JPH06144958A - Production of heat resistant member - Google Patents
Production of heat resistant memberInfo
- Publication number
- JPH06144958A JPH06144958A JP30226592A JP30226592A JPH06144958A JP H06144958 A JPH06144958 A JP H06144958A JP 30226592 A JP30226592 A JP 30226592A JP 30226592 A JP30226592 A JP 30226592A JP H06144958 A JPH06144958 A JP H06144958A
- Authority
- JP
- Japan
- Prior art keywords
- coating layer
- substrate
- slurry
- firing
- base body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Furnace Charging Or Discharging (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は耐熱部材の製造方法に係
り、特に、多孔質材料よりなる基体の表面に、耐火性無
機質粉末のスラリーを上方からスプレーコーティング
し、その後焼成することにより焼結層よりなる耐火被覆
層を形成して、耐久性等の改善された耐熱部材を製造す
る方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a heat-resistant member, and more particularly, to the surface of a substrate made of a porous material, a slurry of a refractory inorganic powder is spray-coated from above and then sintered by firing. The present invention relates to a method for producing a heat resistant member having improved durability and the like by forming a fire resistant coating layer made of layers.
【0002】[0002]
【従来の技術】従来、コンデンサ、バリスタ、サーミス
タ、圧電素子等の電子材料の製造に用いられる焼成治具
材料としては、アルミナ、マグネシア、ムライト、スピ
ネル、コージェライト等の耐火材料が広く使用されてい
る。2. Description of the Related Art Conventionally, fire-retardant materials such as alumina, magnesia, mullite, spinel and cordierite have been widely used as firing jig materials used in the production of electronic materials such as capacitors, varistors, thermistors and piezoelectric elements. There is.
【0003】ところで、近年、コンデンサ等の電子材料
には、コスト低減、特性の改善等を目的として、鉛、ビ
スマス等の低融点酸化物がその組成の一部として用いら
れるようになってきている。By the way, in recent years, low melting point oxides such as lead and bismuth have come to be used as a part of the composition for electronic materials such as capacitors for the purpose of cost reduction and improvement of characteristics. .
【0004】これら低融点酸化物を含む電子材料の焼成
には、当該電子材料素子との反応が極力少ない材料、例
えば、ジルコニア、マグネシアよりなる焼成用治具が用
いられている。For the firing of electronic materials containing these low-melting-point oxides, a firing jig made of a material that reacts with the electronic material element as little as possible, for example, zirconia or magnesia is used.
【0005】しかし、これらジルコニアやマグネシア等
の材料は高価である上、ジルコニア又はマグネシア製の
焼成用治具では、コスト高となる上に、重量も嵩み取り
扱い難く、また、熱容量も大きいことから焼成コストの
面で不利である。However, these materials such as zirconia and magnesia are expensive, and a firing jig made of zirconia or magnesia is costly, heavy and difficult to handle, and has a large heat capacity. It is disadvantageous in terms of firing cost.
【0006】このため、最近では、安価なアルミナ等の
多孔質体よりなる軽量基体の表面に、ジルコニア被覆層
を形成した焼成用治具が用いられるようになってきた。For this reason, recently, a firing jig in which a zirconia coating layer is formed on the surface of a lightweight substrate made of an inexpensive porous material such as alumina has come to be used.
【0007】従来、このような焼成用治具としては、特
開平2−69381号公報に開示されるものがある。Conventionally, such a firing jig is disclosed in Japanese Patent Laid-Open No. 2-69381.
【0008】[0008]
【発明が解決しようとする課題】しかし、特開平2−6
9381号公報に開示される焼成用治具は、基体表面
に、基体の強度を補うべく、高密度で高強度の被覆層を
設けたものであり、基体の密度と被覆層の密度とが大き
く異なることから、両者の熱膨張率の差が大きい。この
ため、基体と被覆層との接合界面に応力が加わり易く、
機械的衝撃に対して非常に弱いという欠点がある。ま
た、基体と被覆層とで焼結時の体積収縮率が異なること
からも、被覆層の剥離が生じ易いという欠点もある。更
に、基体と被覆層との熱伝導率や熱膨張率等の熱物性の
みならず、ヤング率にも大きな差異があるため、被覆層
に亀裂が生じ易く、この亀裂から被焼成素子の成分が基
体内に拡散し、基体がこの拡散成分と反応することか
ら、焼成用治具の寿命が短いという欠点もある。However, Japanese Unexamined Patent Publication (Kokai) No. 2-6.
