JPH02128192A - Decentralized nuclear reactor - Google Patents

Decentralized nuclear reactor

Info

Publication number
JPH02128192A
JPH02128192A JP63281680A JP28168088A JPH02128192A JP H02128192 A JPH02128192 A JP H02128192A JP 63281680 A JP63281680 A JP 63281680A JP 28168088 A JP28168088 A JP 28168088A JP H02128192 A JPH02128192 A JP H02128192A
Authority
JP
Japan
Prior art keywords
reactor
steam generator
core
outer cylinder
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63281680A
Other languages
Japanese (ja)
Other versions
JPH0814634B2 (en
Inventor
Satoru Nakai
仲井 悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP63281680A priority Critical patent/JPH0814634B2/en
Publication of JPH02128192A publication Critical patent/JPH02128192A/en
Publication of JPH0814634B2 publication Critical patent/JPH0814634B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To contrive the improvement of the reliability and safety of a reactor by making a combination or an integration of a small-sized reactor core part and a steam generator to be modularized. CONSTITUTION:A small-sized reactor core part 23 having a small-scale reactor core 22 and a steam generator 24 thereon are modularized to set a plurality of them in a cooling vessel. Generated heat by the reactor core 22 is heat- exchanged with the water of the steam generator 24 by the natural circulation of a coolant to take out of a reactor containment device so as to utilize to power generation. As desired above, because the generated heat of the reactor core 22 is transmitted to the steam generator 24 to take out of a nuclear reactor containment facility by the coolant naturally circulated, sodium tubing, an intermediate heat exchanger, a pump and the like are not needed. Thereby, since the reliability and profitability of a reactor are heightened and the modification of output can be responded by the increase and decrease of module number, the improvement of safety can be contrived.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は小型炉心と蒸気発生器とを一組、或いは一体と
してモジュー ル化した分散型原子炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a distributed nuclear reactor in which a small reactor core and a steam generator are modularized as a set or integrated.

〔従来の技術〕[Conventional technology]

従来の原子炉、例えば高速増殖炉プラントでは原子炉で
発生した熱を熱伝導率が良く、特に加圧することなく高
温の蒸気が得られ易いナトリウムで除熱し、高温のナト
リウムを配管、ポンプ等により輸送し、原子炉格納施設
の外に設置された蒸気発生器により水と熱交換して蒸気
を発生させ、タービンを駆動させていた。
In conventional nuclear reactors, such as fast breeder reactor plants, the heat generated in the reactor is removed with sodium, which has good thermal conductivity and can easily produce high-temperature steam without being particularly pressurized, and the high-temperature sodium is transferred through piping, pumps, etc. A steam generator installed outside the reactor containment facility exchanged heat with water to generate steam, which drove a turbine.

本システムの代表例として高速増殖炉「もんじゅ」につ
いて説明をする。
We will explain the fast breeder reactor "Monju" as a representative example of this system.

第4図は高速増殖炉「もんじゅ」の主系統を示す図で、
図中、1は原子炉、2は中間熱交換器、3は1次主循環
ポンプ、4は蒸気発生器、5は2次主循環ポンプ、6は
空気冷却器、7はタービン、8は発電機である。
Figure 4 shows the main system of the fast breeder reactor "Monju".
In the figure, 1 is the nuclear reactor, 2 is the intermediate heat exchanger, 3 is the primary main circulation pump, 4 is the steam generator, 5 is the secondary main circulation pump, 6 is the air cooler, 7 is the turbine, and 8 is the power generation It is a machine.

図において、冷却系統は原子炉格納施設内にある中間熱
交換器2.1次主循環ポンプ3、配管及び左傾等からな
る1次ナトリウム系、原子炉格納施設外にある蒸気発生
器4.2次主循環ポンプ5、配管及び左傾等からなる2
次ナトリウム系、さらに、空気冷却H6を含む補助炉心
冷却系等から構成されている。
In the figure, the cooling system is a primary sodium system consisting of an intermediate heat exchanger 2, a primary main circulation pump 3, piping and left tilting located inside the reactor containment facility, and a steam generator 4 located outside the reactor containment facility. 2 consisting of the main circulation pump 5, piping, left tilt, etc.
It consists of a sub-sodium system, an auxiliary core cooling system including air cooling H6, etc.

