JPH0814634B2 - Distributed reactor - Google Patents

Distributed reactor

Info

Publication number
JPH0814634B2
JPH0814634B2 JP63281680A JP28168088A JPH0814634B2 JP H0814634 B2 JPH0814634 B2 JP H0814634B2 JP 63281680 A JP63281680 A JP 63281680A JP 28168088 A JP28168088 A JP 28168088A JP H0814634 B2 JPH0814634 B2 JP H0814634B2
Authority
JP
Japan
Prior art keywords
outer cylinder
inner cylinder
reactor
core
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63281680A
Other languages
Japanese (ja)
Other versions
JPH02128192A (en
Inventor
悟 仲井
Original Assignee
動力炉・核燃料開発事業団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 動力炉・核燃料開発事業団 filed Critical 動力炉・核燃料開発事業団
Priority to JP63281680A priority Critical patent/JPH0814634B2/en
Publication of JPH02128192A publication Critical patent/JPH02128192A/en
Publication of JPH0814634B2 publication Critical patent/JPH0814634B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は小型炉心と蒸気発生器とを一組、或いは一体
としてモジュール化した分散型原子炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a distributed reactor in which a small core and a steam generator are modularized as one set or integrated.

〔従来の技術〕[Conventional technology]

従来の原子炉、例えば高速増殖炉プラントでは原子炉
で発生した熱を熱伝導率が良く、特に加圧することなく
高温の蒸気が得られ易いナトリウムで除熱し、高温のナ
トリウムを配管、ポンプ等により輸送し、原子炉格納施
設の外に設置された蒸気発生器により水と熱交換して蒸
気を発生させ、タービンを駆動させていた。
In a conventional nuclear reactor, for example, a fast breeder reactor plant, the heat generated in the nuclear reactor has good thermal conductivity, and heat is removed with sodium that is easy to obtain high-temperature steam without pressurization, and high-temperature sodium is piped, pumped, etc. It was transported and the steam generator installed outside the reactor containment facility exchanged heat with water to generate steam and drive the turbine.

本システムの代表例として高速増殖炉「もんじゅ」に
ついて説明をする。
The fast breeder reactor "Monju" will be explained as a representative example of this system.

第4図は高速増殖炉「もんじゅ」の主系統を示す図
で、図中、1は原子炉、2は中間熱交換器、3は1次主
循環ポンプ、4は蒸気発生器、5は2次主循環ポンプ、
6は空気冷却器、7はタービン、8は発電機である。
Fig. 4 is a diagram showing the main system of the fast breeder reactor "Monju". In the figure, 1 is a nuclear reactor, 2 is an intermediate heat exchanger, 3 is a primary main circulation pump, 4 is a steam generator, and 5 is 2 Next main circulation pump,
6 is an air cooler, 7 is a turbine, and 8 is a generator.

図において、冷却系統は原子炉格納施設内にある中間
熱交換器2、1次主循環ポンプ3、配管及び弁類等から
なる1次ナトリウム系、原子炉格納施設外にある蒸気発
生器4、2次主循環ポンプ5、配管及び弁類等からなる
2次ナトリウム系、さらに、空気冷却器6を含む補助炉
心冷却系等から構成されている。
In the figure, the cooling system is an intermediate heat exchanger 2 in the reactor containment facility, a primary main circulation pump 3, a primary sodium system consisting of pipes and valves, a steam generator 4 outside the reactor containment facility, The secondary main circulation pump 5, a secondary sodium system including pipes and valves, and an auxiliary core cooling system including an air cooler 6 are included.

原子炉内で核分裂連鎖反応によって発生した熱によっ
て高温となった原子炉1内のナトリウムは原子炉1の出
口ノズルから流出し、中間熱交換器2で2次ナトリウム
系に熱を伝え、1次主循環ポンプ3を経て原子炉容器9
の下部に設けられたノズルから流入する。
Sodium in the reactor 1, which has been heated to a high temperature by the heat generated by the fission chain reaction in the reactor, flows out from the outlet nozzle of the reactor 1 and transfers the heat to the secondary sodium system in the intermediate heat exchanger 2. Reactor vessel 9 through main circulation pump 3
Flows in from the nozzle provided at the bottom of the.