The firing jig disclosed in Japanese Patent No. 9381 has a high-density and high-strength coating layer provided on the surface of the substrate in order to supplement the strength of the substrate, and the density of the substrate and the density of the coating layer are large. Since they are different, the difference in the coefficient of thermal expansion between the two is large. Therefore, stress is easily applied to the bonding interface between the base and the coating layer,
It has the drawback of being very vulnerable to mechanical shock. In addition, since the base and the coating layer have different volumetric shrinkage rates during sintering, there is also a drawback that the coating layer easily peels off. Further, not only thermal properties such as thermal conductivity and thermal expansion coefficient between the substrate and the coating layer but also the Young's modulus have a large difference, so that the coating layer is apt to crack, and the components of the element to be fired are cracked from the crack. Since it diffuses into the substrate and the substrate reacts with this diffusion component, there is also a drawback that the life of the firing jig is short.
【0009】このような問題を解決するものとして、特
公平3−177383号公報には、被覆層の空隙率を大
きくして基体と被覆層との剥離や亀裂発生を防止した耐
火物が開示されている。しかしながら、この耐火物で
は、被覆層の空隙率が大きいため、この空隙を経由して
被焼成素子の成分が基体内に拡散することとなり、焼成
用治具としては不適当である。As a solution to such a problem, Japanese Patent Publication No. 3-177383 discloses a refractory material in which the porosity of the coating layer is increased to prevent peeling or cracking between the substrate and the coating layer. ing. However, in this refractory, since the coating layer has a large porosity, the components of the element to be fired diffuse into the substrate through the voids, and are unsuitable as a firing jig.
【0010】本発明は上記従来の問題点を解決し、多孔
質材料よりなる基体の表面に、耐火性無機質粉末のスラ
リーを上方からスプレーコーティングし、その後焼成す
ることにより焼結層よりなる耐火被覆層を形成する方法
において、被覆層による基体の保護効果を確実に得るこ
とができ、しかも、被覆層の剥離や亀裂の問題もない、
安価で軽量かつ耐久性に優れた耐熱部材を製造する方法
を提供することを目的とする。The present invention solves the above-mentioned conventional problems, and the surface of a substrate made of a porous material is spray-coated from above with a slurry of a refractory inorganic powder and then fired to form a fire-resistant coating made of a sintered layer. In the method of forming a layer, the effect of protecting the substrate by the coating layer can be reliably obtained, and there is no problem of peeling or cracking of the coating layer.
An object of the present invention is to provide a method for manufacturing a heat-resistant member which is inexpensive, lightweight and excellent in durability.
【0011】[0011]
【課題を解決するための手段】本発明の耐熱部材の製造
方法は、多孔質材料よりなる基体の表面に、耐火性無機
質粉末のスラリーを上方からスプレーコーティングし、
その後焼成することにより焼結層よりなる耐火被覆層を
形成する方法において、該スラリーとして、粒度分布を
有した耐火性無機質粉末のスラリーを用いると共に、ス
プレーコーティングに当り、前記基体を上下方向に振動
させることにより、コーティング層の表面ほど耐火性無
機質粉末の粒度が細かくなるようにし、このコーティン
グ層を焼結させることにより、表面側が緻密質で基体と
の接合界面側が多孔質であり、気孔率が基体との接合面
から表面に向けて徐々に低減する被覆層を形成すること
を特徴とする。A method for producing a heat-resistant member of the present invention comprises spray coating a slurry of a refractory inorganic powder onto a surface of a substrate made of a porous material from above,
In the method for forming a fireproof coating layer composed of a sintered layer by firing thereafter, a slurry of refractory inorganic powder having a particle size distribution is used as the slurry, and the substrate is vertically vibrated during spray coating. By doing so, the particle size of the refractory inorganic powder becomes finer on the surface of the coating layer, and by sintering this coating layer, the surface side is dense and the bonding interface side with the substrate is porous, and the porosity is It is characterized in that a coating layer is formed which is gradually reduced from the bonding surface with the substrate toward the surface.
【0012】以下、図面を参照して本発明を詳細に説明
する。The present invention will be described in detail below with reference to the drawings.