原子炉内で核分裂連鎖反応によって発生した熱によって
高温となった原子炉1内のナトリウムは原子炉lの出口
ノズルから流出し、中間熱交換器2で2次ナトリウム系
に熱を伝え、1次主循環ポンプ3を経て原子炉容器9の
下部に設けられたノズルから流入する。
The sodium in the reactor 1, which has become high in temperature due to the heat generated by the nuclear fission chain reaction inside the reactor, flows out from the outlet nozzle of the reactor L, transfers heat to the secondary sodium system in the intermediate heat exchanger 2, and is transferred to the primary sodium system. It flows through the main circulation pump 3 and from a nozzle provided at the bottom of the reactor vessel 9.

2次ナトリウム系のナトリウムは、中間熱交換器2の上
部から流入し、下部プレナムで反転した後に管内を上昇
し、1次ナトリウムから熱を吸収して上部から流出する
。そして蒸気発生器4を通り、2次主循環ポンプ5を経
て中間熱交換器2に戻る。
Secondary sodium type sodium flows from the upper part of the intermediate heat exchanger 2, reverses itself in the lower plenum, rises in the tube, absorbs heat from the primary sodium, and flows out from the upper part. It then passes through the steam generator 4 and returns to the intermediate heat exchanger 2 via the secondary main circulation pump 5.

このようにして、原子炉l内で発生した熱をナトリウム
を介して原子炉格納施設の外に取り出し、蒸気発生器4
でナトリウムの熱を水に伝えて蒸気を発生し、タービン
7を駆動して発電機8で発電している。
In this way, the heat generated within the reactor 1 is taken out of the reactor containment facility via the sodium, and the heat generated within the reactor 1 is taken out of the reactor containment facility and
The heat of the sodium is transferred to water to generate steam, which drives a turbine 7 and a generator 8 to generate electricity.

〔発明が解決すべき課題〕[Problem to be solved by the invention]

二のように従来の高速増殖炉においては、原子炉格納施
設の外に設置した蒸気発生器で、1次及び2次ナトリウ
ム系を介して原子炉の炉心で発生した熱を水と熱交換し
てタービンを駆動するに必要な蒸気を発生していたため
、ナトリウム配管、中間熱交換器及びポンプ等が必要と
なり、高僧転性及びコストの低減の観点から問題があっ
た。
As shown in 2, in conventional fast breeder reactors, heat generated in the reactor core is exchanged with water via the primary and secondary sodium systems in a steam generator installed outside the reactor containment facility. Since the steam necessary to drive the turbine was generated by the steam turbine, sodium piping, an intermediate heat exchanger, a pump, etc. were required, which caused problems from the viewpoint of high convertibility and cost reduction.

また、原子炉出力を増大させようとすると炉心が大型化
し、炉心固有反応度が正の領域となって安全性が低下す
る欠点があった。
In addition, when attempting to increase the reactor output, the reactor core becomes larger, and the core's inherent reactivity enters a positive region, resulting in a reduction in safety.

本発明は上記課題を解決するためのもので、小規模にし
た炉心を有する小型炉心部と蒸気発生器とをモジュール
化して一つの冷却容器内に複数配置し、自然循環する冷
却材により炉心の発生熱を蒸気発生器に伝えて原子炉格
納施設外に取り出すため、ナトリウム配管、中間熱交換
器及びポンプ等は不要となり、信鯨性及び経済性が向上
するとともに、出力の変更はモジュール数の増減により
対応することができ安全性を向上することのできる分散
型原子炉を提供することを目的とする。
The present invention is intended to solve the above-mentioned problems.The present invention is made by modularizing a small-scale reactor core and a steam generator, which have a small-scale reactor core, and arranging a plurality of them in one cooling vessel. Since the generated heat is transferred to the steam generator and taken out outside the reactor containment facility, sodium piping, intermediate heat exchangers, pumps, etc. are no longer required, improving reliability and economic efficiency, and changing the output can be done by reducing the number of modules. The purpose is to provide a distributed nuclear reactor that can respond by increasing or decreasing the number of units and can improve safety.

