JP3524668B2 - Nozzle refractories for continuous casting - Google Patents

Nozzle refractories for continuous casting

Info

Publication number
JP3524668B2
JP3524668B2 JP06896996A JP6896996A JP3524668B2 JP 3524668 B2 JP3524668 B2 JP 3524668B2 JP 06896996 A JP06896996 A JP 06896996A JP 6896996 A JP6896996 A JP 6896996A JP 3524668 B2 JP3524668 B2 JP 3524668B2
Authority
JP
Japan
Prior art keywords
pitch
particle size
aggregate
continuous casting
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06896996A
Other languages
Japanese (ja)
Other versions
JPH09239503A (en
Inventor
陽一郎 望月
哲郎 伏見
悦弘 長谷部
整 瀧川
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP06896996A priority Critical patent/JP3524668B2/en
Publication of JPH09239503A publication Critical patent/JPH09239503A/en
Application granted granted Critical
Publication of JP3524668B2 publication Critical patent/JP3524668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、連続鋳造用ノズ
ル耐火物に関するものである。
TECHNICAL FIELD The present invention relates to a nozzle refractory for continuous casting.

【0002】[0002]

【従来の技術】従来の連続鋳造用ノズル耐火物は、アル
ミナ黒鉛材質を主材質とし、パウダーライン部や嵌合部
等をジルコニア黒鉛材質、マグネシア黒鉛材質で補強し
た複合体として形成されている。
2. Description of the Related Art A conventional refractory for continuous casting nozzles is formed as a composite material in which an alumina graphite material is a main material and a powder line portion, a fitting portion and the like are reinforced by a zirconia graphite material and a magnesia graphite material.

【0003】これらの炭素含有耐火物は、一般に、天然
鱗状黒鉛を炭素源としている。しかし、鱗状黒鉛は30
00℃以下では焼結しないため、鱗状黒鉛粒同士や鱗状
黒鉛粒と他の骨材粒との焼結による強度向上は期待でき
ない。それゆえ、耐火物の強度は、バインダーに由来し
て、カーボンボンドがどの程度形成されるかに依存して
いる。
These carbon-containing refractories generally use natural scaly graphite as a carbon source. However, the flake graphite is 30
Since it does not sinter below 00 ° C., it cannot be expected to improve the strength due to the sintering of scaly graphite particles or the sintering of scaly graphite particles and other aggregate particles. Therefore, the strength of the refractory material depends on how much carbon bonds are formed due to the binder.

【0004】炭素含有耐火物のバインダーとしては、一
般に、炭素収率40%以上の液状フェノールレジンや粉
末レジン、炭素収率50%以上のピッチバインダー等が
用いられている。
As the binder containing carbon-containing refractory, liquid phenol resin or powder resin having a carbon yield of 40% or more, pitch binder having a carbon yield of 50% or more are generally used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、液状の
バインダーや粉末バインダーとアルミナ、ジルコニア又
はマグネシア等の骨材粒や炭化珪素、シリカ、黒鉛粉末
等の微粉を混練工程において、骨材粒又は微粉の粒表面
が液状バインダーや粉末バインダーによって均一に濡れ
るように制御することは非常に難しい。
However, in the step of kneading the liquid binder or powder binder and the aggregate particles such as alumina, zirconia or magnesia or the fine powder such as silicon carbide, silica, graphite powder, etc. It is very difficult to control the surface of the particles so that they are uniformly wet with the liquid binder or the powder binder.

【0006】濡れ状態が不均一の場合には、強度低下や
バインダーの偏った部分で異常溶損が生じてしまう。
When the wet state is not uniform, the strength is lowered and abnormal melting damage occurs in the uneven portion of the binder.

【0007】また、マグネシア等の消化性を持つ材質で
は液状のバインダーに含まれる水分によって、マグネシ
ア骨材粒内に消化が起こり、体積膨脹等により材質強度
が著しく低下してしまう。
Further, in the case of a digestible material such as magnesia, the moisture contained in the liquid binder causes digestion in the granules of the magnesia aggregate, and the material strength remarkably decreases due to volume expansion and the like.