【0013】第1図は本発明の耐熱部材の製造方法の一
実施例を示す側面図、第2図は本発明の耐熱部材の製造
方法により製造される耐熱部材の一実施例を示す拡大断
面図である。FIG. 1 is a side view showing an embodiment of a method for manufacturing a heat-resistant member of the present invention, and FIG. 2 is an enlarged sectional view showing an embodiment of a heat-resistant member manufactured by the method of manufacturing a heat-resistant member of the present invention. It is a figure.
【0014】図示の如く、本実施例の耐熱部材の製造方
法においては、多孔質材料よりなる基体1を上下方向の
振動を発生する振動発生機2の振動盤2A上に載置し、
上下方向の振動を付与しつつ、タンク3内のスラリーを
上方からスプレーコーティングする。なお、4はスラリ
ースプレー用の空気の供給配管、3Aはスプレーガンで
あり、Vはバルブである。As shown in the figure, in the method of manufacturing the heat-resistant member of this embodiment, the substrate 1 made of a porous material is placed on the vibrating plate 2A of the vibration generator 2 for generating vertical vibrations
While applying vertical vibration, the slurry in the tank 3 is spray-coated from above. In addition, 4 is an air supply pipe for slurry spraying, 3 A is a spray gun, and V is a valve.
【0015】このスプレーコーティングに用いるスラリ
ーは、粒度分布を有する耐火性無機質粉末のスラリーで
あり、このようなスラリーのスプレーコーティングに当
り、基体1を上下方向に振動させることにより、コーテ
ィング層中で、粒径の大きい耐火性無機質粉末は速く沈
降し、一方、粒径の小さい耐火性無機質粉末は沈降速度
が小さいことから、形成されるコーティング層は、その
表面側ほど耐火性無機質粉末の粒度が細かいものとな
る。The slurry used for this spray coating is a slurry of a refractory inorganic powder having a particle size distribution, and in the spray coating of such a slurry, the substrate 1 is vibrated in the vertical direction so that Since the refractory inorganic powder with a large particle size sediments quickly, while the refractory inorganic powder with a small particle size has a low sedimentation rate, the coating layer formed has a finer particle size on the surface side. Will be things.
【0016】従って、このようなコーティング層を形成
した基体を焼成することにより、第2図に示す如く、表
面側5Aが耐火性無機質粉末の細粒による緻密質で、基
体1との接合界面側5Bが多孔質であり、気孔率が基体
1との接合面から表面に向けて徐々に低減する被覆層5
が得られる。Therefore, by firing the substrate on which such a coating layer is formed, as shown in FIG. 2, the surface side 5A is dense due to the fine particles of the refractory inorganic powder, and the bonding interface side with the substrate 1 is formed. 5B is porous, and the coating layer 5 has a porosity that gradually decreases from the bonding surface with the substrate 1 toward the surface.
Is obtained.
【0017】本発明において、基体に付与する上下方向
の振動の大きさや周期については特に制限はないが、通
常の場合、振幅100〜500μm、特に200〜30
0μm、周期50〜200Hz、特に80〜150Hz
の垂直振動を付与するのが好ましい。In the present invention, the magnitude and period of the vertical vibration applied to the substrate are not particularly limited, but in the usual case, the amplitude is 100 to 500 μm, particularly 200 to 30.
0 μm, cycle 50 to 200 Hz, especially 80 to 150 Hz
It is preferable to apply the vertical vibration.
【0018】また、スラリーを構成する粒度分布を有す
る耐火性無機質粉末の粒子径には特に制限はないが、通
常の場合、粒子径1〜100μmの範囲の細粒、中粒及
び粗粒を含むものが好ましい。しかして、このような本
発明の方法により、コーティング層として、基体との接
合界面側の下層には、粒子径20〜100μm、中心粒
径60μmの耐火性無機質粉末を、表面側の上層には、
粒子径1〜40μm、中心粒径10μmの耐火性無機質
粉末を、また、これら下層と上層との間の中間層には粒
子径10〜70μm、中心粒径40μmの耐火性無機質
粉末をそれぞれ分散させて、相対密度30〜70%の基
体の表面に、焼成後の相対密度が下記範囲であるような
被覆層を形成することが好ましい。The particle size of the refractory inorganic powder having a particle size distribution forming the slurry is not particularly limited, but in general, it includes fine particles, medium particles and coarse particles having a particle size of 1 to 100 μm. Those are preferable. According to the method of the present invention, a refractory inorganic powder having a particle diameter of 20 to 100 μm and a central particle diameter of 60 μm is used as a coating layer as a coating layer, and a lower layer on the bonding interface side with a substrate is used as an upper layer on the surface side. ,
A refractory inorganic powder having a particle diameter of 1 to 40 μm and a central particle diameter of 10 μm is dispersed, and a refractory inorganic powder having a particle diameter of 10 to 70 μm and a central particle diameter of 40 μm is dispersed in an intermediate layer between the lower layer and the upper layer. Then, it is preferable to form a coating layer on the surface of the substrate having a relative density of 30 to 70% such that the relative density after firing is in the following range.