〔課題を解決するための手段〕[Means to solve the problem]

そのために本発明の分散型原子炉は、小規模炉心を有す
る小型炉心部と、その上部に対向して設けられた蒸気発
生器とを一組、あるいは一体にしてモジュール化し、該
モジュールを冷却容器内に1個以上配置したことを特徴
とする。
To this end, the distributed nuclear reactor of the present invention has a small reactor core having a small reactor core and a steam generator provided opposite to the upper part of the small reactor core, which are made into a set or integrated into a module, and the module is assembled into a cooling vessel. It is characterized in that one or more pieces are arranged within.

〔作用〕[Effect]

本発明は、小規模の炉心を有する小型炉心部とその上部
に設けた蒸気発生器とをモジュール化して冷却容器内に
複数設置し、炉心による発生熱を冷却材の自然循環によ
り蒸気発生器内の水と熱交換して原子炉格納施設外に取
り出して発電に利用するようにしたものであり、自然循
環する冷却材により炉心の発生熱を蒸気発生器に伝えて
原子炉格納施設外に取り出すため、ナトリウム配管、中
間熱交換器及びポンプ等は不要となり、信鎖性及び経済
性が向上するとともに、出力の変更はモジュール数の増
減により対応することができ安全性の向上を図ることが
可能となる。
In the present invention, a small reactor core having a small core and a steam generator installed above the core are modularized, and a plurality of them are installed in a cooling vessel, and the heat generated by the reactor core is transferred into the steam generator by natural circulation of coolant. This system exchanges heat with the water in the reactor and takes it out of the reactor containment facility to be used for power generation.The naturally circulating coolant transfers the heat generated by the core to the steam generator and takes it out of the reactor containment facility. This eliminates the need for sodium piping, intermediate heat exchangers, pumps, etc., improving reliability and economy, and making it possible to change output by increasing or decreasing the number of modules, improving safety. becomes.

〔実施例〕〔Example〕

以下、図面を参照しつつ本発明の実施例について説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による分散型高速炉の一実施例を示す説
明図、第2図は本発明による炉心−蒸気発生器モジュー
ルの一実施例を示す縦断面図で、図中、20はナトリウ
ム、21は主容器、22は炉心・蒸気発生器モジュール
、23は小型炉心部、24は蒸気発生器、25はシール
プラグ、26は小型炉心、27は炉心容器、28は炉心
外筒、29はフローホール、30は連通管、31は支持
板、33は内筒、34は外筒、35は保護筒、36は伝
熱管、37は給水入口、3Bは蒸気出口、40は流体の
流れである。
FIG. 1 is an explanatory diagram showing an embodiment of a distributed fast reactor according to the present invention, and FIG. 2 is a longitudinal cross-sectional view showing an embodiment of a core-steam generator module according to the present invention. , 21 is a main vessel, 22 is a core/steam generator module, 23 is a small core, 24 is a steam generator, 25 is a seal plug, 26 is a small core, 27 is a core vessel, 28 is a core outer cylinder, 29 is a Flow hole, 30 is a communication pipe, 31 is a support plate, 33 is an inner cylinder, 34 is an outer cylinder, 35 is a protection cylinder, 36 is a heat transfer tube, 37 is a water supply inlet, 3B is a steam outlet, 40 is a fluid flow .

第1図において分散型高速炉は主容器21内の冷却材と
してのナトリウム20の中に原子炉の出力規模に応じて
複数個の炉心・蒸気発生器モジュール22を設置しであ
る。このモジュール22は主容器21の底板に設けた小
規模高速炉炉心を存する小型炉心部23と小型炉心部2
3に対向して主客器21の上部のシールプラグ25に設
けた蒸気発生器24とを1mとしてモジュール化したも
のである。
In FIG. 1, the distributed fast reactor has a plurality of core/steam generator modules 22 installed in sodium 20 as a coolant in a main vessel 21 according to the output scale of the reactor. This module 22 includes a small reactor core section 23 and a small reactor core section 2 in which a small-scale fast reactor core is provided on the bottom plate of the main vessel 21.
3 and a steam generator 24 provided in a seal plug 25 at the upper part of the main passenger unit 21 facing the steam generator 24 are modularized with a length of 1 m.

