JPH06144959A - Heat resistant member and production thereof - Google Patents

Heat resistant member and production thereof

Info

Publication number
JPH06144959A
JPH06144959A JP30226492A JP30226492A JPH06144959A JP H06144959 A JPH06144959 A JP H06144959A JP 30226492 A JP30226492 A JP 30226492A JP 30226492 A JP30226492 A JP 30226492A JP H06144959 A JPH06144959 A JP H06144959A
Authority
JP
Japan
Prior art keywords
coating layer
layer
substrate
base body
resistant member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30226492A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ohinata
義宏 大日向
Hitoshi Oomisono
仁 近江園
Masayasu Komuro
真保 小室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP30226492A priority Critical patent/JPH06144959A/en
Publication of JPH06144959A publication Critical patent/JPH06144959A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00577Coating or impregnation materials applied by spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a inexpensive, lightweight and durable heat resistant member by forming a fireproofing coating layer on the surface of a base body consisting of a porous material. CONSTITUTION:The fireproofing coating layer 3 which is dense at the surface side, and porous at the side of the joining interface to the base body and whose porosity is gradually decreased from the joining interface to the surface is formed on the surface of the base body 2 consisting of the porous material. The surface of the base body is spray-coated plural times with the slurry of the fireproofing inorganic material powder so as to be smaller in particle size in proportion as the layer is upper and is fired. As a result, the concentration of thermal and mechanical stress caused by the difference of density and thermal expansion between the base body and the coating layer is prevented by making the density in the vicinity of the joining interface to the base body approximate to the density of the base body. The stress is uniformly distributed by giving inclination to the density of the coating layer. The surface of the coating layer is made dense to prevent the diffusion of the components of the material to be fired, the deterioration of base body caused by the reaction of the diffusion components with the base body is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐熱部材及びその製造方
法に係り、特に、多孔質材料よりなる基体の表面に、低
反応性の耐火被覆層を形成してなる耐熱部材であって、
基体と被覆層との耐剥離性を改善した耐熱部材及びその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant member and a method for producing the same, and more particularly to a heat-resistant member formed by forming a low-reactivity fireproof coating layer on the surface of a substrate made of a porous material,
The present invention relates to a heat resistant member having improved peeling resistance between a substrate and a coating layer and a method for producing the same.

【0002】[0002]

【従来の技術】従来コンデンサ、バリスタ、サーミス
タ、圧電素子等の電子材料の製造に用いられる焼成治具
材料としては、アルミナ、マグネシア、ムライト、スピ
ネル、コージェライト等の耐火材料が広く使用されてい
る。
2. Description of the Related Art Fire-retardant materials such as alumina, magnesia, mullite, spinel and cordierite have been widely used as firing jig materials used in the production of electronic materials such as capacitors, varistors, thermistors and piezoelectric elements. .

【0003】ところで、近年、コンデンサ等の電子材料
には、コスト低減、特性の改善等を目的として、鉛、ビ
スマス等の低融点酸化物がその組成の一部として用いら
れるようになってきている。
By the way, in recent years, low melting point oxides such as lead and bismuth have come to be used as a part of the composition for electronic materials such as capacitors for the purpose of cost reduction and improvement of characteristics. .

【0004】これら低融点酸化物を含む電子材料の焼成
には、当該電子材料素子との反応が極力少ない材料、例
えば、ジルコニア、マグネシアよりなる焼成用治具が用
いられている。
For the firing of electronic materials containing these low-melting-point oxides, a firing jig made of a material that reacts with the electronic material element as little as possible, for example, zirconia or magnesia is used.

【0005】しかし、これらジルコニアやマグネシア等
の材料は高価である上、ジルコニア又はマグネシア製の
焼成用治具では、コスト高となる上に、重量も嵩み取り
扱い難く、また、熱容量も大きいことから焼成コストの
面で不利である。
However, these materials such as zirconia and magnesia are expensive, and a firing jig made of zirconia or magnesia is costly, heavy and difficult to handle, and has a large heat capacity. It is disadvantageous in terms of firing cost.

【0006】このため、最近では、安価なアルミナ等の
多孔質体よりなる軽量基体の表面に、ジルコニア被覆層
を形成した焼成用治具が用いられるようになってきた。
For this reason, recently, a firing jig in which a zirconia coating layer is formed on the surface of a lightweight substrate made of an inexpensive porous material such as alumina has come to be used.

【0007】従来、このような焼成用治具としては、特
開平2−69381号公報に開示されるものがある。
Conventionally, such a firing jig is disclosed in Japanese Patent Laid-Open No. 2-69381.