【0019】上層 :50〜98% 中間層:40〜80% 下層 :30〜70% なお、この被覆層の厚さは50〜200μmであること
が好ましい。Upper layer: 50 to 98% Intermediate layer: 40 to 80% Lower layer: 30 to 70% The thickness of this coating layer is preferably 50 to 200 μm.
【0020】本発明において、基体の構成材料として
は、アルミナ、マグネシア、スピネル、ムライト、コー
ジェライト等が挙げられる。また、耐火性無機質粉末と
しては、ジルコニア、好ましくは部分安定化ジルコニ
ア、(安定化剤:カルシア、イットリア、セリア)等が
挙げられる。このような耐火性無機質粉末のスラリーと
しては、耐火性無機質粉末を50〜80重量%濃度で含
む水スラリーに、バインダーとしてメチルセルロースを
0.5〜3.0重量%、スラリー安定化処理剤としてワ
ックス系エマルジョンを0.5〜3.0重量%添加し
て、粘度500〜1500mPa・s(ミリパスカル
秒)程度としたものが用いられる。In the present invention, examples of the constituent material of the substrate include alumina, magnesia, spinel, mullite, cordierite and the like. Examples of the refractory inorganic powder include zirconia, preferably partially stabilized zirconia, (stabilizer: calcia, yttria, ceria) and the like. Such a slurry of the refractory inorganic powder is a water slurry containing the refractory inorganic powder in a concentration of 50 to 80% by weight, methyl cellulose as a binder in an amount of 0.5 to 3.0% by weight, and a wax as a slurry stabilizing agent. A system emulsion having a viscosity of about 500 to 1500 mPa · s (millipascal second) by adding 0.5 to 3.0% by weight of a system emulsion is used.
【0021】なお、本発明において、コーティング層形
成後の焼成は、常法に従って行なうことができ、その基
体や耐火性無機質粉末の種類や大きさ等に応じて焼成条
件は適宜決定される。In the present invention, the baking after the coating layer is formed can be carried out by a conventional method, and the baking conditions are appropriately determined depending on the type and size of the base material and the refractory inorganic powder.
【0022】[0022]
【作用】所定の粘度を有するスラリー中を沈降する粒子
の沈降速度は、その粒子径に比例し、粒子径の大きい粗
粒ほど速く沈降し、粒子径の小さい細粒ほど沈降速度は
小さい。The settling speed of particles settled in a slurry having a predetermined viscosity is proportional to the particle size, and coarse particles having a larger particle size settle faster, and fine particles having a smaller particle size have a lower settling speed.
【0023】本発明においては、この原理を利用して、
粘性を有するスラリーを基体の上方からスプレーコーテ
ィングするにあたり、基体を上下方向に振動させて耐火
性無機質粉末の沈降速度を加速し、下層(基体との接合
界面側)ほど粒子径の大きな耐火性無機質粉末を、上層
(表面側)ほど粒子径の大きな耐火性無機質粉末が分布
するようにコーティング処理する。In the present invention, utilizing this principle,
When spray-coating a viscous slurry from above the substrate, the substrate is vibrated vertically to accelerate the sedimentation rate of the refractory inorganic powder, and the lower layer (bonding interface side with the substrate) has a larger particle size. The powder is subjected to coating treatment so that the refractory inorganic powder having a larger particle size is distributed in the upper layer (surface side).
【0024】しかして、粒子径の小さい粉末であれば、
緻密な層を形成することができ、粒子径の大きい粉末で
あれば、気孔率の大きい層を形成することができること
から、このようなコーティング層を焼成することによ
り、表面側が緻密質であり、基体との接合界面側が多孔
質となると共に、気孔率が基体との接合界面から該表面
に向けて徐々に減少する被覆層を形成することができ
る。However, if the powder has a small particle size,
Since it is possible to form a dense layer and a powder having a large particle size can form a layer having a large porosity, by firing such a coating layer, the surface side is dense, It is possible to form a coating layer in which the side of the joint interface with the substrate is porous and the porosity gradually decreases from the joint interface with the substrate toward the surface.