第2図に示すように、小型炉心26を内蔵する炉心部1
27は主容器21の固定された炉心外筒28に複数の支
持板31を介して支持されている。
As shown in FIG. 2, a core section 1 containing a small core 26 is shown.
27 is supported by a core outer cylinder 28 fixed to the main vessel 21 via a plurality of support plates 31.

炉心外筒28の上部は傾斜面をもって小さく絞っており
、また、小型炉心容器27より下方の側面には複数のフ
ローホール29がナトリウム20の循環用に設けられて
いる。また、主客2S21と炉心容器27の間に制御棒
等の操作用の耐圧の連通管30が設けられている。
The upper part of the core outer cylinder 28 is narrowed down with an inclined surface, and a plurality of flow holes 29 are provided on the side surface below the small core vessel 27 for circulation of the sodium 20. Further, a pressure-resistant communication pipe 30 for operating control rods and the like is provided between the main customer 2S21 and the core vessel 27.

蒸気発生器24はシールプラグ25に固定された内筒3
3、外筒34及びその外側の保護筒35と内筒33外側
にコイル状に巻かれた伝熱管36から構成されている。
The steam generator 24 has an inner cylinder 3 fixed to a seal plug 25.
3. It is composed of an outer cylinder 34, a protection cylinder 35 outside the outer cylinder 34, and a heat transfer tube 36 wound in a coil on the outside of the inner cylinder 33.

また、内筒33はナトリウム20の液面下の上部にナト
リウムのVB環用にフローホール39が複数個設けられ
ており、下部の開口部は炉心外筒28の開口部に対向し
ている。
Further, the inner cylinder 33 is provided with a plurality of flow holes 39 for the VB ring of sodium in the upper part below the liquid level of the sodium 20, and the lower opening faces the opening of the core outer cylinder 28.

また、伝熱管36のコイル状の上端は外筒34と保護筒
35の間を通りシールプラグ35の外側で給水人口37
となっており、コイル状の他端は内筒33と外筒34の
間からシールプラグ35の外側で蒸気出口38となって
いる。
Further, the coiled upper end of the heat transfer tube 36 passes between the outer cylinder 34 and the protection cylinder 35 and reaches the water supply population 37 outside the seal plug 35.
The other end of the coil forms a steam outlet 38 between the inner cylinder 33 and the outer cylinder 34 and outside the seal plug 35.

このような構造の炉心・蒸気発生器モジュールにおいて
、小型炉心部23の炉心26で核分裂連鎖反応によって
発生した熱で高温となった炉心外筒28内のナトリウム
は、炉心外筒28内を上昇し、蒸気発生器24の内筒3
3内に流入上昇してフローホール39から内筒33と外
筒34の間に流出する。給水人口37から給水された伝
熱管36内の水は流出して来た高温のナトリウムと熱交
換して蒸気となり蒸気出口38から原子炉格納施設外に
取り出される。一方熱交換して冷却されたナトリウムは
流れ40となって炉心外筒28の斜面を下降しモジュー
ル外に流出し、主客器21内のナトリウム20に混入す
る。そして主容器21内のナトリウム20は炉心外筒2
8の下部のフローホール29から小型炉心容器270周
辺に流入する。
In the core/steam generator module having such a structure, the sodium in the core outer cylinder 28, which has become high in temperature due to the heat generated by the nuclear fission chain reaction in the reactor core 26 of the small reactor core section 23, rises inside the core outer cylinder 28. , inner cylinder 3 of the steam generator 24
3 , rises, and flows out from the flow hole 39 between the inner cylinder 33 and the outer cylinder 34 . The water in the heat transfer tubes 36 supplied from the water supply port 37 exchanges heat with the high temperature sodium flowing out to become steam and is taken out of the reactor containment facility from the steam outlet 38. On the other hand, the sodium cooled by heat exchange becomes a flow 40, descends the slope of the core outer cylinder 28, flows out of the module, and mixes with the sodium 20 in the main passenger unit 21. The sodium 20 in the main vessel 21 is transferred to the core outer cylinder 2.
8 flows into the vicinity of the small core vessel 270 from the flow hole 29 at the bottom of the reactor.