2次ナトリウム系のナトリウムは、中間熱交換器2の
上部から流入し、下部プレナムで反転した後に管内を上
昇し、1次ナトリウムから熱を吸収して上部から流出す
る。そして蒸気発生器4を通り、2次主循環ポンプ5を
経て中間熱交換器2に戻る。
Secondary sodium-based sodium flows in from the upper part of the intermediate heat exchanger 2, reverses in the lower plenum, rises in the pipe, absorbs heat from the primary sodium, and flows out from the upper part. Then, it passes through the steam generator 4 and returns to the intermediate heat exchanger 2 through the secondary main circulation pump 5.

このようにして、原子炉1内で発生した熱をナトリウ
ムを介して原子炉格納施設の外に取り出し、蒸気発生器
4でナトリウムの熱を水に伝えて蒸気を発生し、タービ
ン7を駆動して発電機8で発電している。
In this way, the heat generated in the reactor 1 is taken out of the reactor containment facility via sodium, and the steam generator 4 transfers the heat of sodium to water to generate steam, which drives the turbine 7. Is being generated by the generator 8.

〔発明が解決すべき課題〕[Problems to be solved by the invention]

このように従来の高速増殖炉においては、原子炉格納
施設の外に設置した蒸気発生器で、1次及び2次ナトリ
ウム系を介して原子炉の炉心で発生した熱を水と熱交換
してタービンを駆動するに必要な蒸気を発生していたた
め、ナトリウム配管、中間熱交換器及びポンプ等が必要
となり、高信頼性及びコストの低減の観点から問題があ
った。
As described above, in the conventional fast breeder reactor, the steam generator installed outside the reactor containment facility exchanges the heat generated in the core of the reactor with water through the primary and secondary sodium systems. Since the steam required to drive the turbine was generated, sodium piping, an intermediate heat exchanger, a pump, etc. were required, which was a problem from the viewpoint of high reliability and cost reduction.

また、原子炉出力を増大させようとすると炉心が大型
化し、炉心固有反応度が正の領域となって安全性が低下
する欠点があった。
In addition, when the reactor power is increased, the core becomes large, and the intrinsic reactivity of the core becomes a positive region, resulting in a decrease in safety.

本発明は上記課題を解決するためのもので、小規模に
した炉心を有する小型炉心部と蒸気発生器ともモジュー
ル化して一つの冷却容器内に複数配置し、自然循環する
冷却材により炉心の発生熱を蒸気発生器に伝えて原子炉
格納施設外に取り出すため、ナトリウム配管、中間熱交
換器及びポンプ等は不要となり、信頼性及び経済性が向
上するとともに、出力の変更はモジュール数の増減によ
り対応することができ安全性を向上することのできる分
散型原子炉を提供することを目的とする。
The present invention is for solving the above-mentioned problems, and a plurality of small-scale core parts having a small-scale core and steam generators are modularized and arranged in a single cooling container, and a core is generated by a natural circulating coolant. Since heat is transferred to the steam generator and taken out of the reactor containment facility, sodium piping, intermediate heat exchangers, pumps, etc. are not required, improving reliability and economic efficiency, and changing the output by changing the number of modules It is an object of the present invention to provide a decentralized nuclear reactor that can deal with such problems and improve safety.

〔課題を解決するための手段〕[Means for solving the problem]

そのために本発明は、冷却材が充填された容器底面に
固定され、側面にフローホールを有するとともに、上方
を絞った上端開口の外筒内に収納された小規模炉心を有
する小型高速炉と、前記容器のシールプラグに固定され
て小型高速炉の上部に対向配置され、側面にフローホー
ルを有する下端開口の内筒と、内筒を包囲する下端開口
の外筒と、外筒を包囲する下端開口の保護管とを有し、
該内筒にコイル状の伝熱管を巻回するとともに、伝熱管
給水入り口を外筒と保護管との間に設け、伝熱管蒸気出
口を内筒と外筒との間に設けた蒸気発生器とを一組にし
てモジュール化し、該モジュールを冷却容器内に1個以
上配置した分散型原子炉であって、冷却材の自然循環に
より熱交換を行わせて蒸気を発生させるようにしたこと
を特徴とする。
Therefore, the present invention is fixed to the bottom surface of the container filled with the coolant, has a flow hole on the side surface, and a small fast reactor having a small core housed in an outer cylinder of the upper end opening narrowed upward, An inner cylinder having a lower end opening fixed to a seal plug of the container and facing the upper part of the small fast reactor and having a flow hole on a side surface, an outer cylinder having a lower end opening enclosing the inner cylinder, and a lower end enclosing the outer cylinder. With an opening protection tube,
A steam generator in which a coil-shaped heat transfer tube is wound around the inner cylinder, a heat transfer tube feed water inlet is provided between the outer cylinder and the protective tube, and a heat transfer tube steam outlet is provided between the inner cylinder and the outer cylinder. In a distributed reactor in which one and more modules are combined into a module and one or more modules are arranged in a cooling container, heat is exchanged by natural circulation of the coolant to generate steam. Characterize.

