vessel is the module small core which has been proved by the same core design, but the demonstration has plural kinds of heat output. A small core that has already been used may be prepared in advance.

【0061】[0061]

【発明の効果】以上に述べたようにこの発明に係る原子
炉においては、請求項1に記載したように、一次冷却材
を充填した原子炉容器内に、モジュール炉心を収容した
炉心容器を複数台設置したので、複数台の炉心容器の組
合せにより、原子炉出力の大出力化を図ることができる
一方、1台当りの炉心容器に収容されるモジュール炉心
は小形のものでよいので、核的特性の単純な小形炉心の
制御でよく、炉心運転制御が容易になる。
As described above, in the nuclear reactor according to the present invention, as described in claim 1, a plurality of core vessels accommodating the module cores are provided in the reactor vessel filled with the primary coolant. Since multiple units are installed, it is possible to increase the reactor output by combining multiple core vessels. On the other hand, the module core accommodated in each core vessel can be small, so Control of a small core with simple characteristics is sufficient, and core operation control becomes easy.

【0062】また、請求項2に記載した原子炉では、各
炉心容器の上部に制御棒駆動装置をそれぞれ設け、この
制御棒駆動装置で各炉心容器内の炉心の運転制御を独立
して行なうことができるので、炉心の運転を一部停止さ
せたまま、プラント出力運転を行なうことができる。逆
に、単基原子炉出力が大きなプラントでも、炉心の部分
停止運転が可能になる。
In the nuclear reactor according to the second aspect of the present invention, a control rod drive device is provided above each core vessel, and the operation control of the core in each core vessel is independently performed by this control rod drive device. Therefore, the plant output operation can be performed with the operation of the core partially stopped. On the contrary, even in a plant with a large output of a single reactor, partial shutdown operation of the core becomes possible.

【0063】一方、請求項3に記載した原子炉では、原
子炉容器の内周壁に沿って内側に炉心容器を複数台設置
したので、炉心容器を周辺配置とすることができ、炉心
容器へのアクセス性が改善される一方、炉心容器列の環
状帯内側に配置される中間冷却機は、中間熱交換器と一
次冷却材の循環ポンプとを合体させた機器構成としたの
で、炉心容器列の内側領域で機器配置スペースを確保す
ることができる。
On the other hand, in the reactor described in claim 3, since a plurality of core vessels are installed inside along the inner peripheral wall of the reactor vessel, the core vessels can be arranged in the periphery and While the accessibility is improved, the intercooler arranged inside the annular zone of the core vessel row has an equipment configuration in which the intermediate heat exchanger and the circulation pump of the primary coolant are combined, so that A device arrangement space can be secured in the inner area.

【0064】さらに、請求項4に記載した原子炉では、
請求項3に記載したものと同様、炉心容器を原子炉容器
内で周辺配置とすることで炉心容器へのアクセス性が改
善される一方、炉心容器は炉心下部に一次冷却材の循環
ポンプを備えたので、炉心容器列によって形成される環
状帯の内側に中間熱交換器の設置スペースを充分に確保
することができる。また、循環ポンプに万一異常が生じ
ても、異常が生じた循環ポンプに繋るモジュール炉心を
停止させるだけで、他のモジュール炉心は停止させるこ
となく、原子炉の運転を継続させることができる。
Further, in the nuclear reactor described in claim 4,
Similar to the one described in claim 3, accessibility to the core vessel is improved by arranging the core vessel in the periphery of the reactor vessel, while the core vessel is provided with a circulation pump for the primary coolant in the lower part of the core. Therefore, a sufficient installation space for the intermediate heat exchanger can be secured inside the annular band formed by the core vessel rows. Further, even if an abnormality occurs in the circulation pump, it is possible to continue the operation of the reactor without stopping the other module cores only by stopping the module core connected to the circulation pump in which the abnormality occurs. .

【0065】さらにまた、請求項5に記載したように、
原子炉容器の上部開口部を覆う上蓋に形成される貫通口
に炉心容器を着脱自在に設けることにより、個々の炉心
容器は上蓋の貫通口を介して挿入や取外しを行なうこと
ができる。したがって、単基原子炉出力が大きなプラン
トの炉心構造物の交換を、小型・軽量な炉心構造物の取
扱いで行なうことができる。
Furthermore, as described in claim 5,
By detachably providing the core vessel in the through hole formed in the upper lid that covers the upper opening of the reactor vessel, each core vessel can be inserted or removed through the through hole in the upper lid. Therefore, it is possible to replace the core structure of a plant having a large single-base reactor output by handling the small and lightweight core structure.