【0008】[0008]

【発明が解決しようとする課題】しかし、特開平2−6
9381号公報に開示される焼成用治具は、基体表面
に、基体の強度を補うべく、高密度で高強度の被覆層を
設けたものであり、基体の密度と被覆層の密度とが大き
く異なることから、両者の熱膨張率の差が大きい。この
ため、基体と被覆層との接合界面に応力が加わり易く、
機械的衝撃に対して非常に弱いという欠点がある。ま
た、基体と被覆層とで焼結時の体積収縮率が異なること
からも、被覆層の剥離が生じ易いという欠点もある。更
に、基体と被覆層との熱伝導率や熱膨張率等の熱物性の
みならず、ヤング率にも大きな差異があるため、被覆層
に亀裂が生じ易く、この亀裂から被焼成素子の成分が基
体内に拡散し、基体がこの拡散成分と反応することか
ら、焼成用治具の寿命が短いという欠点もある。
However, Japanese Unexamined Patent Publication (Kokai) No. 2-6.
The firing jig disclosed in Japanese Patent No. 9381 has a high-density and high-strength coating layer provided on the surface of the substrate in order to supplement the strength of the substrate, and the density of the substrate and the density of the coating layer are large. Since they are different, the difference in the coefficient of thermal expansion between the two is large. Therefore, stress is easily applied to the bonding interface between the base and the coating layer,
It has the drawback of being very vulnerable to mechanical shock. In addition, since the base and the coating layer have different volumetric shrinkage rates during sintering, there is also a drawback that the coating layer easily peels off. Further, not only thermal properties such as thermal conductivity and thermal expansion coefficient between the substrate and the coating layer but also the Young's modulus have a large difference, so that the coating layer is apt to crack, and the components of the element to be fired are cracked from the crack. Since it diffuses into the substrate and the substrate reacts with this diffusion component, there is also a drawback that the life of the firing jig is short.

【0009】このような問題を解決するものとして、特
公平3−177383号公報には、被覆層の空隙率を大
きくして基体と被覆層との剥離や亀裂発生を防止した耐
火物が開示されている。しかしながら、この耐火物で
は、被覆層の空隙率が大きいため、この空隙を経由して
被焼成素子の成分が基体内に拡散することとなり、焼成
用治具としては不適当である。
As a solution to such a problem, Japanese Patent Publication No. 3-177383 discloses a refractory material in which the porosity of the coating layer is increased to prevent peeling or cracking between the substrate and the coating layer. ing. However, in this refractory, since the coating layer has a large porosity, the components of the element to be fired diffuse into the substrate through the voids, and are unsuitable as a firing jig.

【0010】本発明は上記従来の問題点を解決し、多孔
質材料よりなる基体の表面に、低反応性の耐火被覆層を
形成してなる耐熱部材であって、被覆層による基体の保
護効果を確実に得ることができ、しかも、被覆層の剥離
や亀裂の問題もない、安価で軽量かつ耐久性に優れた耐
熱部材及びその製造方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and is a heat-resistant member having a low-reactivity fireproof coating layer formed on the surface of a substrate made of a porous material, and the effect of protecting the substrate by the coating layer. It is an object of the present invention to provide a heat-resistant member that is inexpensive, lightweight, and has excellent durability, and a method for producing the same, which can reliably obtain the above-mentioned properties, and which is free from the problem of peeling or cracking of the coating layer.

【0011】[0011]

【課題を解決するための手段】請求項1の耐熱部材は、
多孔質材料よりなる基体の表面に耐火被覆層を形成して
なる耐熱部材において、該被覆層は、その表面側が緻密
質であり、基体との接合界面側が多孔質であり、気孔率
が基体との接合界面から該表面に向けて徐々に減少して
いることを特徴とする。
A heat-resistant member according to claim 1,
In a heat-resistant member having a refractory coating layer formed on the surface of a substrate made of a porous material, the coating layer has a dense surface side, a bonding interface side with the substrate is porous, and a porosity of It is characterized in that it gradually decreases from the bonding interface to the surface.

【0012】請求項2の耐熱部材は、請求項1の耐熱部
材において、前記耐火被覆層は、粒子径1〜100μm
の耐火性無機質粉末よりなる、厚さ50〜200μmの
被覆層であることを特徴とする。
The heat-resistant member according to claim 2 is the heat-resistant member according to claim 1, wherein the refractory coating layer has a particle diameter of 1 to 100 μm.
It is a coating layer having a thickness of 50 to 200 μm, which is made of the refractory inorganic powder.

【0013】請求項3の耐熱部材は、請求項1又は2の
耐熱部材において、前記基体は相対密度30〜70%で
あり、前記耐火被覆層のうち、表面側の上層の相対密度
は50〜98%、基体との接合界面側の下層の相対密度
は30〜70%、該上層と下層との間の中間層の相対密
度は40〜80%であることを特徴とする。
A heat-resistant member according to claim 3 is the heat-resistant member according to claim 1 or 2, wherein the substrate has a relative density of 30 to 70%, and the relative density of the upper layer on the front surface side of the fireproof coating layer is 50 to 70%. The relative density of the lower layer is 98%, the relative density of the lower layer on the bonding interface side with the substrate is 30 to 70%, and the relative density of the intermediate layer between the upper layer and the lower layer is 40 to 80%.