【0008】一方、特開平2−311358号公報に記
載の不焼成マグネシア・カーボンれんがは、マグネシウ
ム或いはマグネシウム−アルミニウム合金の取り扱いを
容易にするため、ピッチでコートしたマグネシウム・ア
ルミニウム合金粉末を0.5〜10%含有させる構成に
なっている。
On the other hand, in the unfired magnesia-carbon brick described in JP-A-2-311358, 0.5 mm of magnesium-aluminum alloy powder coated with pitch is used to facilitate handling of magnesium or magnesium-aluminum alloy. It is configured to contain 10%.

【0009】また、特開平6−293565号公報は、
均質で緻密なSi−SiC材を得るため、メソフェーズ
含有ピッチを被覆したSiC粉末で成形体を形成し、こ
れを焼成した後Siを含浸するSi−SiC複合セラミ
ックスの製造方法を開示している。
Further, Japanese Patent Laid-Open No. 6-293565 discloses that
In order to obtain a homogeneous and dense Si-SiC material, a method for producing a Si-SiC composite ceramic is disclosed, in which a compact is formed from SiC powder coated with mesophase-containing pitch, and the compact is fired and then impregnated with Si.

【0010】しかしながら、特開平2−311358号
公報の不焼成マグネシア・カーボンれんがは、マグネシ
ウム或いはマグネシウム−アルミニウム合金の取り扱い
を容易にする目的で提案されたものであり、れんが自体
は、熱膨張率が高く、使用時に熱衝撃による割れなどの
不具合があり、連続鋳造用ノズルとして最適であるとは
言えない。
However, the unfired magnesia-carbon brick disclosed in JP-A-2-311358 was proposed for the purpose of facilitating the handling of magnesium or a magnesium-aluminum alloy, and the brick itself has a coefficient of thermal expansion. It is expensive and has problems such as cracking due to thermal shock during use, so it cannot be said to be optimal as a nozzle for continuous casting.

【0011】また、特開平6−293565号公報のS
i−SiC複合セラミックスも、熱膨張率が高いため、
熱衝撃による割れを生じる等の不具合があるため、連続
鋳造用ノズルとして最適であるとは言えない。
Further, S in Japanese Patent Laid-Open No. 6-293565
Since i-SiC composite ceramics also has a high coefficient of thermal expansion,
Since it has defects such as cracking due to thermal shock, it cannot be said to be optimal as a continuous casting nozzle.

【0012】このような従来技術の問題点に鑑み、本発
明は、見掛気孔率が小さく、十分な強度を有し、耐食性
も大きい連続鋳造用の各種ノズルに最適な連続鋳造用ノ
ズル耐火物を提供することを目的としている。
In view of the above problems of the prior art, the present invention provides a continuous casting nozzle refractory which is suitable for various nozzles for continuous casting having a small apparent porosity, a sufficient strength and a large corrosion resistance. Is intended to provide.

【0013】[0013]

【0014】[0014]

【課題を解決するための手段】本願第発明は、100
〜300℃で軟化するピッチを表面にコートした粒径7
4〜1000μmのジルコニア原料40〜90重量%を
骨材として用い、骨材粒子と同等以下の粒径の他の耐火
物原料としてシリカ、黒鉛粉末、カルシアの少なくとも
1種を用い、結合材としてレジン系バインダーを用い、
還元性雰囲気で焼成してピッチをカーボンボンド化した
構成を有することを特徴とする連続鋳造用ノズル耐火物
を要旨としている。
Means for Solving the Problems The first invention of the present application is 100
Particle size 7 with the surface coated with pitch that softens at ~ 300 ° C
40 to 90% by weight of a zirconia raw material of 4 to 1000 μm is used as an aggregate, and at least one of silica, graphite powder and calcia is used as another refractory raw material having a particle size equal to or smaller than that of the aggregate particles, and a resin is used as a binder. Using a binder
A gist is a nozzle refractory for continuous casting, which has a structure in which a pitch is carbon-bonded by firing in a reducing atmosphere.