【0066】また、炉心容器の個数や炉心運転の選択・
組合せにより、所要の原子炉出力を得ることができる。
その際、炉心容器は全て同一炉心設計とすることがで
き、プラント出力に応じた炉心設計を単一設計炉心の組
合せで得ることができるので、新たな炉心設計や核的臨
界実験が不要となり、炉心特性の実証費を大幅に低減さ
せることができる。
Further, selection of the number of core vessels and core operation
Depending on the combination, the required reactor power can be obtained.
At that time, all the core vessels can have the same core design, and the core design according to the plant output can be obtained by combining the single design cores, so that a new core design and a nuclear critical experiment are unnecessary, It is possible to significantly reduce the verification cost of core characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る原子炉の一実施例を示す縦断面
図。
FIG. 1 is a longitudinal sectional view showing an embodiment of a nuclear reactor according to the present invention.

【図2】図1に示す原子炉の平面図。FIG. 2 is a plan view of the nuclear reactor shown in FIG.

【図3】この発明に係る原子炉の他の実施例を示す縦断
面図。
FIG. 3 is a vertical sectional view showing another embodiment of the nuclear reactor according to the present invention.

【図4】図3に示す原子炉の平面図。FIG. 4 is a plan view of the nuclear reactor shown in FIG.

【図5】(A)および(B)はこの発明に係る原子炉に
おいて、原子炉出力変更の例をそれぞれ示す平面図。
5 (A) and 5 (B) are plan views showing examples of changing the reactor output in the reactor according to the present invention.

【図6】従来のタンク型液体金属冷却方式の原子炉を示
す縦断面図。
FIG. 6 is a vertical cross-sectional view showing a conventional tank-type liquid metal cooling type nuclear reactor.

【符号の説明】[Explanation of symbols]

20 原子炉建屋 21 原子炉室 22 生体遮蔽壁 23 生体遮蔽天井壁 24 建物ベースマット 25 原子炉容器(一次冷却材容器) 26 一次冷却材 27 圧力隔壁 28 上部プレナム 29 下部プレナム 30 上蓋 31,60 炉心容器 32,61 中間冷却機 35,62 炉心 36 流入ノズル 37 流出ポート 40 炉心遮蔽プラグ 41 制御棒駆動装置 42 制御棒 45,66 中間熱交換器 46,63 循環ポンプ(電磁ポンプ) 47 流出ノズル 48 流入ポート 50 中間冷却材遮蔽プラグ 51 蒸気発生器 52 流出入管 20 Reactor Building 21 Reactor Room 22 Living Shield Wall 23 Living Shield Ceiling Wall 24 Building Base Mat 25 Reactor Vessel (Primary Coolant Vessel) 26 Primary Coolant 27 Pressure Partition 28 Upper Plenum 29 Lower Plenum 30 Upper Lid 31,60 Core Container 32,61 Intercooler 35,62 Core 36 Inflow nozzle 37 Outflow port 40 Core shield plug 41 Control rod drive device 42 Control rod 45,66 Intermediate heat exchanger 46,63 Circulation pump (electromagnetic pump) 47 Outflow nozzle 48 Inflow Port 50 Intermediate coolant shielding plug 51 Steam generator 52 Inflow / outflow pipe

