JPH06137805A - Strain gauge and its manufacture - Google Patents

Strain gauge and its manufacture

Info

Publication number
JPH06137805A
JPH06137805A JP28801892A JP28801892A JPH06137805A JP H06137805 A JPH06137805 A JP H06137805A JP 28801892 A JP28801892 A JP 28801892A JP 28801892 A JP28801892 A JP 28801892A JP H06137805 A JPH06137805 A JP H06137805A
Authority
JP
Japan
Prior art keywords
layer
glass
strain gauge
resistance
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28801892A
Other languages
Japanese (ja)
Inventor
Haruhiko Handa
晴彦 半田
Masahiro Hiraga
将浩 平賀
Masaki Ikeda
正樹 池田
Akihiko Yoshida
昭彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28801892A priority Critical patent/JPH06137805A/en
Publication of JPH06137805A publication Critical patent/JPH06137805A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a strain gauge being less in the dispersion of resistance by coating a metallic elastic body with a glass-ceramic insulated layer, forming a gel layer or a glass layer on the surface of this insulated layer, and forming an element whose resistance alters according to a strain on this gel or glass layer. CONSTITUTION:The crystal glass is prefered to be non-alkaline, for instance the glass-ceramic having such composition as SiO2 7 to 30%, B2O3 5 to 34%, MgO 16 to 50%, CaO 0 to 20%, BaO 0 to 50%, ZrO2 0 to 50%, P2O5 0-5%, and La2O3 0 to 4% (all in weight %) to strengthen adherence to a metallic substrate. After the metallic substrate is covered by spray, powder electrostatic coating and electric induction electrocoating and dried, the glass-ceramic layer is baked at 850 to 900 deg.C for about 10 to 60 minutes. Glass component and metallic substrate component are thereby mutually diffused to form strong mutual adherence. In addition, the surface roughness of the substrate therefore becomes small to reduce the dispersion of resistance in forming a resistance element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、応力ひずみを検知する
ひずみゲージおよびその製造方法に関し、特に自動車に
使用される車両用サスペンションに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a strain gauge for detecting stress and strain and a method for manufacturing the strain gauge, and more particularly to a vehicle suspension used in an automobile.

【0002】[0002]

【従来の技術】従来、ひずみゲージは、機械、船舶、自
動車などの各部に生じる応力、荷重の大きさなどを検知
するために用いられていた。このひずみゲージは、ポリ
エステル、エポキシ、ポリイミドなどの樹脂またはセラ
ミックスのベース材料上にCu−Ni,Ni−Cr箔の
抵抗素子を配設した構成で、測定する際に、ひずみゲー
ジを被測定物に接着剤で固定している。また、金属基材
を結晶化ガラス層で被覆したメタルコア基板上に抵抗素
子を形成したひずみゲージがある。
2. Description of the Related Art Conventionally, strain gauges have been used to detect stresses generated in various parts of machines, ships, automobiles and the like, the magnitude of loads, and the like. This strain gauge has a configuration in which a resistive element of Cu-Ni, Ni-Cr foil is arranged on a resin or ceramic base material such as polyester, epoxy, or polyimide, and at the time of measurement, the strain gauge is used as an object to be measured. It is fixed with an adhesive. There is also a strain gauge in which a resistance element is formed on a metal core substrate in which a metal base material is covered with a crystallized glass layer.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記接着式の
ひずみゲージを自動車のサスペンションのシャフトなど
の繰り返しひずみ量を測定するような部位に接着して用
いると、数万回のサイクルで接着層が剥離する可能性が
あるため使用できなかった。さらに、ひずみ測定部位が
150℃以上の高温雰囲気に曝される場合には、接着剤
の接着強度が弱くなってひずみゲージが剥離しやすくな
るという問題点を生じた。
However, when the above-mentioned adhesive strain gauge is used by adhering it to a portion such as a shaft of a suspension of an automobile where a repeated strain amount is measured, the adhesive layer is formed in tens of thousands of cycles. It could not be used because it may peel off. Further, when the strain measurement site is exposed to a high temperature atmosphere of 150 ° C. or higher, the adhesive strength of the adhesive becomes weak and the strain gauge is easily peeled off.