【0014】請求項4の耐熱部材の製造方法は、多孔質
材料よりなる基体の表面に、耐火性無機質粉末のスラリ
ーをスプレーコーティングし、その後、焼成することに
より、焼結層よりなる耐火被覆層を形成する方法におい
て、該スプレーコーティングを複数回行なうことによっ
て複数層の積層物よりなるコーティング層を形成した
後、前記焼成を行なうようにした方法であって、該積層
物の各層の無機質粉末の粒度を上側の層ほど小さくなる
ようにし、これによって、前記焼結層よりなる耐火被覆
層の表面側が緻密質であり、基体との接合界面側が多孔
質となると共に、気孔率が基体との接合界面から該表面
に向けて徐々に減少した被覆層を形成することを特徴と
する。
According to a fourth aspect of the present invention, there is provided a method for producing a heat-resistant member, wherein the surface of a substrate made of a porous material is spray-coated with a slurry of a refractory inorganic powder and then fired to form a fire-resistant coating layer made of a sintered layer. The method of forming a coating layer comprising a laminate of a plurality of layers by performing the spray coating a plurality of times, and then performing the firing, wherein the inorganic powder of each layer of the laminate is formed. The grain size is made smaller toward the upper layer, so that the surface side of the refractory coating layer made of the above-mentioned sintered layer is dense, the joint interface side with the substrate is porous, and the porosity is the same as that of the substrate. The coating layer is characterized in that the coating layer is gradually reduced from the interface toward the surface.

【0015】以下、図面を参照して本発明を詳細に説明
する。
The present invention will be described in detail below with reference to the drawings.

【0016】第1図は本発明の耐熱部材の一実施例を示
す模式的な断面図、第2図は第1図の要部拡大図、第3
図は本発明の耐熱部材の製造方法の一実施例を示す断面
図である。
FIG. 1 is a schematic cross-sectional view showing an embodiment of the heat-resistant member of the present invention, FIG. 2 is an enlarged view of an essential part of FIG. 1, and FIG.
The drawings are cross-sectional views showing an embodiment of the method for manufacturing a heat-resistant member of the present invention.

【0017】第1,2図に示す如く、本発明の耐熱部材
1は、多孔質材料よりなる基体2の表面に耐火被覆層3
を形成してなるものであって、この耐火被覆層3が、そ
の表面側が緻密質であり、基体2との接合界面側が多孔
質であり、気孔率が基体2との接合界面から該表面に向
けて徐々に減少しているものである。
As shown in FIGS. 1 and 2, in the heat resistant member 1 of the present invention, the refractory coating layer 3 is formed on the surface of the substrate 2 made of a porous material.
The refractory coating layer 3 has a dense surface side, a joint interface side with the base 2 is porous, and a porosity from the joint interface with the base 2 to the surface. It is gradually decreasing toward.

【0018】本実施例においては、特に、この耐火被覆
層3は、その密度の面から、表面側の上層3A、基体2
との接合界面側の下層3Cと、これらの間の中間層3B
との3層よりなり、基体及び各々の層は好ましくは次の
ような相対密度を有するものである。
In the present embodiment, in particular, the refractory coating layer 3 has an upper layer 3A on the front side and the substrate 2 in terms of its density.
Lower layer 3C on the side of the bonding interface with and intermediate layer 3B between them
And three layers, and the substrate and each layer preferably have the following relative densities.

【0019】基 体:30〜70% 上 層:50〜98% 中間層:40〜80% 下 層:30〜70% なお、この耐火被覆層3を構成する耐火性無機質粉末の
粒子径は1〜100μmの範囲であることが好ましく、
耐火被覆層3は、厚さ50〜200μmであることが好
ましい。
Base: 30 to 70% Upper layer: 50 to 98% Intermediate layer: 40 to 80% Lower layer: 30 to 70% The particle size of the refractory inorganic powder constituting the refractory coating layer 3 is 1 Is preferably in the range of
The fireproof coating layer 3 preferably has a thickness of 50 to 200 μm.

【0020】次に、このような本発明の耐熱部材の製造
に好適な、本発明の耐熱部材の製造方法の一実施例につ
いて、第3図を参照して説明する。
Next, an embodiment of a method for manufacturing a heat-resistant member of the present invention, which is suitable for manufacturing such a heat-resistant member of the present invention, will be described with reference to FIG.