【0025】このようにして製造される耐熱部材では、
基体上に形成された被覆層のうち、基体との接合界面近
傍は基体の密度に近似した密度とすることにより、基体
と被覆層との密度差、熱膨張差に起因する熱的、機械的
応力の集中を防止することができる。しかして、被覆層
の密度に傾斜をもたせることにより、応力を均等に分散
させることができる。また、被覆層の表面については、
緻密層とすることにより、被焼成物の成分の拡散を防止
して、該拡散成分と基体との反応による基体の劣化を防
止することができる。In the heat-resistant member manufactured in this way,
Of the coating layer formed on the substrate, the vicinity of the bonding interface with the substrate is made to have a density close to that of the substrate, so that the difference in the density between the substrate and the coating layer and the thermal and mechanical It is possible to prevent stress concentration. Therefore, by making the density of the coating layer have a gradient, the stress can be evenly dispersed. Also, regarding the surface of the coating layer,
By forming the dense layer, it is possible to prevent the components of the material to be fired from diffusing and prevent the deterioration of the substrate due to the reaction between the diffusing components and the substrate.
【0026】[0026]
【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples below.
【0027】実施例1 第1図に示す方法により、耐熱部材を製造した。耐火性
無機質粉末としては、粒子径1〜100μmの部分安定
化ジルコニア(安定化率80%)粉末を用い、この60
重量%水スラリーに、バインダーとしてメチルセルロー
スを0.5重量%、スラリー安定化処理剤としてワック
ス系エマルジョンを2.0重量%添加して撹拌混合して
スプレー用スラリー(粘度700mPa・s)を調製し
た。Example 1 A heat resistant member was manufactured by the method shown in FIG. As the refractory inorganic powder, partially stabilized zirconia (stabilization rate: 80%) powder having a particle size of 1 to 100 μm was used.
0.5% by weight of methyl cellulose as a binder and 2.0% by weight of a wax emulsion as a slurry stabilizing agent were added to a weight% aqueous slurry and mixed by stirring to prepare a slurry for spraying (viscosity 700 mPa · s). .
【0028】このスラリーを、第1図に示す如く、振動
発振機(バイブレータ)2上に載置した、アルミナを主
成分とする密度55%の多孔質成形体よりなる基体1上
に、スプレーし、塗膜厚さ150μmとなるように、ス
ラリー吹付量10ml/secで30秒間吹き付けた。
この際、スプレー開始と同時に、基体1には振動数10
0Hz,振幅250μmの垂直振動を付与し、振動はス
プレー終了後も120秒間継続させた。As shown in FIG. 1, this slurry is sprayed onto a substrate 1 made of a porous molded body containing alumina as a main component and having a density of 55%, which is placed on a vibration oscillator (vibrator) 2. The slurry was sprayed for 30 seconds at a slurry spray rate of 10 ml / sec so that the coating film thickness would be 150 μm.
At this time, simultaneously with the start of spraying, the substrate 1 has a vibration frequency
A vertical vibration of 0 Hz and an amplitude of 250 μm was applied, and the vibration was continued for 120 seconds after the end of spraying.
【0029】スプレー後、基体を自然乾燥後、1650
℃で2時間焼成した。After spraying, the substrate was naturally dried and then 1650
Calcination was carried out for 2 hours.
【0030】得られた焼結体(100mm×100mm
×5mm厚さ)の曲げ強度(10枚の平均)は230k
gf/cm2 であった。The obtained sintered body (100 mm × 100 mm
Bending strength (average of 10 sheets) is 230k
It was gf / cm 2 .
【0031】また、得られた焼結体を定盤の上に水平に
載置して、その20cm上方から50gの鉄球を落下さ
せたところ、10枚共、破損は認められなかった。Further, when the obtained sintered body was placed horizontally on a surface plate and 50 g of an iron ball was dropped from 20 cm above the surface, no damage was found on all 10 sheets.
【0032】更に、この焼結体を250℃/hrの昇降
温速度で1450℃で2時間保持の熱サイクル寿命試験
を行なったところ、60回の熱サイクル試験後において
も、10枚共、亀裂や剥離、割れは認められなかった。Further, a thermal cycle life test was carried out by holding this sintered body at a temperature rising / falling rate of 250 ° C./hr at 1450 ° C. for 2 hours. Even after 60 thermal cycle tests, 10 sheets were cracked. No peeling or cracking was observed.