【0004】また、剥離の可能性はないもののメタルコ
ア基板を用いたひずみゲージは耐熱性をもたせるため
に、析出させる結晶の結晶化度を大きくするので表面が
ある程度粗れた状態になる。このような表面性の悪い結
晶化ガラス層の上に抵抗を形成すると抵抗のばらつきが
大きくなる。
In addition, although there is no possibility of peeling, the strain gauge using a metal core substrate has a high degree of crystallinity for precipitating crystals in order to provide heat resistance, so that the surface becomes rough to some extent. When resistors are formed on such a crystallized glass layer having poor surface properties, the variations in the resistance increase.

【0005】本発明は、上記問題を解決するもので、基
板表面の表面粗さを小さくして、その上に形成される抵
抗素子の抵抗のばらつきを小さくできるひずみゲージお
よびその製造方法を提供することを目的とするものであ
る。
The present invention solves the above problems, and provides a strain gauge and a method for manufacturing the strain gauge in which the surface roughness of the substrate surface can be reduced and the resistance variation of the resistance element formed thereon can be reduced. That is the purpose.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明のひずみゲージおよびその製造方法は、金属
弾性体上に被覆された結晶化ガラスからなる絶縁層の表
面にゲル層またはガラス層を形成し、このゲル層または
ガラス層の上に歪に対して抵抗が変化する素子を形成し
たものである。
In order to solve the above-mentioned problems, the strain gauge of the present invention and a method for manufacturing the same are provided with a gel layer or glass on the surface of an insulating layer made of crystallized glass coated on a metal elastic body. A layer is formed, and an element whose resistance changes with strain is formed on the gel layer or the glass layer.

【0007】[0007]

【作用】上記構成により、本発明のひずみゲージの基板
は、電気絶縁層の上に、さらにゲル層またはガラス層を
形成したものからなり、このゲル層またはガラス層を設
けることにより基板表面の表面粗さが小さくなり、高純
度アルミナ基板程度にまで改善される。したがって、抵
抗素子を形成した場合の抵抗のばらつきが小さくなる。
With the above structure, the strain gauge substrate of the present invention comprises a gel layer or a glass layer further formed on the electrical insulating layer. By providing the gel layer or the glass layer, the surface of the substrate surface is provided. The roughness is reduced, and it is improved to the level of a high-purity alumina substrate. Therefore, variations in resistance when the resistance element is formed are reduced.

【0008】[0008]

【実施例】以下本発明の一実施例について説明する。ま
ず、本発明の絶縁層である結晶化ガラス層について説明
する。結晶化ガラスは耐熱性、基板強度、絶縁性を考慮
すると無アルカリであることが好ましい。この結晶化ガ
ラス組成は、 SiO2 7〜30重量% B2 3 5〜34重量% MgO 16〜50重量% CaO 0〜20重量% BaO 0〜50重量% ZrO2 0〜 5重量% P2 5 0〜 5重量% La2 3 0〜40重量% である。上記組成範囲のガラスが選択される理由は、金
属基材と結晶化ガラス層の密着性を強固にする必要があ
るからである。上記の範囲を超えたものは、密着性が悪
くなるため好ましくない。
EXAMPLE An example of the present invention will be described below. First, the crystallized glass layer which is the insulating layer of the present invention will be described. The crystallized glass is preferably alkali-free in consideration of heat resistance, substrate strength, and insulation. The crystallized glass composition, SiO 2 7 to 30 wt% B 2 O 3 5~34 wt% MgO 16 to 50 wt% CaO 0 to 20 wt% BaO 0 to 50 wt% ZrO 2 0 to 5 wt% P 2 O 5 is 0-5% by weight La 2 O 3 0 to 40 wt%. The reason why the glass having the above composition range is selected is that the adhesion between the metal substrate and the crystallized glass layer needs to be strong. If the amount exceeds the above range, the adhesion is deteriorated, which is not preferable.

【0009】さらに、上記結晶化ガラス層を金属基体上
に被覆する方法として、スプレー法、粉末静電塗装法、
電気泳動電着法などがある。被膜の緻密性、電気絶縁性
などの観点から、電気泳動電着法が最も好ましい。
Further, as a method for coating the above-mentioned crystallized glass layer on a metal substrate, a spray method, a powder electrostatic coating method,
Electrophoretic electrodeposition method and the like. The electrophoretic electrodeposition method is the most preferable from the viewpoints of the denseness of the coating film, the electric insulating property, and the like.