【0021】第3図において、2は基体、10はコンベ
ア、11は第1タンク、12は第2タンク、13は第3
タンク、11A,12A,13Aはスプレーノズル、1
4,14A,14B,14Cはスプレー用の空気供給管
であり、V1 ,V2 ,V3 はバルブである。
In FIG. 3, 2 is a substrate, 10 is a conveyor, 11 is a first tank, 12 is a second tank, and 13 is a third tank.
Tanks, 11A, 12A, 13A are spray nozzles, 1
4, 14A, 14B and 14C are air supply pipes for spraying, and V 1 , V 2 and V 3 are valves.

【0022】本実施例において、基体2はコンベア10
により、図面において左から右へ移動される間に、第1
タンク11、第2タンク12及び第3タンク13より各
々のスラリーがスプレーされる。
In this embodiment, the substrate 2 is the conveyor 10
Causes the first to move while moving from left to right in the drawing.
Each slurry is sprayed from the tank 11, the second tank 12, and the third tank 13.

【0023】第1タンク11のスラリーとしては、粒度
の大きい耐火性無機質粉末の粗粒のスラリーが、また、
第3タンク13のスラリーとしては、粒度の小さい耐火
性無機質粉末の細粒のスラリーが、また、第2タンク1
2のスラリーとしては、これら第1タンク11のスラリ
ーと第3タンク13のスラリーとの中間の粒度の耐火性
無機質粉末の中粒のスラリーがそれぞれ貯留されてい
る。
The slurry in the first tank 11 is a coarse-grained slurry of refractory inorganic powder having a large particle size.
As the slurry in the third tank 13, a fine-grained slurry of refractory inorganic powder having a small particle size is used.
As the second slurry, medium-sized slurry of refractory inorganic powder having an intermediate particle size between the slurry in the first tank 11 and the slurry in the third tank 13 is stored.

【0024】具体的には、各タンクのスラリーを構成す
る耐火性無機質粉末の粒子径は次のような値とされる。
Specifically, the particle size of the refractory inorganic powder which constitutes the slurry of each tank is set as follows.

【0025】第1タンク:粒子径20〜100μm、中
心粒径60μm 第2タンク:粒子径10〜 70μm、中心粒径40μ
m 第3タンク:粒子径 1〜 40μm、中心粒径10μ
m このようなスラリーを用いることにより、形成される被
覆層のうち、粒子径20〜100μm(中心粒径60μ
m)の粗粒で構成される下層(基体との接合界面側の
層)においては、上記粒度分布において、粒子径の小さ
いものは基体との結合強度を維持することに寄与し、粒
子径の大きいものは、空隙を作って気孔率を高め、密度
の小さい層を形成するために寄与する。
First tank: particle size 20 to 100 μm, central particle size 60 μm Second tank: particle size 10 to 70 μm, central particle size 40 μm
m Third tank: particle size 1 to 40 μm, central particle size 10 μm
m By using such a slurry, the coating layer formed has a particle diameter of 20 to 100 μm (central particle diameter of 60 μm).
In the lower layer (layer on the joint interface side with the substrate) composed of coarse particles of m), the one having a small particle size in the above particle size distribution contributes to maintaining the bonding strength with the substrate, The larger ones contribute to forming voids to increase the porosity and to form a less dense layer.

【0026】また、粒子径1〜40μm(中心粒径10
μm)の細粒で構成される上層(表面層)においては、
細かい粒子により緻密で密度の大きい層が形成される。
The particle size is 1 to 40 μm (center particle size 10
μm) in the upper layer (surface layer) composed of fine particles,
The fine particles form a dense and dense layer.

【0027】しかして、粒子径10〜70μm(中心粒
径40μm)の中粒で構成される中間層(上層と下層と
の間の層)では、上層と下層との中間の密度の層が形成
され、これにより全体として、層厚さ方向に気孔率(密
度)が傾斜する本発明の耐熱部材を形成することができ
る。
However, in the intermediate layer (layer between the upper layer and the lower layer) composed of medium particles having a particle size of 10 to 70 μm (center particle size 40 μm), a layer having an intermediate density between the upper layer and the lower layer is formed. As a result, it is possible to form the heat resistant member of the present invention in which the porosity (density) is inclined in the layer thickness direction as a whole.

【0028】なお、本発明において、コーティング層形
成後の焼成は、常法に従って行なうことができ、その基
体や耐火性無機質粉末の種類や大きさ等に応じて焼成条
件は適宜決定される。
In the present invention, the firing after forming the coating layer can be carried out by a conventional method, and the firing conditions are appropriately determined depending on the substrate, the kind and size of the refractory inorganic powder, and the like.