【0015】本願第発明は、100〜300℃で軟化
するピッチを表面にコートした粒径74〜3000μm
のマグネシア原料40〜90重量%を骨材として用い、
骨材粒子と同等以下の粒径の他の耐火物原料として炭化
珪素、シリカ、黒鉛粉末の少なくとも1種を用い、結合
材としてレジン系バインダーを用い、還元性雰囲気で焼
成してピッチをカーボンボンド化した構成を有すること
を特徴とする連続鋳造用ノズル耐火物を要旨としてい
る。
In the second invention of the present application, a particle size of 74 to 3000 μm having a surface coated with a pitch that softens at 100 to 300 ° C.
40 to 90% by weight of the magnesia raw material of
At least one of silicon carbide, silica, and graphite powder is used as another refractory material having a particle size equal to or less than that of the aggregate particles, and a resin binder is used as the binder, and the pitch is carbon-bonded by firing in a reducing atmosphere. The gist is a nozzle refractory for continuous casting, which is characterized by having a simplified structure.

【0016】[0016]

【発明の実施の形態】本発明の連続鋳造用ノズル耐火物
は、表面をバインダー成分のピッチによってコートした
アルミナ、ジルコニア又はマグネシアを骨材として用
い、骨材粒子と同等以下の粒径の他の耐火物原料として
炭化珪素、シリカ黒煙粉末、カルシアの少なくとも1種
を用い、結合剤としてレジン系バインダーを添加し、還
元性雰囲気で焼成してピッチをカーボンボンド化した構
成になっている。そして、骨材がアルミナの場合は10
MPa以上、ジルコニアの場合は7MPa以上、マグネ
シアの場合は6MPa以上の曲げ強さを有することが好
ましい。より好ましい曲げ強さは、それぞれ10MPa
以上、8MPa以上、7MPa以上である。ピッチは、
100〜300℃で軟化するものを用いる。
BEST MODE FOR CARRYING OUT THE INVENTION A nozzle refractory for continuous casting according to the present invention uses alumina, zirconia or magnesia whose surface is coated with a pitch of a binder component as an aggregate and has a particle size equal to or smaller than that of the aggregate particles. At least one of silicon carbide, silica black smoke powder, and calcia is used as a refractory material, a resin binder is added as a binder, and the pitch is carbon-bonded by firing in a reducing atmosphere. If the aggregate is alumina, 10
Bending strength of 7 MPa or more in the case of zirconia and 6 MPa or more in the case of magnesia is preferable. More preferable bending strength is 10 MPa, respectively
As described above, the pressure is 8 MPa or more and 7 MPa or more. The pitch is
What softens at 100-300 degreeC is used.

【0017】バインダー成分のピッチによって骨材粒子
表面を均一に覆い、還元性雰囲気下で焼成してこれをカ
ーボンボンド化し、カーボンボンドを偏りなく分散する
ことにより、強度を向上することができるのである。カ
ーボンボンド化を確実に行うため、焼成温度は400℃
以上とすることが好ましい。
The strength of the aggregate particles can be improved by uniformly covering the surface of the aggregate particles with the pitch of the binder component, firing it in a reducing atmosphere to form carbon bonds, and dispersing the carbon bonds evenly. . The firing temperature is 400 ° C to ensure carbon bonding.
The above is preferable.

【0018】焼成によって軟化した骨材粒子周りのピッ
チが、マトリックスの微細な隙間を埋めるため、見掛気
孔率を低減でき耐食性も向上できる。
Since the pitch around the aggregate particles softened by firing fills the minute gaps in the matrix, the apparent porosity can be reduced and the corrosion resistance can be improved.