【0010】この方法は、ガラスとアルコールおよび少
量の水を入れてボールミル中で約20時間粉砕、混合
し、ガラスの平均粒径を1〜5μm程度にする。得られ
たスラリーを電解槽に入れて、液を循環する。あらかじ
め洗浄した金属基体を、このスラリー中に浸漬し、10
0〜400Vで陰分極させることにより、金属基体表面
にガラス粒子を析出させる。これを乾燥後、850〜9
00℃で10分〜1時間焼成する。これによって、ガラ
スの微粒子が溶融するとともに、ガラスの成分と金属材
料の成分が、充分に相互拡散するためガラスホーロ層と
金属材料との強固な密着が得られる。
According to this method, glass, alcohol and a small amount of water are added, and the mixture is ground in a ball mill for about 20 hours and mixed to make the average particle diameter of glass about 1 to 5 μm. The obtained slurry is put in an electrolytic cell and the liquid is circulated. A previously washed metal substrate is dipped in this slurry and
Glass particles are deposited on the surface of the metal substrate by performing negative polarization at 0 to 400V. After drying this, 850-9
Bake at 00 ° C. for 10 minutes to 1 hour. As a result, the glass fine particles are melted, and the glass component and the metal material component are sufficiently diffused to each other, so that strong adhesion between the glass hollow layer and the metal material can be obtained.

【0011】次に、具体的な実施例について説明する。 (実施例1)(表1)〜(表5)の組成番号1〜42に
示すような、結晶化ガラスを合成した。また、前述の工
程に従い、SUS430基材(100mm×100mm×
0.5mm)の表面に、厚さ100μmの結晶化ガラス質
層を電気泳動電着し、880℃で10分焼成してサンプ
ルを作成し、表に示すような、サンプルの表面粗度、う
ねり性、耐熱性などの諸特性の結果が得られた。
Next, a concrete embodiment will be described. (Example 1) Crystallized glass as shown in composition numbers 1 to 42 of (Table 1) to (Table 5) was synthesized. In addition, according to the above process, SUS430 base material (100 mm x 100 mm x
(0.5 mm), a 100 μm thick crystallized glassy layer was electrophoretically electrodeposited and baked at 880 ° C. for 10 minutes to prepare a sample, and the surface roughness and waviness of the sample as shown in the table were obtained. The results of various properties such as heat resistance and heat resistance were obtained.

【0012】なお、表面粗度はタリサーフ表面粗さ計で
測定し、表面中心線平均粗さRaで示した。うねり性は
タリサーフ表面粗さ計で得られた山と谷の差Rmaxで表わ
した。耐熱性は、サンプルを850℃の電気炉中に10分
入れ、炉から取り出し30分間、自然放冷するサイクル
を繰り返すスポーリングテストを行って、サンプルのク
ラックや剥離の状態を調べた。なお、クラックは赤イン
ク中に浸漬し、その後、表面を拭き取って、目視観察に
よって、その有無を調べた。表中の○、△、×は、○が
10サイクル以上行っても、異常が認められないもの、
△は5〜9サイクルで発生したもの、×は4サイクル以
下で発生したものを示す。密着性は、基板の曲げ試験を
行い、ホーロ層が剥離して金属部が露出したものを×、
金属部が一部だけ露出したものを△、金属部が露出して
いないものを○とした。
The surface roughness was measured with a Talysurf surface roughness meter and indicated by the surface center line average roughness Ra. The waviness was expressed by the difference Rmax between the peak and the valley obtained by a Talysurf surface roughness meter. Regarding the heat resistance, a sample was put in an electric furnace at 850 ° C. for 10 minutes, taken out of the furnace, and allowed to stand for 30 minutes to perform a spalling test in which a cycle of natural cooling was repeated to examine the state of cracks and peeling of the sample. The cracks were immersed in the red ink, the surface was wiped off, and the presence or absence of the cracks was checked by visual observation. In the table, ◯, Δ, and × indicate that no abnormality was observed even if ◯ was performed for 10 cycles or more,
The symbol Δ indicates that it occurred in 5 to 9 cycles, and the symbol x indicates that it occurred in 4 cycles or less. Adhesion was measured by conducting a bending test on the substrate and removing the holo layer to expose the metal part.
The case where only a part of the metal part was exposed was evaluated as Δ, and the case where the metal part was not exposed was evaluated as ○.