【0029】本発明において、基体の構成材料として
は、アルミナ、マグネシア、スピネル、ムライト、コー
ジェライト等が挙げられる。また、耐火性無機質粉末と
しては、ジルコニア、好ましくは部分安定化ジルコニ
ア、(安定化剤としてカルシア、イットリア、セリア
等)等が挙げられる。このような耐火性無機質粉末のス
ラリーとしては、耐火性無機質粉末を50〜80重量%
濃度で含む水スラリーに、バインダーとしてメチルセル
ロースを0.5〜3.0重量%、スラリー安定化処理剤
としてワックス系エマルジョンを0.5〜3.0重量%
添加して、粘度500〜1500mPa・s(ミリパス
カル秒)程度としたものが用いられる。
In the present invention, examples of the constituent material of the substrate include alumina, magnesia, spinel, mullite, cordierite and the like. Examples of the refractory inorganic powder include zirconia, preferably partially stabilized zirconia, (calcium, yttria, ceria as a stabilizer) and the like. As a slurry of such refractory inorganic powder, the refractory inorganic powder is 50 to 80% by weight.
0.5 to 3.0% by weight of methyl cellulose as a binder and 0.5 to 3.0% by weight of a wax-based emulsion as a slurry stabilizing agent in a water slurry containing a concentration.
A material having a viscosity of about 500 to 1500 mPa · s (millipascal second) is added and used.

【0030】なお、図示の実施例は本発明の一実施例で
あって、本発明はその要旨を超えない限り、何ら図示の
ものに限定されるものではない。
The illustrated embodiment is an embodiment of the present invention, and the present invention is not limited to the illustrated embodiment as long as the gist thereof is not exceeded.

【0031】例えば、本発明の耐熱部材は、その被覆層
の密度(又は気孔率)が層厚さ方向に段階的に変化する
ものに限らず、連続的に変化するものとすることもでき
る。
For example, the heat-resistant member of the present invention is not limited to one in which the density (or porosity) of the coating layer changes stepwise in the layer thickness direction, but may change continuously.

【0032】また、本発明の耐熱部材において、コーテ
ィング処理は3回に限らず、2回或いは4回以上の多数
回行なうようにすることもできる。
Further, in the heat-resistant member of the present invention, the coating treatment is not limited to three times and may be performed twice or four times or more.

【0033】[0033]

【作用】本発明の耐熱部材では、基体上に形成された被
覆層のうち、基体との接合界面近傍は基体の密度に近似
した密度とすることにより、基体と被覆層との密度差、
熱膨張差に起因する熱的、機械的応力の集中を防止する
ことができる。しかして、被覆層の密度に傾斜をもたせ
ることにより、応力を均等に分散させることができる。
また、被覆層の表面については、緻密層とすることによ
り、被焼成物の成分の拡散を防止して、該拡散成分と基
体との反応による基体の劣化を防止することができる。
In the heat-resistant member of the present invention, in the coating layer formed on the substrate, the vicinity of the bonding interface with the substrate has a density close to that of the substrate, so that the density difference between the substrate and the coating layer
It is possible to prevent the concentration of thermal and mechanical stress due to the difference in thermal expansion. Therefore, by making the density of the coating layer have a gradient, the stress can be evenly dispersed.
Further, by forming a dense layer on the surface of the coating layer, it is possible to prevent the components of the material to be burned from diffusing and prevent the deterioration of the substrate due to the reaction between the diffusing components and the substrate.

【0034】本発明の耐熱部材の製造方法によれば、こ
のような耐熱部材を容易かつ効率的に製造することが可
能とされる。
According to the method for manufacturing a heat resistant member of the present invention, such a heat resistant member can be manufactured easily and efficiently.

【0035】即ち、粒度の小さい粉末であれば、緻密な
層を形成することができ、粒度の大きい粉末であれば、
気孔率の大きい層を形成することができる。このため、
スプレーコーティングを複数回に分けて行ない、上側の
層ほど耐火性無機質粉末の粒度が小さくなるようにスラ
リーのスプレーコーティングを行なうことにより、表面
側が緻密質であり、基体との接合界面側が多孔質となる
と共に、気孔率が基体との接合界面から該表面に向けて
徐々に減少した被覆層を形成することができる。
That is, if the powder has a small particle size, a dense layer can be formed, and if the powder has a large particle size,
A layer with high porosity can be formed. For this reason,
The spray coating is performed in multiple steps, and the slurry is spray-coated so that the particle size of the refractory inorganic powder becomes smaller toward the upper layer, so that the surface side is dense and the bonding interface side with the substrate is porous. In addition, it is possible to form a coating layer in which the porosity gradually decreases from the bonding interface with the substrate toward the surface.

【0036】[0036]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples below.