このようにしてナトリウムの自然循環を利用して発電に
必要な蒸気を得ることができる。
In this way, the natural circulation of sodium can be used to obtain the steam necessary for power generation.

第3図は本発明の炉心・蒸気発生器モジュールの他の実
施例を示す縦断面図で、第2図と同一番号は同一内容を
示し、41は小型炉心部、42は炉心外筒、43は連通
管である。
FIG. 3 is a longitudinal sectional view showing another embodiment of the core/steam generator module of the present invention, in which the same numbers as in FIG. 2 indicate the same contents, 41 is a small core, 42 is a core outer cylinder, 43 is a communicating pipe.

このモジュールは小型炉心部41の外筒と蒸気発生器2
4の内筒とを一体にして炉心部及び蒸気発生器を1つの
構造体とし、主容器2工の上部のシールプラグ25に固
定したものであり、熱交換の仕方、蒸気発生方法は第2
図のものと同様である。なお、本実施例の場合には、制
御棒等の操作は主容器21の上部から行うことになる。
This module consists of the outer cylinder of the small reactor core 41 and the steam generator 2.
The reactor core and steam generator are integrated into one structure with the inner cylinder of No. 4, and are fixed to the seal plug 25 on the upper part of the main vessel No. 2. The heat exchange method and steam generation method are
It is similar to the one shown in the figure. In this embodiment, the control rods and the like are operated from the top of the main container 21.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、小型炉心と蒸気発生器と
を1組にしてモジュール化し、複数のモジュールを一つ
の冷却容器内に配置して炉心の発生熱を冷却材の自然W
1mを利用して熱交換し、発生蒸気を原子炉格納施設外
に取り出すため、ナトリウム配管、中間熱交換器及びポ
ンプ等が不用となり、信転性及び経済性が向上するとと
もに炉心・蒸気発生器モジュールの数の増減により任意
の出力の原子炉を得ることができる。また、小型炉心で
あるため固有の安全性が高く、さらに、1つのモジュー
ルが故障しても他のモジュールにより炉心の除熱が行わ
れるため一層の安全性及び信頬性の向上を図ることがで
きる。
As described above, according to the present invention, a small reactor core and a steam generator are combined into a module, and a plurality of modules are arranged in one cooling vessel, so that the heat generated by the core is transferred to the natural W of the coolant.
1m to exchange heat and take the generated steam out of the reactor containment facility, eliminating the need for sodium piping, intermediate heat exchangers, pumps, etc., improving reliability and economic efficiency, and improving the reliability and efficiency of the reactor core and steam generator. By increasing or decreasing the number of modules, a reactor with arbitrary output can be obtained. In addition, because it is a small reactor core, its inherent safety is high, and furthermore, even if one module fails, heat is removed from the core by other modules, further improving safety and reliability. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1回は本発明による分散型高速炉の一実施例を示す説
明図、第2図は本発明による炉心・蒸気発生器モジュー
ルの一実施例に示すIi断面図、第3図は本発明による
炉心−蒸気発生器の他の実施例を示す縦断面図、第4図
は高速増殖炉「もんじゅ」の主系統を示す図である。 1・・・原子炉、2・・・中間熱交換器、3・・何次主
循環ポンプ、4・・・蒸気発生器、5・・・2次主循環
ポンプ、20・・・ナトリウム、21・・・主容器、2
2・・・炉心・蒸気発生器モジュール、23・・・小型
炉心部、24・・・蒸気発生器、25・・・シールプラ
グ、26・・・小型炉心、28・・・炉心外筒、29.
39・・・フローホール、33・・・内筒、34・・・
外筒、35・・・保護管、36・・・伝熱管。 出 願 人 動力炉・核燃料開発事業団
The first is an explanatory diagram showing an embodiment of the distributed fast reactor according to the present invention, FIG. 2 is a cross-sectional view of Ii showing an embodiment of the core/steam generator module according to the present invention, and FIG. 3 is an explanatory diagram showing an embodiment of the distributed fast reactor according to the present invention. FIG. 4 is a vertical sectional view showing another embodiment of the core-steam generator, and is a diagram showing the main system of the fast breeder reactor "Monju". 1... Nuclear reactor, 2... Intermediate heat exchanger, 3... Main circulation pump, 4... Steam generator, 5... Secondary main circulation pump, 20... Sodium, 21 ...Main container, 2
2... Core/steam generator module, 23... Small reactor core section, 24... Steam generator, 25... Seal plug, 26... Small core, 28... Core outer cylinder, 29 ..
39...Flow hole, 33...Inner cylinder, 34...
Outer cylinder, 35... protection tube, 36... heat transfer tube. Applicant Power Reactor and Nuclear Fuel Development Corporation