【0033】この焼結体の被覆層部分の断面組織を電子
顕微鏡で観察したところ、密度が表面側で高く、基体と
の接合界面側に向けて徐々に気孔が多くなり、層厚さ方
向に密度が傾斜していることが確認された。When the cross-sectional structure of the coating layer portion of this sintered body was observed with an electron microscope, the density was high on the surface side, and the number of pores gradually increased toward the bonding interface side with the substrate, and in the layer thickness direction. It was confirmed that the density was inclined.
【0034】比較例1 実施例1において、基体に振動を付与することなく、粒
子径1〜50μm、平均粒子径10μmの部分安定化ジ
ルコニア(安定化率80%)含有スラリー(スラリー濃
度60%,スラリー粘度600mPa・s)を用いてス
プレーし、基体表面に150μm厚さのコーティング層
を形成したこと以外は同様にして焼結体を製造した。Comparative Example 1 In Example 1, a slurry containing a partially stabilized zirconia (stabilization rate 80%) having a particle size of 1 to 50 μm and an average particle size of 10 μm was added without vibrating the substrate (slurry concentration 60%, A slurry was produced in the same manner except that a slurry having a viscosity of 600 mPa · s) was sprayed to form a coating layer having a thickness of 150 μm on the surface of the substrate.
【0035】得られた焼結体の曲げ強度は500kgf
/cm2 であった。この焼結体では、基体とコーティン
グ層との焼結収縮の違いから生ずる応力が接合界面に導
入され、高強度となっているが、この強度は必要以上に
大きく、実用的ではない。(実用強度は100〜200
kgf/cm2 あれば十分である。)この焼結体を実施
例1と同じ条件下で鉄球落下試験及び熱サイクル寿命試
験を行なったところ、鉄球の落下により破損した。ま
た、熱サイクル寿命試験では、20回の熱サイクル試験
で亀裂が発生し、25回の熱サイクル試験で剥離が見ら
れた。The bending strength of the obtained sintered body is 500 kgf.
Was / cm 2 . In this sintered body, the stress generated due to the difference in sintering contraction between the substrate and the coating layer is introduced into the bonding interface to provide high strength, but this strength is unnecessarily large and not practical. (Practical strength is 100-200
kgf / cm 2 is sufficient. ) This sintered body was subjected to an iron ball drop test and a thermal cycle life test under the same conditions as in Example 1, and as a result, the iron ball dropped and was damaged. Further, in the heat cycle life test, cracks were generated in the heat cycle test 20 times, and peeling was observed in the heat cycle test 25 times.
【0036】[0036]
【発明の効果】以上詳述した通り、本発明の耐熱部材の
製造方法によれば、基体の保護効果が高く、しかも、亀
裂、剥離、破損等の問題もない、耐久性に優れた耐熱部
材が容易かつ効率的に、低コストに製造することができ
る。As described in detail above, according to the method for producing a heat-resistant member of the present invention, the heat-resistant member has a high effect of protecting the substrate and is free from the problems of cracking, peeling, breakage, and the like. Can be manufactured easily and efficiently at low cost.
【0037】このような本発明で製造される耐熱部材
は、特に、セッター等の電子材料の焼成用治具に極めて
有効であり、軽量かつ低コストで耐久性に優れた焼成用
治具を提供することにより、電子材料のコスト低減を図
ることが可能とされる。The heat-resistant member manufactured according to the present invention as described above is particularly effective as a jig for baking electronic materials such as a setter, and provides a baking jig which is lightweight, low in cost and excellent in durability. By doing so, it is possible to reduce the cost of the electronic material.
【図1】本発明の耐熱部材の製造方法の一実施例を示す
側面図である。FIG. 1 is a side view showing an embodiment of a method for manufacturing a heat resistant member of the present invention.
【図2】本発明の耐熱部材の製造方法により製造される
耐熱部材の一実施例を示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view showing an embodiment of a heat resistant member manufactured by the method for manufacturing a heat resistant member according to the present invention.