【0037】実施例1 第3図に示す方法により、本発明の耐熱部材を製造し
た。耐火性無機質粉末としては、部分安定化ジルコニア
(安定化率80%、安定化剤カルシア)粉末を用い、各
第1タンク、第2タンク及び第3タンクに供給したスラ
リー(水スラリー)の粉末粒子径、濃度及び粘度は、次
の通りとした。なお、いずれのスラリーにも、バインダ
ーとしてメチルセルロースを1.0重量%、スラリー安
定化処理剤としてワックス系エマルジョンを1.0重量
%添加して攪拌混合した。
Example 1 A heat-resistant member of the present invention was manufactured by the method shown in FIG. As the refractory inorganic powder, partially stabilized zirconia (stabilization rate 80%, stabilizer calcia) powder was used, and powder particles of slurry (water slurry) supplied to each of the first tank, second tank, and third tank. The diameter, concentration and viscosity were as follows. In each of the slurries, 1.0% by weight of methyl cellulose as a binder and 1.0% by weight of a wax emulsion as a slurry stabilizing agent were added and mixed with stirring.

【0038】第1タンク:粒子径30〜100μm、濃
度60%、粘度700mPa・s 第2タンク:粒子径10〜 40μm、濃度60%、粘
度1000mPa・s 第3タンク:粒子径 1〜 30μm、濃度60%、粘
度1500mPa・s コンベアの送り速度を3.0cm/secとし、また、
スラリー吹き付け量は各々のノズルより均等に4.0m
l/secとした。
First tank: particle diameter 30 to 100 μm, concentration 60%, viscosity 700 mPa · s Second tank: particle diameter 10 to 40 μm, concentration 60%, viscosity 1000 mPa · s Third tank: particle diameter 1 to 30 μm, concentration 60%, viscosity 1500 mPa · s, conveyor feed speed is 3.0 cm / sec,
Slurry spraying amount is 4.0m evenly from each nozzle
1 / sec.

【0039】なお、基体としてはアルミナを主成分とす
る密度55%の多孔質成形体を用いた。
As the substrate, a porous molded body containing alumina as a main component and having a density of 55% was used.

【0040】このようにして基体上に150μm厚さの
コーティング層を形成し、これを自然乾燥後、1650
℃で2時間焼成した。
Thus, a coating layer having a thickness of 150 μm was formed on the substrate, which was naturally dried and then 1650
Calcination was carried out for 2 hours.

【0041】得られた焼結体(100mm×100mm
×5mm厚さ)の曲げ強度(10枚の平均)は200k
gf/cm2 であった。
The obtained sintered body (100 mm × 100 mm
X5mm thickness) bending strength (average of 10 sheets) is 200k
It was gf / cm 2 .

【0042】また、得られた焼結体を定盤の上に水平に
載置して、その20cm上方から50gの鉄球を落下さ
せたところ、10枚共、破損は認められなかった。
Further, when the obtained sintered body was placed horizontally on a surface plate and 50 g of iron balls were dropped from 20 cm above the surface, no damage was found on all 10 sheets.

【0043】更に、この焼結体を250℃/hrの昇降
温速度で1450℃で2時間保持の熱サイクル寿命試験
を行なったところ、60回の熱サイクル試験後において
も、10枚共、亀裂や剥離、割れは認められなかった。
Further, a thermal cycle life test of this sintered body was carried out at a temperature rising / falling rate of 250 ° C./hr and held at 1450 ° C. for 2 hours. Even after 60 thermal cycle tests, 10 sheets were cracked. No peeling or cracking was observed.

【0044】この焼結体の被覆層部分の断面組織を電子
顕微鏡で観察したところ、密度が表面側で高く、基体と
の接合界面側で低く、層厚さ方向に傾斜していることが
確認された。 比較例1 実施例1において、粒子径1〜50μm、平均粒子径1
0μmの部分安定化ジルコニア(安定化率80%)含有
スラリー(スラリー濃度60%、スラリー粘度1300
mPa・s)のみを用いてスプレーし、基体表面に15
0μm厚さのコーティング層を形成したこと以外は同様
にして焼結体を製造した。
When the cross-sectional structure of the coating layer portion of this sintered body was observed by an electron microscope, it was confirmed that the density was high on the surface side, low on the bonding interface side with the substrate, and inclined in the layer thickness direction. Was done. Comparative Example 1 In Example 1, the particle size is 1 to 50 μm, and the average particle size is 1.
Slurry containing 0 μm partially stabilized zirconia (stabilization rate 80%) (slurry concentration 60%, slurry viscosity 1300
15 mPa · s) and sprayed on the substrate surface
A sintered body was manufactured in the same manner except that a coating layer having a thickness of 0 μm was formed.