また本発明は、冷却材が充填された容器内に収納さ
れ、上方を絞った外筒下端部の支持板により支持された
小規模炉心を有する小型高速炉と、前記容器のシールプ
ラグに固定され、側面にフローホールを有する内筒と、
内筒を包囲する下端開口の外筒と、外筒を包囲する下端
開口の保護管とを有し、該内筒にコイル状の伝熱管を巻
回するとともに、伝熱管給水入り口を外筒と保護管との
間に設け、伝熱管蒸気出口を内筒と外筒との間に設けた
蒸気発生器とを一組にしてモジュール化し、該モジュー
ルを冷却容器内に1個以上配置した分散型原子炉であっ
て、前記炉心を支持する外筒と蒸気発生器の内筒とを一
体にし、冷却材の自然循環により熱交換を行わせて蒸気
を発生させるようにしたことを特徴とする。
Further, the present invention includes a small fast reactor having a small-scale core that is housed in a container filled with a coolant and is supported by a support plate at the lower end of an outer cylinder that is narrowed upward, and is fixed to a seal plug of the container. , An inner cylinder having a flow hole on the side surface,
It has an outer cylinder with a lower end opening that surrounds the inner cylinder, and a protective tube with a lower end opening that surrounds the outer cylinder. A coil-shaped heat transfer tube is wound around the inner cylinder, and a heat transfer tube water supply inlet is used as an outer cylinder. A distributed type in which a heat transfer tube vapor outlet is provided between the protective tube and a steam generator provided between an inner cylinder and an outer cylinder to make a module, and one or more modules are arranged in a cooling container. In the nuclear reactor, the outer cylinder supporting the core and the inner cylinder of the steam generator are integrated, and heat is exchanged by natural circulation of the coolant to generate steam.

〔作用〕[Action]

本発明は、小規模の炉心を有する小型炉心部とその上
部に設けた蒸気発生器とをモジュール化して冷却容器内
に複数配置し、炉心による発生熱を冷却材の自然循環に
より蒸気発生器内の水と熱交換して原子炉格納施設外に
取り出して発電に利用するようにしたものであり、自然
循環する冷却材により炉心の発生熱を蒸気発生器に伝え
て原子炉格納施設外に取り出すため、ナトリウム配管、
中間熱交換器及びポンプ等は不要となり、信頼性及び経
済性が向上するとともに、出力の変更はモジュール数の
増減により対応することができ安全性の向上を図ること
が可能となる。
The present invention modularizes a small-scale core portion having a small-scale core and a steam generator provided above the small-scale core portion, and arranges a plurality of them in a cooling container, and heat generated by the core is naturally circulated in the steam generator. It is designed to be used for power generation by exchanging heat with the water in the reactor and being taken out of the reactor containment facility. The naturally circulating coolant transfers the heat generated in the core to the steam generator and takes it out of the reactor containment facility. For sodium piping,
Intermediate heat exchangers and pumps are not required, and reliability and economy are improved, and output changes can be dealt with by increasing or decreasing the number of modules, thus improving safety.