【0013】以上の評価にもとずき総合評価を行い、そ
の結果を○、△、×で示した。No1〜8は他の成分を
一定として、SiO2 とB2 3 を変化させたもの、N
o9〜15は、SiO2 /B2 3 をほぼ一定にし、M
gO量を変化させたもの、No16〜19は同じく、C
aO量を変化させたもの。No20〜24は、同じく、
BaO量を変化させたもの。No25〜29は、同じ
く、La2 3 量を変化させたもの。No30〜42は
それぞれ、ZrO2 、TiO2 、SnO2 、P25
ZnOの影響を示したものである。
Based on the above evaluations, a comprehensive evaluation was performed, and the results are shown by ◯, Δ, and x. Nos. 1 to 8 are obtained by changing SiO 2 and B 2 O 3 while keeping other components constant, N
o 9 to 15 make SiO 2 / B 2 O 3 almost constant and M
No. 16 to 19 in which the amount of gO was changed was the same as C
A change in aO amount. No20 ~ 24,
The amount of BaO was changed. Similarly, Nos. 25 to 29 are those in which the amount of La 2 O 3 was changed. No. 30 to 42 are ZrO 2 , TiO 2 , SnO 2 , P 2 O 5 , and
This shows the effect of ZnO.

【0014】表から明らかなように、SiO2 を増加し
ていくと、耐熱性は向上するが、表面性、および密着性
が悪くなる。逆に、B2 3 量を増加していくと、表面
性、密着性は向上するが耐熱性が低下する。これらを考
慮すると、本発明では、SiO2 が7〜30重量%、B
2 3 が5〜34重量%の範囲内が好ましい。
As is clear from the table, when the SiO 2 content is increased, the heat resistance is improved, but the surface property and the adhesion are deteriorated. On the contrary, when the amount of B 2 O 3 is increased, the surface property and the adhesion are improved, but the heat resistance is decreased. Considering these, in the present invention, SiO 2 is 7 to 30% by weight, B
2 O 3 is preferably in the range of 5 to 34% by weight.

【0015】MgO量は結晶性と相関があり、16重量
%以下では結晶析出が不十分で、耐熱性に劣る。また、
50重量%以上では、結晶が析出しやすく、ガラス溶融
時に簡単に結晶化し、均質なガラスを得ることが難し
く、さらに表面粗度が大きくなる。
The amount of MgO has a correlation with the crystallinity, and if it is 16% by weight or less, the precipitation of crystals is insufficient and the heat resistance is poor. Also,
If it is 50% by weight or more, crystals are likely to precipitate, it is difficult to crystallize when the glass melts, it is difficult to obtain a homogeneous glass, and the surface roughness becomes large.

【0016】CaO量は、20重量%以上入れると、表
面性が悪くなり好ましくない。BaO量は、50重量%
以上では、耐熱性、および密着性が劣化し好ましくな
い。
If the CaO content is 20% by weight or more, the surface property is deteriorated, which is not preferable. BaO content is 50% by weight
Above, it is not preferable because the heat resistance and the adhesion are deteriorated.

【0017】La2 3 量は、40重量%以上では、耐
熱性が劣化し好ましくない。その他の添加可能な成分は
ZrO2 、TiO2 、SnO2 、P2 5 、ZnOなど
が挙げられるが、5重量%以下までなら添加可能であ
る。
When the amount of La 2 O 3 is 40% by weight or more, heat resistance is deteriorated, which is not preferable. Other additives can be component of ZrO 2, TiO 2, SnO 2 , P 2 O 5, but including ZnO and the like, can be added if up to 5% by weight or less.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】[0022]

【表5】 [Table 5]