【0045】得られた焼結体の曲げ強度は500kgf
/cm2 であった。この焼結体では、基体とコーティン
グ層との焼結収縮の違いから生ずる応力が接合界面に導
入され、高強度となっているが、この強度は必要以上に
大きく、実用的ではない。(実用強度は100〜200
kgf/cm2 あれば十分である。) この焼結体を実施例1と同じ条件下で鉄球落下試験及び
熱サイクル寿命試験を行なったところ、鉄球の落下によ
り破損した。また、熱サイクル寿命試験では、20回の
熱サイクル試験で亀裂が発生し、25回の熱サイクル試
験で剥離が見られた。
The bending strength of the obtained sintered body is 500 kgf.
Was / cm 2 . In this sintered body, the stress generated due to the difference in sintering contraction between the substrate and the coating layer is introduced into the bonding interface to provide high strength, but this strength is unnecessarily large and not practical. (Practical strength is 100-200
kgf / cm 2 is sufficient. When an iron ball drop test and a thermal cycle life test were performed on this sintered body under the same conditions as in Example 1, the iron ball was damaged by being dropped. Further, in the heat cycle life test, cracks were generated in the heat cycle test 20 times, and peeling was observed in the heat cycle test 25 times.

【0046】[0046]

【発明の効果】以上詳述した通り、本発明の耐熱部材に
よれば、基体の保護効果が高く、しかも、亀裂、剥離、
破損等の問題もない、耐久性に優れた耐熱部材が提供さ
れる。
As described above in detail, according to the heat-resistant member of the present invention, the effect of protecting the substrate is high, and furthermore, cracking, peeling,
Provided is a heat-resistant member having excellent durability and free from problems such as breakage.

【0047】このような本発明の耐熱部材は、特に、セ
ッター等の電子材料の焼成用治具に極めて有効であり、
軽量かつ低コストで耐久性に優れた焼成用治具を提供す
ることにより、電子材料のコスト低減を図ることが可能
とされる。
Such a heat-resistant member of the present invention is extremely effective especially for a jig for firing electronic materials such as a setter,
It is possible to reduce the cost of electronic materials by providing a firing jig that is lightweight, low cost, and excellent in durability.

【0048】本発明の耐熱部材の製造方法によれば、こ
のような高耐久性の耐熱部材を、容易かつ効率的に、低
コストに製造することが可能とされる。
According to the method for producing a heat-resistant member of the present invention, such a highly durable heat-resistant member can be produced easily and efficiently at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の耐熱部材の一実施例を示す模式的な断
面図である。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a heat resistant member of the present invention.

【図2】第1図の要部拡大図である。FIG. 2 is an enlarged view of a main part of FIG.

【図3】本発明の耐熱部材の製造方法の一実施例を示す
断面図である。
FIG. 3 is a cross-sectional view showing an embodiment of a method for manufacturing a heat resistant member of the present invention.

【符号の説明】[Explanation of symbols]

1 耐熱部材 2 基体 3 耐火被覆層 10 コンベア 11 第1タンク 12 第2タンク 13 第3タンク DESCRIPTION OF SYMBOLS 1 Heat resistant member 2 Substrate 3 Fireproof coating layer 10 Conveyor 11 First tank 12 Second tank 13 Third tank

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多孔質材料よりなる基体の表面に耐火被
覆層を形成してなる耐熱部材において、 該被覆層は、その表面側が緻密質であり、基体との接合
界面側が多孔質であり、気孔率が基体との接合界面から
該表面に向けて徐々に減少していることを特徴とする耐
熱部材。
1. A heat-resistant member comprising a substrate made of a porous material and a refractory coating layer formed on the surface of the substrate, wherein the coating layer has a dense surface side and a joint interface side with the substrate is porous. A heat-resistant member having a porosity gradually decreasing from a bonding interface with a substrate toward the surface.
【請求項2】 請求項1の耐熱部材において、前記耐火
被覆層は、粒子径1〜100μmの耐火性無機質粉末よ
りなる、厚さ50〜200μmの被覆層であることを特
徴とする耐熱部材。
2. The heat-resistant member according to claim 1, wherein the fire-resistant coating layer is a coating layer made of a fire-resistant inorganic powder having a particle size of 1 to 100 μm and a thickness of 50 to 200 μm.
【請求項3】 請求項1又は2の耐熱部材において、前
記基体は相対密度30〜70%であり、前記耐火被覆層
のうち、表面側の上層の相対密度は50〜98%、基体
との接合界面側の下層の相対密度は30〜70%、該上
層と下層との間の中間層の相対密度は40〜80%であ
ることを特徴とする耐熱部材。
3. The heat resistant member according to claim 1, wherein the base has a relative density of 30 to 70%, and the relative density of an upper layer on the surface side of the fire resistant coating layer is 50 to 98%. The heat-resistant member, wherein the lower layer on the bonding interface side has a relative density of 30 to 70%, and the intermediate layer between the upper layer and the lower layer has a relative density of 40 to 80%.
【請求項4】 多孔質材料よりなる基体の表面に、耐火
性無機質粉末のスラリーをスプレーコーティングし、そ
の後、焼成することにより、焼結層よりなる耐火被覆層
を形成する方法において、 該スプレーコーティングを複数回行なうことによって複
数層の積層物よりなるコーティング層を形成した後、前
記焼成を行なうようにした方法であって、 該積層物の各層の無機質粉末の粒度を上側の層ほど小さ
くなるようにし、 これによって、前記焼結層よりなる耐火被覆層の表面側
が緻密質であり、基体との接合界面側が多孔質となると
共に、気孔率が基体との接合界面から該表面に向けて徐
々に減少した被覆層を形成することを特徴とする耐熱部
材の製造方法。
4. A method for forming a fire-resistant coating layer made of a sintered layer by spray-coating a slurry of a fire-resistant inorganic powder on the surface of a substrate made of a porous material, and then firing the slurry. In this method, a coating layer composed of a laminate of a plurality of layers is formed by performing a plurality of times, and then the firing is performed, so that the particle size of the inorganic powder in each layer of the laminate is smaller in the upper layer. As a result, the surface side of the refractory coating layer made of the sintered layer is dense, the joint interface side with the substrate becomes porous, and the porosity gradually increases from the joint interface with the substrate toward the surface. A method for manufacturing a heat-resistant member, comprising forming a reduced coating layer.
JP30226492A 1992-11-12 1992-11-12 Heat resistant member and production thereof Withdrawn JPH06144959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30226492A JPH06144959A (en) 1992-11-12 1992-11-12 Heat resistant member and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30226492A JPH06144959A (en) 1992-11-12 1992-11-12 Heat resistant member and production thereof