〔実施例〕〔Example〕

以下、図面を参照しつつ本発明の実施例について説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による分散型高速炉の一実施例を示す
説明図、第2図は本発明による炉心−蒸気発生器モジュ
ールの一実施例を示す縦断面図で、図中、20はナトリウ
ム、21は主容器、22は炉心・蒸気発生器モジュール、23
は小型炉心部、24は蒸気発生器、25はシールプラグ、26
は小型炉心、27は炉心容器、26は炉心外筒、29はフロー
ホール、30は連通管、31は支持板、33は内筒、34は外
筒、35は保護筒、36は伝熱管、37は給水入口、38は蒸気
出口、40は流体の流れである。
FIG. 1 is an explanatory view showing an embodiment of a distributed fast reactor according to the present invention, and FIG. 2 is a vertical sectional view showing an embodiment of a core-steam generator module according to the present invention, in which 20 is sodium. , 21 is the main vessel, 22 is the core / steam generator module, 23
Is a small core, 24 is a steam generator, 25 is a seal plug, 26
Is a small core, 27 is a core vessel, 26 is a core outer tube, 29 is a flow hole, 30 is a communicating tube, 31 is a support plate, 33 is an inner tube, 34 is an outer tube, 35 is a protective tube, 36 is a heat transfer tube, 37 is a water supply inlet, 38 is a steam outlet, and 40 is a fluid flow.

第1図において分散型高速炉は主容器21内の冷却材と
してのナトリウム20の中に原子炉の出力規模に応じて複
数個の炉心・蒸気発生器モジュール22を設置してある。
このモジュール22は主容器21の底板に設けた小規模高速
炉炉心を有する小型炉心部23と小型炉心部23に対向して
主容器21の上部のシールプラグ25に設けた蒸気発生器24
とを1組としてモジュール化したものである。
In the distributed fast reactor shown in FIG. 1, a plurality of core / steam generator modules 22 are installed in sodium 20 as a coolant in a main vessel 21 according to the output scale of the reactor.
This module 22 includes a small core portion 23 having a small-scale fast reactor core provided on the bottom plate of the main container 21 and a steam generator 24 provided in a seal plug 25 above the main container 21 so as to face the small core portion 23.
And are modularized as one set.

第2図に示すように、小型炉心26を内蔵する炉心容器
27は主容器21の固定された炉心外筒28に複数の支持板31
を介して支持されている。炉心外筒28の上部は傾斜面を
もって小さく絞っており、また、小型炉心容器27より下
方の側面には複数のフローホール29がナトリウム20の循
環用に設けられている。また、主容器21と炉心容器27の
間に制御棒等の操作用の耐圧の連通管30が設けられてい
る。
As shown in FIG. 2, a core vessel containing a small core 26.
27 is a core outer tube 28 fixed to the main vessel 21 and a plurality of support plates 31
Is supported through. The upper portion of the core outer cylinder 28 is narrowed down with an inclined surface, and a plurality of flow holes 29 are provided on the side surface below the small core vessel 27 for circulating sodium 20. Further, a pressure-resistant communication pipe 30 for operating a control rod or the like is provided between the main container 21 and the core container 27.

蒸気発生器24はシールプラグ25に固定された内筒33、
外筒34及びその外側の保護筒35と内筒33外側にコイル状
に巻かれた伝熱管36から構成されている。また、内筒33
はナトリウム20の液面下の上部にナトリウムの循環用に
フローホール39が複数個設けられており、下部の開口部
は炉心外筒28の開口部に対向している。また、伝熱管36
のコイル状の上端は外筒34と保護筒35の間を通りシール
プラグ35の外側で給水入口37となっており、コイル状の
他端は内筒33と外筒34の間からシールプラグ35の外側で
蒸気出口38となっている。
The steam generator 24 is an inner cylinder 33 fixed to a seal plug 25,
It is composed of an outer cylinder 34, a protection cylinder 35 on the outer side thereof, and a heat transfer tube 36 wound in a coil shape on the outer side of the inner cylinder 33. Also, the inner cylinder 33
A plurality of flow holes 39 are provided above the liquid surface of the sodium 20 for circulation of sodium, and the lower opening faces the opening of the core outer cylinder 28. In addition, the heat transfer tube 36
The upper end of the coil shape passes between the outer cylinder 34 and the protection cylinder 35 to form the water supply inlet 37 outside the seal plug 35, and the other end of the coil shape extends from between the inner cylinder 33 and the outer cylinder 34 to the seal plug 35. The steam outlet 38 is located outside the.