【0023】上記の方法に基づいて結晶化ガラスを形成
して作製したひずみセンサについて説明する。外径20
mm、内径18mm、長さ20mmの円筒金属弾性体を
前処理として脱脂・水洗・酸洗・水洗・ニッケルメッキ
・水洗の各工程を行った後、(表1)でNo.5(表面
粗度0.05μm)で示した組成のガラス粒子からなる
スラリー中に浸漬し、対極と円筒金属間に直流電圧を印
加することにより、円筒金属の側面上にガラス粒子を被
覆し、900℃で10分間焼成し結晶化ガラス層からな
る絶縁層を形成した。次に、結晶化ガラス層に、シリコ
ンテトラエトキシドSi(O−C2 5 4 、チタンテ
トライソプロポキシドTi(O−isoC3 7 4
水、エタノール、塩酸を加えたアルコキシド溶液を塗布
した。アルコキシド溶液中の金属元素は、シリコン元素
とチタニウム元素比を、8:2とした。塗布はディップ
コーティング法で行った。塗布した後室温で5時間乾燥
し、500℃で10分間熱処理した。乾燥および熱処理
することにより塗布された金属アルコキシド溶液が加水
分解、脱水縮合反応を起こして、シリコン元素とチタニ
ウム元素を含むゲル層またはガラス層を形成し、基板の
表面性を向上させる。このゲル層またはガラス層の上に
スクリーン印刷法によりAg-Pd 系の電極ペーストを印刷
し850℃で15分間熱処理し、さらにRuO2系の抵抗ペ
ーストを印刷し760℃で30分間熱処理して抵抗素子
を形成することによりひずみゲージを作製した。
A strain sensor manufactured by forming crystallized glass based on the above method will be described. Outer diameter 20
After performing the steps of degreasing, washing with water, pickling, washing with water, nickel plating, and washing with a cylindrical metal elastic body having a diameter of 18 mm, an inner diameter of 18 mm, and a length of 20 mm as pretreatments, (No. 1 in Table 1). 5 (surface roughness 0.05 μm) was immersed in a slurry consisting of glass particles having a composition shown in FIG. 5, and a DC voltage was applied between the counter electrode and the cylindrical metal to coat the glass particles on the side surface of the cylindrical metal, It was baked at 900 ° C. for 10 minutes to form an insulating layer made of a crystallized glass layer. Next, the crystallized glass layer, silicon tetraethoxide Si (O-C 2 H 5 ) 4, titanium tetraisopropoxide Ti (O-isoC 3 H 7 ) 4,
An alkoxide solution containing water, ethanol and hydrochloric acid was applied. The metal element in the alkoxide solution had a silicon element to titanium element ratio of 8: 2. The application was performed by the dip coating method. After coating, it was dried at room temperature for 5 hours and heat-treated at 500 ° C. for 10 minutes. By drying and heat treatment, the applied metal alkoxide solution undergoes hydrolysis and dehydration condensation reaction to form a gel layer or a glass layer containing a silicon element and a titanium element, thereby improving the surface properties of the substrate. The Ag-Pd type electrode paste is printed on the gel layer or the glass layer by screen printing and heat-treated at 850 ° C for 15 minutes, and then the RuO 2 type resistance paste is printed and heat-treated at 760 ° C for 30 minutes to make resistance. A strain gauge was manufactured by forming an element.

【0024】なお、ゲル層またはガラス層はSi,G
e,Ti,Zr,B,Al,Pの少なくとも1種類以上
の元素を含む酸化物であればよい。 (実施例2) 実施例1において、アルコキシド溶液中
のシリコン元素とチタン元素の比を8.5:1.5とし
た。
The gel layer or glass layer is made of Si, G
Any oxide containing at least one element of e, Ti, Zr, B, Al and P may be used. (Example 2) In Example 1, the ratio of the silicon element and the titanium element in the alkoxide solution was set to 8.5: 1.5.

【0025】(実施例3) 実施例1において、チタン
のアルコキシドを加えず、アルコキシド溶液中のシリコ
ン元素とチタン元素の比を10:0とした。 (実施例4) 実施例1においてスラリー中のガラス粒
子をNo.2(表面粗度0.5μm )とした。他の条件
は同じ。
Example 3 In Example 1, the ratio of silicon element to titanium element in the alkoxide solution was set to 10: 0 without adding titanium alkoxide. (Example 4) In Example 1, the glass particles in the slurry were changed to No. 2 (surface roughness 0.5 μm). Other conditions are the same.