【0019】骨材のアルミナ、ジルコニア又はマグネシ
アの粒径は、74μm以上とする。骨材粒径が74μm
未満の場合には、ピッチの粘性によって骨材粒径よりも
ピッチのコーティング層の厚みの方が大きくなり、耐食
性が低下するという不具合が生じる。
The grain size of alumina, zirconia or magnesia of the aggregate is 74 μm or more. Aggregate particle size is 74 μm
When it is less than the above range, the thickness of the coating layer of the pitch becomes larger than the particle diameter of the aggregate due to the viscosity of the pitch, which causes a problem that the corrosion resistance decreases.

【0020】骨材のアルミナとジルコニアの粒径は10
00μm以下、マグネシアの粒径は3000μm以下と
する。これは、連続鋳造用耐火物として用いるアルミ
ナ、ジルコニア及びマグネシア原料の一般的な上限値で
あり、1000μm又は3000μmを超えると強度が
極端に低下するという不具合が生じるからである。
The particle size of alumina and zirconia of the aggregate is 10
The particle size of magnesia is set to 00 μm or less and 3000 μm or less. This is a general upper limit of the raw materials of alumina, zirconia and magnesia used as refractory for continuous casting, and when it exceeds 1000 μm or 3000 μm, the problem that strength is extremely lowered occurs.

【0021】このような観点から、骨材として用いるア
ルミナとジルコニアのより好ましい粒径は74〜100
0μmであり、マグネシアのより好ましい粒径は74〜
3000μmである。
From this point of view, the more preferable particle size of alumina and zirconia used as the aggregate is 74 to 100.
0 μm, and the more preferable particle size of magnesia is 74-
It is 3000 μm.

【0022】なお、粒径74〜1000(又は300
0)μmとは、最小粒子径が74μmで最大粒子径が1
000(又は3000)μmの連続粒を意味している。
The particle size is 74 to 1000 (or 300).
0) μm means a minimum particle size of 74 μm and a maximum particle size of 1
It means a continuous grain of 000 (or 3000) μm.

【0023】骨材としてアルミナ原料を用いる場合に
は、その配合量は30〜80重量%とし、ジルコニア又
はマグネシア原料を用いる場合には、その配合量は40
〜90重量%とする。このように骨材の配合量を限定し
た理由は、連続鋳造用ノズル耐火物として現在使用され
ている配合量だからである。
When an alumina raw material is used as the aggregate, its content is 30 to 80% by weight, and when a zirconia or magnesia raw material is used, the content is 40%.
Up to 90% by weight. The reason for limiting the compounding amount of the aggregate in this way is that the compounding amount is currently used as a nozzle refractory for continuous casting.

【0024】ピッチとアルミナ、ジルコニア又はマグネ
シアの骨材は、100〜200℃で加熱しながら混練す
ることが好ましい。これによって、骨材粒子の表面を均
一にコーティングすることが可能となる。
The pitch and the aggregate of alumina, zirconia or magnesia are preferably kneaded while heating at 100 to 200 ° C. This makes it possible to uniformly coat the surface of the aggregate particles.

【0025】マグネシアは消化性を持っているが、ピッ
チで粒子表面を覆うことによって、バインダーに含まれ
る水分による消化を防止できる。
Magnesia has digestibility, but by covering the particle surface with pitch, digestion due to water contained in the binder can be prevented.

【0026】なお、本発明でいう骨材粒子と同等以下の
粒径の他の耐火物原料は、粒径を骨材粒子と同等以下と
することにより本発明のピッチコーティングの効果を十
分に得ることができるものである。
The other refractory raw material having a particle size equal to or smaller than that of the aggregate particles according to the present invention has a particle size equal to or smaller than that of the aggregate particles, thereby sufficiently obtaining the effect of the pitch coating of the present invention. Is something that can be done.

【0027】[0027]

【実施例】以下、本発明の実施例1〜5及び比較例1〜
5を説明する。
EXAMPLES Examples 1 to 5 and Comparative Example 1 of the present invention will be described below.
5 will be described.

【0028】実施例1〜2は、アルミナ黒鉛系の連続鋳
造ノズル耐火物の実施例である。
Examples 1 and 2 are examples of refractory materials of continuous casting nozzle made of alumina graphite.