このような構造の炉心・蒸気発生器モジュールにおい
て、小型炉心部23の炉心26で核分裂連鎖反応によって発
生した熱で高温となった炉心外筒28内のナトリウムは、
炉心外筒28内を上昇し、蒸気発生器24の内筒33内に流入
上昇してフローホール39から内筒33と外筒34の間に流出
する。給水入口37から給水された伝熱管36内の水は流出
して来た高温のナトリウムと熱交換して蒸気となり蒸気
出口38から原子炉格納施設外に取り出される。一方熱交
換して冷却されたナトリウムは流れ40となって炉心外筒
28の斜面を下降しモジュール外に流出し、主容器21内の
ナトリウム20に混入する。そして主容器21内のナトリウ
ム2−0は炉心外筒28の下部のフローホール29から小型
炉心容器27の周辺に流入する。
In the core / steam generator module having such a structure, sodium in the core outer cylinder 28, which has been heated to a high temperature by the heat generated by the fission chain reaction in the core 26 of the small core portion 23,
It rises in the core outer cylinder 28, flows in and rises into the inner cylinder 33 of the steam generator 24, and flows out from the flow hole 39 between the inner cylinder 33 and the outer cylinder 34. The water in the heat transfer pipe 36 supplied from the water supply inlet 37 exchanges heat with the high temperature sodium flowing out to become steam, and is taken out of the reactor containment facility through the steam outlet 38. On the other hand, sodium cooled by heat exchange becomes stream 40 and the core outer cylinder
It descends down the slope of 28, flows out of the module, and mixes with sodium 20 in the main container 21. Then, the sodium 2-0 in the main container 21 flows into the periphery of the small core container 27 from the flow hole 29 in the lower portion of the core outer cylinder 28.

このようにしてナトリウムの自然循環を利用して発電
に必要な蒸気を得ることができる。
In this way, the steam necessary for power generation can be obtained by utilizing the natural circulation of sodium.

第3図は本発明の炉心・蒸気発生器モジュールの他の
実施例を示す縦断面図で、第2図と同一番号は同一内容
を示し、41は小型炉心部、42は炉心外筒、43は連通管で
ある。
FIG. 3 is a longitudinal sectional view showing another embodiment of the core / steam generator module of the present invention. The same numbers as those in FIG. 2 indicate the same contents, 41 is a small core portion, 42 is a core outer cylinder, and 43 Is a communication pipe.