【0026】上記実施例および下記に示した比較例に基
づいて、それぞれ10個について、電極層と抵抗層を形
成する前の表面粗度の平均値、および電極層と抵抗層を
形成した後の抵抗値を測定し、その平均値と標準偏差を
測定した。結果を(表6)に示す。
Based on the above-mentioned examples and the comparative examples shown below, the average value of the surface roughness before forming the electrode layer and the resistance layer, and the average value of the surface roughness after forming the electrode layer and the resistance layer were respectively set for 10 pieces. The resistance value was measured, and the average value and standard deviation were measured. The results are shown in (Table 6).

【0027】[0027]

【表6】 [Table 6]

【0028】(表6)に示すように、表面粗度の悪いメ
タルコア基板にガラス層を設けると(実施例4)、表面
粗度のよいメタルコア基板(比較例1)よりも抵抗のば
らつき(標準偏差)は小さくなった。すなわち、本発明
により表面粗度の悪い基板でも抵抗値のばらつきの小さ
いセンサを作製することができる。ただし、ばらつき度
合いは実施例1と実施例4の結果が示すように元々の基
板の表面粗度を反映することがわかる。しかしながら、
コーティング用のアルコキシド溶液の組成の選択を適切
に行わないと、基板の表面粗度が逆に悪くなることがわ
かる。
As shown in (Table 6), when a glass layer is provided on a metal core substrate having a poor surface roughness (Example 4), variations in resistance (standard) are better than those of a metal core substrate having a good surface roughness (Comparative Example 1). Deviation) has become smaller. That is, according to the present invention, it is possible to manufacture a sensor having a small variation in resistance value even on a substrate having a poor surface roughness. However, it can be seen that the degree of variation reflects the surface roughness of the original substrate as shown by the results of Examples 1 and 4. However,
It can be seen that if the composition of the alkoxide solution for coating is not properly selected, the surface roughness of the substrate will deteriorate.

【0029】(比較例1)実施例1において、結晶化ガ
ラス層の上にガラス層を形成させず結晶化ガラス層の上
に直接電極、抵抗層を形成した。 (比較例2)実施例1において、アルコキシド溶液中の
シリコン元素とチタン元素の比を2.5:7.5とし
た。表面粗度は0.06μmとなり、表面性が悪くなっ
た。
Comparative Example 1 In Example 1, an electrode and a resistance layer were directly formed on the crystallized glass layer without forming the glass layer on the crystallized glass layer. Comparative Example 2 In Example 1, the ratio of silicon element to titanium element in the alkoxide solution was 2.5: 7.5. The surface roughness was 0.06 μm, and the surface property was poor.

【0030】[0030]