Claims (7)

【特許請求の範囲】[Claims] (1)小規模炉心を有する小型高速炉と、該炉心部の上
部に対向して設けられた蒸気発生器とを一組にしてモジ
ュール化し、該モジュールを冷却容器内に1個以上配置
したことを特徴とする分散型原子炉。
(1) A small fast reactor with a small-scale core and a steam generator installed opposite to the upper part of the reactor core are combined into a module, and one or more of the modules are arranged in a cooling vessel. A distributed nuclear reactor featuring:
(2)小型炉心部は冷却容器底面に固定し、蒸気発生器
はシールプラグに固定した請求項1記載の分散型原子炉
(2) The distributed nuclear reactor according to claim 1, wherein the small reactor core is fixed to the bottom of the cooling vessel, and the steam generator is fixed to the seal plug.
(3)側面にフローホールを有し、上方を絞った上端開
口の外筒内に炉心を収納し、蒸気発生器は側面にフロー
ホールを有する下端開口の内筒と、内筒を包囲する下端
開口の外筒とを有し、該内筒にコイル状の伝熱管を巻回
して構成した請求項1または2記載の分散型原子炉。
(3) The reactor core is housed in an outer cylinder with a flow hole on the side and an opening at the top that is narrowed at the top, and the steam generator has an inner cylinder with a flow hole on the side and an opening at the bottom, and a lower end surrounding the inner cylinder. 3. The distributed nuclear reactor according to claim 1, further comprising an open outer cylinder, and a coiled heat transfer tube wound around the inner cylinder.
(4)蒸気発生器の外筒を保護管で包囲し、伝熱管給水
入り口を外筒と保護管との間に設け、伝熱管蒸気出口を
内筒と外筒との間に設けた請求項3記載の分散型原子炉
(4) A claim in which the outer cylinder of the steam generator is surrounded by a protection tube, the heat exchanger tube water supply inlet is provided between the outer cylinder and the protection tube, and the heat exchanger tube steam outlet is provided between the inner cylinder and the outer cylinder. 3. Distributed nuclear reactor according to 3.
(5)小型炉心部と蒸気発生器とを一体にした請求項1
または2記載の分散型原子炉。
(5) Claim 1 in which the small reactor core and the steam generator are integrated
Or the distributed nuclear reactor described in 2.
(6)炉心部は側面にフローホールを有し、上方を絞っ
た上端開口の外筒内に炉心を収納し、蒸気発生器は、側
面にフローホールを有する下端開口の内筒と、内筒を包
囲する下端開口の外筒とを有し、該内筒にコイル状伝熱
管を巻回して構成し、炉心部の外筒と蒸気発生器の内筒
とを一体にした請求項5記載の分散型原子炉。
(6) The reactor core has a flow hole on the side and the core is housed in an outer cylinder with an opening at the upper end that is narrowed at the top, and the steam generator has a flow hole on the side and an inner cylinder with an opening at the lower end. 6. The steam generator according to claim 5, further comprising an outer cylinder with an opening at the lower end surrounding the inner cylinder, and a coiled heat transfer tube is wound around the inner cylinder, and the outer cylinder of the reactor core and the inner cylinder of the steam generator are integrated. Distributed nuclear reactor.
(7)蒸気発生器の外筒を保護管で包囲し、伝熱管給水
入り口を外筒と保護管との間に設け、伝熱管蒸気出口を
内筒と外筒との間に設けた請求項6記載の分散型原子炉
(7) A claim in which the outer cylinder of the steam generator is surrounded by a protection tube, the heat exchanger tube water supply inlet is provided between the outer cylinder and the protection tube, and the heat exchanger tube steam outlet is provided between the inner cylinder and the outer cylinder. 6. The distributed nuclear reactor according to 6.
JP63281680A 1988-11-08 1988-11-08 Distributed reactor Expired - Lifetime JPH0814634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63281680A JPH0814634B2 (en) 1988-11-08 1988-11-08 Distributed reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63281680A JPH0814634B2 (en) 1988-11-08 1988-11-08 Distributed reactor