【0029】表1に示す配合割合でアルミナ粒と、黒鉛
粉末と、シリカ粒と、炭化珪素を準備し、混練・成形・
焼成して耐火物を製造した。
Alumina particles, graphite powder, silica particles, and silicon carbide were prepared at the compounding ratios shown in Table 1, and kneaded, molded, and molded.
Fired to produce a refractory.

【0030】アルミナ粒の径は74〜1000μmであ
った。アルミナ粒の表面には、硬ピッチとメソフェーズ
ピッチを約0.05μmの厚さでコーティングしておい
た。コーティングは、200℃以下の熱間でピッチを液
体状態にして、骨材原料と混練することにより行った。
微粒原料として配合した黒鉛粉末、シリカ粒及び炭化珪
素の粒径はそれぞれ100〜200μm、88〜297
μm、44μm以下とした。
The diameter of the alumina particles was 74 to 1000 μm. The surface of the alumina particles was coated with hard pitch and mesophase pitch with a thickness of about 0.05 μm. The coating was performed by bringing the pitch into a liquid state at a temperature of 200 ° C. or lower and kneading the aggregate raw material.
The particle size of graphite powder, silica particles, and silicon carbide compounded as fine particle raw materials are 100 to 200 μm and 88 to 297, respectively.
μm and 44 μm or less.

【0031】一方、アルミナ粒にピッチをコーティング
せず、それ以外は同様の手順で比較例1〜2の耐火物を
製造した。
On the other hand, refractory materials of Comparative Examples 1 and 2 were manufactured by the same procedure except that the alumina particles were not coated with pitch.

【0032】実施例1〜2と比較例1〜2の耐火物の曲
げ強さ、動弾性率、見掛気孔率、かさ比重、耐食性指数
を測定した。その結果を表1に示す。なお、耐食性指数
は比較例1を100としており、数値の大きいものほど
耐食性に優れている。
The bending strength, kinetic elastic modulus, apparent porosity, bulk specific gravity and corrosion resistance index of the refractories of Examples 1 and 2 and Comparative Examples 1 and 2 were measured. The results are shown in Table 1. The corrosion resistance index is set to 100 in Comparative Example 1, and the larger the value, the better the corrosion resistance.

【0033】表1を見ると、実施例1及び2の方が比較
例1及び2よりも、曲げ強さが大きく、見掛気孔率が小
さく、耐食性が大きいことが分かる。
From Table 1, it can be seen that Examples 1 and 2 have a higher bending strength, a smaller apparent porosity, and a higher corrosion resistance than Comparative Examples 1 and 2.

【0034】実施例3〜4は、ジルコニア黒鉛系の連続
鋳造ノズル耐火物である。
Examples 3 to 4 are zirconia graphite-based continuous casting nozzle refractories.

【0035】骨材として粒径が74〜1000μmのジ
ルコニア粒を用い、黒鉛粉末、シリカ粒、カルシアを添
加し、実施例1と同様にして耐火物を製造した。
Zirconia particles having a particle size of 74 to 1000 μm were used as an aggregate, and graphite powder, silica particles, and calcia were added, and a refractory material was manufactured in the same manner as in Example 1.

【0036】一方、ジルコニア粒にピッチをコートせ
ず、それ以外は同様にして比較例3〜4の耐火物を製造
した。
On the other hand, the refractory materials of Comparative Examples 3 to 4 were manufactured in the same manner except that the zirconia grains were not coated with pitch.

【0037】同様に、実施例3〜4と比較例3〜4の物
性を測定した。その結果を表2に示す。表2を見ると、
実施例3及び4の方が比較例3及び4よりも、曲げ強さ
が大きく、見掛気孔率が小さく、耐食性が大きいことが
分かる。
Similarly, the physical properties of Examples 3 to 4 and Comparative Examples 3 to 4 were measured. The results are shown in Table 2. Looking at Table 2,
It can be seen that Examples 3 and 4 have higher bending strength, smaller apparent porosity, and higher corrosion resistance than Comparative Examples 3 and 4.