このモジュールは小型炉心部41の外筒と蒸気発生器24
の内筒とを一体にして炉心部及び蒸気発生器を1つの構
造体とし、主容器21の上部のシールプラグ25に固定した
ものであり、熱交換の仕方、蒸気発生方法は第2図のも
のと同様である。なお、本実施例の場合には、制御棒等
の操作は主容器21の上部から行うことになる。
This module consists of the outer core of the small core 41 and the steam generator 24
The inner core and the steam generator are integrated into one structure and fixed to the seal plug 25 at the upper part of the main vessel 21. The heat exchange method and the steam generation method are shown in FIG. It is similar to the one. In the case of this embodiment, the operation of the control rod and the like is performed from the upper part of the main container 21.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、小型炉心と蒸気発生器
とを1組にしてモジュール化し、複数のモジュールを一
つの冷却容器内に配置して炉心の発生熱を冷却材の自然
循環を利用して熱交換し、発生蒸気を原子炉格納施設外
に取り出すため、ナトリウム配管、中間熱交換器及びポ
ンプ等が不用となり、信頼性及び経済性が向上するとと
もに炉心・蒸気発生器モジュールの数の増減により任意
の出力の原子炉を得ることができる。また、小型炉心で
あるため固有の安全性が高く、さらに、1つのモジュー
ルが故障しても他のモジュールにより炉心の除熱が行わ
れるため一層の安全性及び信頼性の向上を図ることがで
きる。
As described above, according to the present invention, a small core and a steam generator are combined into a module, and a plurality of modules are arranged in one cooling container to use the heat generated by the core by utilizing the natural circulation of the coolant. Heat exchange and take out the generated steam to the outside of the reactor containment facility, sodium pipes, intermediate heat exchangers, pumps, etc. are not required, which improves reliability and economic efficiency and reduces the number of core / steam generator modules. By increasing or decreasing, it is possible to obtain a reactor of arbitrary output. Further, since the core is small, the inherent safety is high, and even if one module fails, the other modules remove heat from the core, further improving safety and reliability. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による分散型高速炉の一実施例を示す説
明図、第2図は本発明による炉心・蒸気発生器モジュー
ルの一実施例に示す縦断面図、第3図は本発明による炉
心−蒸気発生器の他の実施例を示す縦断面図、第4図は
高速増殖炉「もんじゅ」の主系統を示す図である。 1……原子炉、2……中間熱交換器、3……1次主循環
ポンプ、4……蒸気発生器、5……2次主循環ポンプ、
20……ナトリウム、21……主容器、22……炉心・蒸気発
生器モジュール、23……小型炉心部、24……蒸気発生
器、25……シールプラグ、26……小型炉心、28……炉心
外筒、29、39……フローホール、33……内筒、34……外
筒、35……保護管、36……伝熱管。
1 is an explanatory view showing an embodiment of a distributed fast reactor according to the present invention, FIG. 2 is a longitudinal sectional view showing an embodiment of a core / steam generator module according to the present invention, and FIG. 3 is a view according to the present invention. FIG. 4 is a longitudinal sectional view showing another embodiment of the core-steam generator, and FIG. 4 is a view showing a main system of the fast breeder reactor “Monju”. 1 ... Reactor, 2 ... Intermediate heat exchanger, 3 ... Primary main circulation pump, 4 ... Steam generator, 5 ... Secondary main circulation pump,
20 …… Sodium, 21 …… Main container, 22 …… Core / steam generator module, 23 …… Small core, 24 …… Steam generator, 25 …… Seal plug, 26 …… Small core, 28 …… Core outer cylinder, 29, 39 …… Flow hole, 33 …… Inner cylinder, 34 …… Outer cylinder, 35 …… Protection tube, 36 …… Heat transfer tube.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】冷却材が充填された容器底面に固定され、
側面にフローホールを有するとともに、上方を絞った上
端開口の外筒内に収納された小規模炉心を有する小型高
速炉と、 前記容器のシールプラグに固定されて小型高速炉の上部
に対向配置され、側面にフローホールを有する下端開口
の内筒と、内筒を包囲する下端開口の外筒と、外筒を包
囲する下端開口の保護管とを有し、該内筒にコイル状の
伝熱管を巻回するとともに、伝熱管給水入り口を外筒と
保護管との間に設け、伝熱管蒸気出口を内筒と外筒との
間に設けた蒸気発生器とを一組にしてモジュール化し、
該モジュールを冷却容器内に1個以上配置した分散型原
子炉であって、 冷却材の自然循環により熱交換を行わせて蒸気を発生さ
せるようにしたことを特徴とする分散型原子炉。
1. Fixed to the bottom of a container filled with a coolant,
A small fast reactor having a flow hole in the side surface and a small-scale core housed in an outer cylinder with an upper opening narrowed upward, and a small fast reactor fixed to a seal plug of the vessel and arranged to face the upper part of the small fast reactor. A lower end opening inner cylinder having a flow hole on a side surface, a lower end opening outer cylinder surrounding the inner cylinder, and a lower end opening protection tube surrounding the outer cylinder, wherein the inner cylinder has a coiled heat transfer tube And the heat transfer tube feed water inlet is provided between the outer cylinder and the protection tube, and the heat transfer tube steam outlet is modularized by combining a steam generator provided between the inner cylinder and the outer cylinder,
A distributed nuclear reactor in which one or more of the modules are arranged in a cooling vessel, wherein heat is exchanged by natural circulation of a coolant to generate steam.
【請求項2】冷却材が充填された容器内に収納され、上
方を絞った外筒下端部の支持板により支持された小規模
炉心を有する小型高速炉と、 前記容器のシールプラグに固定され、側面にフローホー
ルを有する内筒と、内筒を包囲する下端開口の外筒と、
外筒を包囲する下端開口の保護管とを有し、該内筒にコ
イル状の伝熱管を巻回するとともに、伝熱管給水入り口
を外筒と保護管との間に設け、伝熱管蒸気出口を内筒と
外筒との間に設けた蒸気発生器とを一組にしてモジュー
ル化し、該モジュールを冷却容器内に1個以上配置した
分散型原子炉であって、 前記炉心を支持する外筒と蒸気発生器の内筒とを一体に
し、冷却材の自然循環により熱交換を行わせて蒸気を発
生させるようにしたことを特徴とする分散型原子炉。
2. A small fast reactor having a small-scale core supported in a container filled with a coolant and supported by a support plate at the lower end of an outer cylinder narrowed upward, and fixed to a seal plug of the container. An inner cylinder having a flow hole on a side surface, and an outer cylinder having a lower end opening surrounding the inner cylinder,
A heat pipe having a lower end opening that surrounds the outer cylinder, a coiled heat transfer tube is wound around the inner cylinder, and a heat transfer tube feed water inlet is provided between the outer cylinder and the protection tube. Is a distributed reactor in which a steam generator provided between an inner cylinder and an outer cylinder is combined into a module, and one or more modules are arranged in a cooling container. A distributed nuclear reactor characterized in that a cylinder and an inner cylinder of a steam generator are integrated and heat is exchanged by natural circulation of a coolant to generate steam.
JP63281680A 1988-11-08 1988-11-08 Distributed reactor Expired - Lifetime JPH0814634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63281680A JPH0814634B2 (en) 1988-11-08 1988-11-08 Distributed reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63281680A JPH0814634B2 (en) 1988-11-08 1988-11-08 Distributed reactor