1 基体 2 振動発生機 2A 振動盤 3 タンク 5 被覆層 10 耐熱部材 1 Base 2 Vibration Generator 2A Vibration Plate 3 Tank 5 Coating Layer 10 Heat-Resistant Member
Claims (1)
性無機質粉末のスラリーを上方からスプレーコーティン
グし、その後焼成することにより焼結層よりなる耐火被
覆層を形成する方法において、 該スラリーとして、粒度分布を有した耐火性無機質粉末
のスラリーを用いると共に、スプレーコーティングに当
り、前記基体を上下方向に振動させることにより、コー
ティング層の表面ほど耐火性無機質粉末の粒度が細かく
なるようにし、 このコーティング層を焼結させることにより、表面側が
緻密質で基体との接合界面側が多孔質であり、気孔率が
基体との接合面から表面に向けて徐々に低減する被覆層
を形成することを特徴とする耐熱部材の製造方法。1. A method for forming a refractory coating layer composed of a sintered layer by spray-coating a slurry of a refractory inorganic powder on the surface of a substrate made of a porous material from above, and then firing the slurry to obtain a fire-resistant coating layer. Using a slurry of a refractory inorganic powder having a particle size distribution, and spray coating, by vibrating the substrate in the vertical direction, the particle size of the refractory inorganic powder becomes finer toward the surface of the coating layer, By sintering the coating layer, the surface side is dense and the bonding interface side with the substrate is porous, and the coating layer is formed so that the porosity gradually decreases from the bonding surface with the substrate to the surface. And a method of manufacturing a heat resistant member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30226592A JPH06144958A (en) | 1992-11-12 | 1992-11-12 | Production of heat resistant member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30226592A JPH06144958A (en) | 1992-11-12 | 1992-11-12 | Production of heat resistant member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06144958A true JPH06144958A (en) | 1994-05-24 |
Family
ID=17906934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30226592A Withdrawn JPH06144958A (en) | 1992-11-12 | 1992-11-12 | Production of heat resistant member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06144958A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018180180A1 (en) * | 2017-03-29 | 2018-10-04 | 日本碍子株式会社 | Porous ceramic particle and porous ceramic structure |
CN114315320A (en) * | 2021-12-29 | 2022-04-12 | 耐镁佳(营口)金属有限公司 | Magnesium oxide refractory material and application thereof |
-
1992
- 1992-11-12 JP JP30226592A patent/JPH06144958A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018180180A1 (en) * | 2017-03-29 | 2018-10-04 | 日本碍子株式会社 | Porous ceramic particle and porous ceramic structure |
JP6409152B1 (en) * | 2017-03-29 | 2018-10-17 | 日本碍子株式会社 | Porous ceramic particles and porous ceramic structure |
CN114315320A (en) * | 2021-12-29 | 2022-04-12 | 耐镁佳(营口)金属有限公司 | Magnesium oxide refractory material and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4777153A (en) | Process for the production of porous ceramics using decomposable polymeric microspheres and the resultant product | |
CN101528407B (en) | Improved method of bonding aluminum-boron-carbon composites | |
US6199836B1 (en) | Monolithic ceramic gas diffuser for injecting gas into a molten metal bath | |
US5034358A (en) | Ceramic material and method for producing the same | |
EP0296981B1 (en) | Insulating coating for refractories, coating process, and associated articles | |
JPWO2003086684A1 (en) | Joining structure of refractory sleeve for nozzle inner hole for continuous casting | |
JPH06144958A (en) | Production of heat resistant member | |
JPH06144959A (en) | Heat resistant member and production thereof | |
JP2008137860A (en) | Ceramics burning tool material for electronic components | |
JP2003048745A (en) | Apparatus and method for high-temperature forming of glass gob | |
JPS6156313B2 (en) | ||
JP2000237600A (en) | Method for hardening catalyst gas flow-in end part | |
JP3936007B2 (en) | Firing jig | |
JP4136249B2 (en) | Baking jig for electronic parts | |
JP2003321286A (en) | Aluminum titanate ceramics-made member for improving non-wettability against aluminum alloy melt and manufacturing method therefor | |
JPH10195623A (en) | Platinum-coating refractory | |
JP4693196B2 (en) | Firing jig | |
JP4054098B2 (en) | Firing jig | |
JPH05359B2 (en) | ||
JP2002060287A (en) | Firing vessel | |
JPS6384011A (en) | Manufacture of baking jig for electronic component | |
JP7249106B2 (en) | Inner body and manufacturing method thereof | |
JPS59141472A (en) | Porous ceramic member surface minutening method | |
JPH0345582A (en) | Formation of coating film on ceramic substrate | |
JPS6354076B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000201 |