Publications (2)

Publication Number Publication Date
JPH02128192A true JPH02128192A (en) 1990-05-16
JPH0814634B2 JPH0814634B2 (en) 1996-02-14

Family

ID=17642488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63281680A Expired - Lifetime JPH0814634B2 (en) 1988-11-08 1988-11-08 Distributed reactor

Country Status (1)

Country Link
JP (1) JPH0814634B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012141304A (en) * 2010-12-29 2012-07-26 Westinghouse Electric Co Llc Optimum configuration for fast reactors
CN110265157A (en) * 2019-06-24 2019-09-20 上海核工程研究设计院有限公司 A kind of full natural circulation reactor and its application method of more power scales

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256893A (en) * 1985-09-06 1987-03-12 三菱重工業株式会社 Nuclear reactor
JPS633292A (en) * 1986-06-24 1988-01-08 株式会社東芝 Fast breeder reactor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256893A (en) * 1985-09-06 1987-03-12 三菱重工業株式会社 Nuclear reactor
JPS633292A (en) * 1986-06-24 1988-01-08 株式会社東芝 Fast breeder reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012141304A (en) * 2010-12-29 2012-07-26 Westinghouse Electric Co Llc Optimum configuration for fast reactors
CN110265157A (en) * 2019-06-24 2019-09-20 上海核工程研究设计院有限公司 A kind of full natural circulation reactor and its application method of more power scales

Also Published As

Publication number Publication date
JPH0814634B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
US5112569A (en) Intrinsic-safety nuclear reactor of the pressurized water type
US3395076A (en) Compact nuclear reactor heat exchanging system
JPS6327670B2 (en)
JPS59120995A (en) Fast breeder
US4407773A (en) Nuclear reactor installation
US4905757A (en) Compact intermediate heat transport system for sodium cooled reactor
US4235284A (en) Heat exchanger with auxiliary cooling system
US4050984A (en) Closed cycle gas coolant nuclear power plant
US4312184A (en) Fluid circulation system for heat exchangers
US4138318A (en) Nuclear reactor system of the fast type
US5114667A (en) High temperature reactor having an improved fluid coolant circulation system
JPH0531750B2 (en)
JPH02128192A (en) Decentralized nuclear reactor
GB1491232A (en) Nuclear reactors
JP2948831B2 (en) Fast breeder reactor
JPS633292A (en) Fast breeder reactor
RU2776940C2 (en) Pool type liquid-metal fast neutron reactor using connection of plate heat exchanger with etched channels and power conversion system
JP3596848B2 (en) Decay heat removal equipment for fast reactors
JPH04110694A (en) Fast breeder reactor
JPH02151791A (en) Steam generator of dispersion type fast breeder reactor
JPH02176596A (en) Decay heat removal system for fast breeder
EP0503552A1 (en) Shut-down system for nuclear water reactor
JPS6244694A (en) Nuclear reactor
JPS61794A (en) Cooling device for liquid-metal cooling type reactor
JPS6027895A (en) Fast breeder reactor