Publications (1)

Publication Number Publication Date
JPH06144959A true JPH06144959A (en) 1994-05-24

Family

ID=17906924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30226492A Withdrawn JPH06144959A (en) 1992-11-12 1992-11-12 Heat resistant member and production thereof

Country Status (1)

Country Link
JP (1) JPH06144959A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172055A (en) * 1992-12-10 1994-06-21 Senju Metal Ind Co Ltd Non-oxide sintered compact of high surface density
WO2003031374A1 (en) * 2001-10-04 2003-04-17 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Refractory for furnace and furnace and method for surface treating furnace wall
JP2017001943A (en) * 2015-06-11 2017-01-05 国立研究開発法人産業技術総合研究所 Porous body and method for producing the same
CN108794068A (en) * 2018-06-28 2018-11-13 航天材料及工艺研究所 A kind of preparation method of porous material surface layer gradient transitional lay
JPWO2022004582A1 (en) * 2020-06-30 2022-01-06
WO2022097728A1 (en) * 2020-11-05 2022-05-12 京セラ株式会社 Ceramic structure with glazing layer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172055A (en) * 1992-12-10 1994-06-21 Senju Metal Ind Co Ltd Non-oxide sintered compact of high surface density
WO2003031374A1 (en) * 2001-10-04 2003-04-17 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Refractory for furnace and furnace and method for surface treating furnace wall
JP2017001943A (en) * 2015-06-11 2017-01-05 国立研究開発法人産業技術総合研究所 Porous body and method for producing the same
CN108794068A (en) * 2018-06-28 2018-11-13 航天材料及工艺研究所 A kind of preparation method of porous material surface layer gradient transitional lay
JPWO2022004582A1 (en) * 2020-06-30 2022-01-06
WO2022097728A1 (en) * 2020-11-05 2022-05-12 京セラ株式会社 Ceramic structure with glazing layer
CN116438151A (en) * 2020-11-05 2023-07-14 京瓷株式会社 Ceramic structure with glaze layer

Similar Documents

Publication Publication Date Title
CN101528407B (en) Improved method of bonding aluminum-boron-carbon composites
JP2005082451A (en) SILICON NITRIDE-COMBINED SiC REFRACTORY AND ITS PRODUCING METHOD
JPH0521865B2 (en)
JPS63224937A (en) Double layer structure heat-resistant plate
KR100725083B1 (en) Jig for baking electronic component
KR20060076229A (en) Firing jig for electronic element
JPH06144959A (en) Heat resistant member and production thereof
KR101196685B1 (en) Jig for electronic part firing
JP5069592B2 (en) Immersion nozzle
US4693918A (en) Tool for firing ceramics
JP3139962B2 (en) Firing jig and method of manufacturing the same
KR100546452B1 (en) Setter for ceramic electronic parts
JP2008137860A (en) Ceramics burning tool material for electronic components
JPH06144958A (en) Production of heat resistant member
JP2002154884A (en) Calcination tool for electronic parts
JP4054098B2 (en) Firing jig
MXPA05003082A (en) Electronic component burning jig.
JP4136249B2 (en) Baking jig for electronic parts
TWI271239B (en) Thermal shock resistant casting element and manufacturing process thereof
KR100549030B1 (en) materials and jig for baking electronic parts
JP2002060287A (en) Firing vessel
JPH05359B2 (en)
JP3524668B2 (en) Nozzle refractories for continuous casting
JPS63241152A (en) Oxide-type thermal spraying material
JPS6384011A (en) Manufacture of baking jig for electronic component

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201