【0038】実施例5は、マグネシア黒鉛系の連続鋳造
ノズル耐火物である。
Example 5 is a magnesia graphite-based continuous casting nozzle refractory material.

【0039】骨材として粒径が74〜3000μmのマ
グネシア粒を用い、黒鉛粉末、シリカ粒、炭化珪素を添
加し、実施例1と同様にして耐火物を製造した。
A magnesia grain having a grain size of 74 to 3000 μm was used as an aggregate, and graphite powder, silica grain, and silicon carbide were added, and a refractory was manufactured in the same manner as in Example 1.

【0040】一方、ジルコニア粒にピッチをコートせ
ず、それ以外は同様にして比較例5の耐火物を製造し
た。
On the other hand, the refractory of Comparative Example 5 was manufactured in the same manner except that the zirconia grains were not coated with pitch.

【0041】同様に、実施例5と比較例5の物性を測定
した。その結果を表3に示す。表3を見ると、実施例5
4の方が比較例5よりも、曲げ強さが大きく、見掛気孔
率が小さく、耐食性が大きいことが分かる。なお、比較
例5では、焼成後マグネシア粒に消化現象が認められ
た。
Similarly, the physical properties of Example 5 and Comparative Example 5 were measured. The results are shown in Table 3. Looking at Table 3, Example 5
It can be seen that No. 4 has a larger bending strength, a smaller apparent porosity, and a higher corrosion resistance than Comparative Example 5. In Comparative Example 5, the digestion phenomenon was found in the magnesia grains after firing.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【発明の効果】本発明の連続鋳造用ノズル耐火物は、見
掛気孔率が小さく、十分な強度を有しており、耐食性が
大きいので耐用寿命を大幅に向上できる。
The nozzle refractory for continuous casting according to the present invention has a small apparent porosity, a sufficient strength, and a high corrosion resistance, so that the service life can be greatly improved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C04B 35/48 C04B 35/10 G (72)発明者 瀧川 整 愛知県刈谷市小垣江町南藤1番地 東芝 セラミックス株式会社刈谷製造所内 (56)参考文献 特開 平7−277838(JP,A) 特開 平7−303958(JP,A) 特開 平2−268953(JP,A) 特開 昭58−151368(JP,A) 特開 昭56−14060(JP,A) 特開 平2−172862(JP,A) 特開 平5−319916(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/10 330 B22D 41/54 C04B 35/00 C04B 35/043 C04B 35/103 C04B 35/48 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C04B 35/48 C04B 35/10 G (72) Inventor Sei Takigawa 1st Nanto, Ogakie-cho, Kariya city, Aichi Toshiba Ceramics Co., Ltd. Kariya factory (56) References JP-A-7-277838 (JP, A) JP-A-7-303958 (JP, A) JP-A-2-268953 (JP, A) JP-A-58-151368 (JP, A) Kai 56-14060 (JP, A) JP 2-172862 (JP, A) JP 5-319916 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B22D 11 / 10 330 B22D 41/54 C04B 35/00 C04B 35/043 C04B 35/103 C04B 35/48