Publications (2)

Publication Number Publication Date
JPH02128192A JPH02128192A (en) 1990-05-16
JPH0814634B2 true JPH0814634B2 (en) 1996-02-14

Family

ID=17642488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63281680A Expired - Lifetime JPH0814634B2 (en) 1988-11-08 1988-11-08 Distributed reactor

Country Status (1)

Country Link
JP (1) JPH0814634B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8638901B2 (en) * 2010-12-29 2014-01-28 Westinghouse Electric Company Llc Optimum configuration for fast reactors
CN110265157A (en) * 2019-06-24 2019-09-20 上海核工程研究设计院有限公司 A kind of full natural circulation reactor and its application method of more power scales

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256893A (en) * 1985-09-06 1987-03-12 三菱重工業株式会社 Nuclear reactor
JPS633292A (en) * 1986-06-24 1988-01-08 株式会社東芝 Fast breeder reactor

Also Published As

Publication number Publication date
JPH02128192A (en) 1990-05-16

Similar Documents

Publication Publication Date Title
US11145424B2 (en) Direct heat exchanger for molten chloride fast reactor
US10636529B2 (en) Reactor vessel reflector with integrated flow-through
US5112569A (en) Intrinsic-safety nuclear reactor of the pressurized water type
US4959193A (en) Indirect passive cooling system for liquid metal cooled nuclear reactors
US5021211A (en) Liquid metal cooled nuclear reactors with passive cooling system
US4407773A (en) Nuclear reactor installation
US4761260A (en) Nuclear power plant with a high temperature reactor located in a cylindrical prestressed concrete pressure vessel
JPH0216496A (en) Isolation condenser with stop cooling system heat exchanger
US3240678A (en) Pressure tube neutronic reactor and coolant control means therefor
US4050984A (en) Closed cycle gas coolant nuclear power plant
US4312184A (en) Fluid circulation system for heat exchangers
JP2899979B2 (en) High temperature gas furnace
JPH02201290A (en) Autonomous dispersion type fast breeder reactor system
US4138318A (en) Nuclear reactor system of the fast type
JPH0814634B2 (en) Distributed reactor
Cinotti et al. The inherently safe immersed system (ISIS) reactor
GB1491232A (en) Nuclear reactors
JPS633292A (en) Fast breeder reactor
JPH02151791A (en) Steam generator of dispersion type fast breeder reactor
JPH02176596A (en) Decay heat removal system for fast breeder
JPS6027895A (en) Fast breeder reactor
JPS60170789A (en) Nuclear reactor
JPS61794A (en) Cooling device for liquid-metal cooling type reactor
Ailloud et al. Pressurized water reactor
JPS63165798A (en) Decay-heat removal system of fast breeder reactor