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 原子炉容器に一次冷却材を充填させると
ともに、上記原子炉容器内に、独立した炉心を収容した
複数台の炉心容器と、前記一次冷却材を二次冷却材と熱
交換させる中間熱交換器を備えた中間冷却機とをそれぞ
れ設置したことを特徴とする原子炉。
1. A reactor vessel is filled with a primary coolant, and a plurality of core vessels accommodating independent cores in the reactor vessel and the primary coolant are heat-exchanged with a secondary coolant. A nuclear reactor characterized in that an intercooler equipped with an intermediary heat exchanger is installed respectively.
【請求項2】 各炉心容器の上部に炉心内に制御棒を出
し入れする制御棒駆動装置をそれぞれ設けた請求項1記
載の原子炉。
2. The nuclear reactor according to claim 1, further comprising a control rod driving device for moving control rods into and out of the core, which is provided above each core vessel.
【請求項3】 原子炉容器の内周壁に沿って内側に炉心
容器を複数台列状に設置するとともに、上記炉心容器側
の環状帯の内側に中間冷却機を設置し、この中間冷却機
は一次冷却材と二次冷却材とを熱交換させる中間熱交換
器の下部に一次冷却材の循環ポンプを設けたことを特徴
とする原子炉。
3. A plurality of core vessels are installed in a row along the inner peripheral wall of the reactor vessel, and an intercooler is provided inside the annular zone on the core vessel side. A nuclear reactor characterized in that a circulation pump for the primary coolant is provided below an intermediate heat exchanger for exchanging heat between the primary coolant and the secondary coolant.
【請求項4】 原子炉容器の内周壁に沿って内側に炉心
容器を複数台列状に配置するとともに、上記炉心容器列
の環状帯の内側に中間熱交換器を設置し、さらに前記各
炉心容器の下部に一次冷却材を循環させる循環ポンプを
設けたことを特徴とする原子炉。
4. A plurality of core vessels are arranged in a row along the inner peripheral wall of the reactor vessel, and an intermediate heat exchanger is installed inside the annular zone of the core vessel row. A nuclear reactor characterized in that a circulation pump for circulating the primary coolant is provided at the bottom of the vessel.
【請求項5】 原子炉容器の上部開口部は上蓋で閉塞さ
れる一方、この遮蔽プラグに形成された貫通口に炉心容
器が着脱自在に設けられ、原子炉容器内に設置される炉
心容器の個数を選定自在としたことを特徴とする原子
炉。
5. An upper opening of the reactor vessel is closed by an upper lid, and a through hole formed in the shield plug is removably provided with the core vessel. Reactor characterized in that the number can be freely selected.
JP4293473A 1992-07-30 1992-10-30 Nuclear reactor Pending JPH06148367A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4293473A JPH06148367A (en) 1992-10-30 1992-10-30 Nuclear reactor
US08/097,833 US5420897A (en) 1992-07-30 1993-07-29 Fast reactor having reflector control system
FR9309410A FR2697104B1 (en) 1992-07-30 1993-07-30 Fast reactor equipped with a control system for reflector.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4293473A JPH06148367A (en) 1992-10-30 1992-10-30 Nuclear reactor

Publications (1)

Publication Number Publication Date
JPH06148367A true JPH06148367A (en) 1994-05-27

Family

ID=17795203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4293473A Pending JPH06148367A (en) 1992-07-30 1992-10-30 Nuclear reactor

Country Status (1)

Country Link
JP (1) JPH06148367A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100563254B1 (en) * 2000-12-01 2006-03-27 한국과학기술원 A Pressurized Water Reactor Using Cooling Devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100563254B1 (en) * 2000-12-01 2006-03-27 한국과학기술원 A Pressurized Water Reactor Using Cooling Devices

Similar Documents

Publication Publication Date Title
US5420897A (en) Fast reactor having reflector control system
US4897240A (en) Nuclear reactor
JP2005510744A (en) Compact pressurized water reactor
JP7190485B2 (en) Pool-Type Liquid Metal Fast Spectrum Reactor Using Printed Circuit Heat Exchangers for Connection to Energy Conversion Systems
US3715270A (en) Nuclear reactors
US4312703A (en) Nuclear reactor installation
JPH0721545B2 (en) Reactor
US5263070A (en) Nuclear reactor with multiple internal heat exchangers
JPH06148367A (en) Nuclear reactor
JPH0531750B2 (en)
US4654185A (en) Deep beam reactor vessel head and nuclear reactor including same
US4789518A (en) Liquid-cooled nuclear reactor especially a boiling-water reactor
US4859406A (en) Reactor
US4397811A (en) Nuclear reactor with integral heat exchangers
JPH0749391A (en) Nuclear reactor
JP3874310B2 (en) Liquid metal cooled fast reactor
JPS633292A (en) Fast breeder reactor
JPH05180968A (en) Compact liquid-metal cooling fast reactor
JPH02128192A (en) Decentralized nuclear reactor
JPH02243990A (en) Fast breeder
EP0503552A1 (en) Shut-down system for nuclear water reactor
US20040196947A1 (en) Reactor cooling system
JPH04110694A (en) Fast breeder reactor
JPH0795106B2 (en) Reactor
JPH04307397A (en) Tank-type high-speed reactor