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 100〜300℃で軟化するピッチを表
面にコートした粒径74〜1000μmのジルコニア原
料40〜90重量%を骨材として用い、骨材粒子と同等
以下の粒径の他の耐火物原料としてシリカ、黒鉛粉末、
カルシアの少なくとも1種を用い、結合材としてレジン
系バインダーを用い、還元性雰囲気で焼成してピッチを
カーボンボンド化した構成を有することを特徴とする連
続鋳造用ノズル耐火物。
1. A zirconia raw material having a particle size of 74 to 1000 μm and having a particle size of 74 to 1000 μm and having a particle size of 74 to 1000 μm, which is softened at 100 to 300 ° C., is used as an aggregate. As raw material, silica, graphite powder,
A nozzle refractory for continuous casting, characterized in that at least one kind of calcia is used, a resin binder is used as a binder, and the pitch is carbon-bonded by firing in a reducing atmosphere.
【請求項2】 100〜300℃で軟化するピッチを表
面にコートした粒径74〜3000μmのマグネシア原
料40〜90重量%を骨材として用い、骨材粒子と同等
以下の粒径の他の耐火物原料として炭化珪素、シリカ、
黒鉛粉末の少なくとも1種を用い、結合材としてレジン
系バインダーを用い、還元性雰囲気で焼成してピッチを
カーボンボンド化した構成を有することを特徴とする連
続鋳造用ノズル耐火物。
2. A 40-90% by weight magnesia raw material having a particle size of 74-3000 μm, coated on the surface with a pitch that softens at 100-300 ° C., is used as an aggregate, and another refractory having a particle size equal to or less than that of the aggregate particle is used. As raw materials for silicon carbide, silica,
A nozzle refractory for continuous casting, characterized in that at least one kind of graphite powder is used, a resin binder is used as a binder, and the pitch is carbon-bonded by firing in a reducing atmosphere.
JP06896996A 1996-03-01 1996-03-01 Nozzle refractories for continuous casting Expired - Fee Related JP3524668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06896996A JP3524668B2 (en) 1996-03-01 1996-03-01 Nozzle refractories for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06896996A JP3524668B2 (en) 1996-03-01 1996-03-01 Nozzle refractories for continuous casting

Publications (2)

Publication Number Publication Date
JPH09239503A JPH09239503A (en) 1997-09-16
JP3524668B2 true JP3524668B2 (en) 2004-05-10

Family

ID=13389020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06896996A Expired - Fee Related JP3524668B2 (en) 1996-03-01 1996-03-01 Nozzle refractories for continuous casting

Country Status (1)

Country Link
JP (1) JP3524668B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182599B2 (en) 2005-07-22 2012-05-22 Krosaki Harima Corporation Carbon-containing refractory, production method thereof, and pitch-containing refractory raw material
JP6154772B2 (en) * 2014-03-28 2017-06-28 黒崎播磨株式会社 Alumina-silicon carbide-carbon brick

Also Published As

Publication number Publication date
JPH09239503A (en) 1997-09-16

Similar Documents

Publication Publication Date Title
JP4094672B2 (en) Slag line sleeve for immersion inlet nozzle and composition therefor
JP4480758B2 (en) Refractory mortar cured molding
WO2007011038A1 (en) Carbon-containing refractory, method for manufacture thereof, and pitch-containing refractory raw material
JP3524668B2 (en) Nozzle refractories for continuous casting
JPS6348828B2 (en)
JP2599428B2 (en) Method for producing unburned MgO-C brick
JP3327884B2 (en) Refractories containing granular graphite
JPS6119584B2 (en)
WO2011115353A1 (en) Alumina bonded unshaped refractory and manufacturing method thereof
JP2968258B1 (en) High spalling resistant carbon-containing refractory and method for producing the same
WO2001021544A1 (en) Carbonaceous refractory with high resistance to spalling and process for producing the same
JP3327883B2 (en) Refractories containing massive graphite
JP2000044357A (en) Magnesia-carbonaceous prepared unshaped refractory
WO2019049815A1 (en) Monolithic refractory
JPH11199313A (en) Plate for slide gate and its production
JP3944871B2 (en) Carbon-containing ceramic sintered body
JP4193419B2 (en) Resin granulated graphite and graphite-containing refractories
JP3395108B2 (en) Method of manufacturing slide gate plate
JP3554125B2 (en) Crusher components
JPH09328364A (en) Material for molten metal use
JP2006117453A (en) Metallic compound particle-containing organic resin binder and carbon-containing refractory using the same
JP2947390B2 (en) Carbon containing refractories
JP3177200B2 (en) Method for producing low-permeability magnesia-chromium refractory
JP2005335966A (en) Graphite-containing castable refractory
JPH11157927A (en) Zirconia amorphous refractory

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040213

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

LAPS Cancellation because of no payment of annual fees