【発明の効果】以上のように、本発明のひずみゲージ
は、絶縁層の上にゲル層またはガラス層を形成すること
により基板表面の表面粗さを小さくできて、簡単に抵抗
のばらつきを小さくすることができ、200℃程度の高
温雰囲気にも耐えることができる。
As described above, the strain gauge of the present invention can reduce the surface roughness of the substrate surface by forming the gel layer or the glass layer on the insulating layer, and easily reduce the variation in resistance. Therefore, it can withstand a high temperature atmosphere of about 200 ° C.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 昭彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihiko Yoshida 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属弾性体上に被覆された結晶化ガラス
からなる絶縁層と、前記絶縁層の表面に形成されたゲル
層またはガラス層と、前記ゲル層またはガラス層上に形
成された歪に対して抵抗が変化する素子とを備えたひず
みゲージ。
1. An insulating layer made of crystallized glass coated on a metal elastic body, a gel layer or a glass layer formed on the surface of the insulating layer, and a strain formed on the gel layer or the glass layer. A strain gauge with an element whose resistance changes with respect to.
【請求項2】 結晶化ガラスの組成が重量%でMgO;
16〜50%、BaO;0〜50%、CaO;0〜20
%、La2 3 ;0〜40%、B23 ;5〜34%、
SiO2 ;7〜30%、MO2 (MはZr,Ti,Sn
の少なくとも1種);0〜5%、P2 5 ;0〜5%で
あることを特徴とする請求項1記載のひずみゲージ。
2. The composition of the crystallized glass is wt% MgO;
16-50%, BaO; 0-50%, CaO; 0-20
%, La 2 O 3; 0~40 %, B 2 O 3; 5~34%,
SiO 2 ; 7 to 30%, MO 2 (M is Zr, Ti, Sn
0% to 5%, P 2 O 5 ; 0 to 5%. The strain gauge according to claim 1.
【請求項3】 ゲル層またはガラス層がSi、Ge、T
i、Zr、B、Al、Pの少なくとも1種類以上の元素
を含む酸化物であることを特徴とする請求項1または2
記載のひずみゲージ。
3. The gel layer or glass layer is Si, Ge, T
3. An oxide containing at least one element selected from i, Zr, B, Al and P. 3.
Strain gauge as described.
【請求項4】 少なくとも金属弾性体上に結晶化ガラス
層からなる絶縁層を設ける工程と、前記絶縁層の表面に
ゲル層またはガラス層を設ける工程と、前記ゲル層また
はガラス層の上に歪に対して抵抗が変化する抵抗素子を
形成する工程を含むことを特徴とするひずみゲージの製
造方法。
4. A step of providing an insulating layer composed of a crystallized glass layer on at least a metal elastic body, a step of providing a gel layer or a glass layer on the surface of the insulating layer, and a strain on the gel layer or the glass layer. A method of manufacturing a strain gauge, comprising the step of forming a resistance element whose resistance changes with respect to.
【請求項5】 ゲル層またはガラス層を設ける工程が、
熱処理することによりゲルまたはガラスとなる金属アル
コキシドを含む溶液を塗布し、熱処理する工程であるこ
とを特徴とする請求項4記載のひずみゲージの製造方
法。
5. The step of providing a gel layer or a glass layer,
The method for manufacturing a strain gauge according to claim 4, which is a step of applying a solution containing a metal alkoxide that becomes gel or glass by heat treatment and heat-treating.
【請求項6】 金属アルコキシドが、シリコンアルコキ
シドおよび/またはチタニウムアルコキシドを含み、そ
の組成比が10:0〜8:2の範囲にあることを特徴と
する請求項5記載のひずみゲージの製造方法。
6. The method of manufacturing a strain gauge according to claim 5, wherein the metal alkoxide contains silicon alkoxide and / or titanium alkoxide, and the composition ratio thereof is in the range of 10: 0 to 8: 2.
JP28801892A 1992-10-27 1992-10-27 Strain gauge and its manufacture Pending JPH06137805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28801892A JPH06137805A (en) 1992-10-27 1992-10-27 Strain gauge and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28801892A JPH06137805A (en) 1992-10-27 1992-10-27 Strain gauge and its manufacture

Publications (1)

Publication Number Publication Date
JPH06137805A true JPH06137805A (en) 1994-05-20

Family

ID=17724749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28801892A Pending JPH06137805A (en) 1992-10-27 1992-10-27 Strain gauge and its manufacture

Country Status (1)

Country Link
JP (1) JPH06137805A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010640A1 (en) * 1993-10-14 1995-04-20 Kabushiki Kaisya Advance Process for producing oxide ceramic coating
JPH1035164A (en) * 1996-04-25 1998-02-10 Samsung Aerospace Ind Ltd Ic card and manufacture thereof
JP2007161569A (en) * 2005-11-18 2007-06-28 Nihon Yamamura Glass Co Ltd Glass composition for sealing
US7882747B2 (en) 2004-12-20 2011-02-08 Panasonic Corporation Strain sensor and method for manufacture thereof
CN111417831A (en) * 2017-09-29 2020-07-14 美蓓亚三美株式会社 Strain gauge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010640A1 (en) * 1993-10-14 1995-04-20 Kabushiki Kaisya Advance Process for producing oxide ceramic coating
JPH1035164A (en) * 1996-04-25 1998-02-10 Samsung Aerospace Ind Ltd Ic card and manufacture thereof
US7882747B2 (en) 2004-12-20 2011-02-08 Panasonic Corporation Strain sensor and method for manufacture thereof
JP2007161569A (en) * 2005-11-18 2007-06-28 Nihon Yamamura Glass Co Ltd Glass composition for sealing
CN111417831A (en) * 2017-09-29 2020-07-14 美蓓亚三美株式会社 Strain gauge
US11326966B2 (en) 2017-09-29 2022-05-10 Minebea Mitsumi Inc. Strain gauge with improved design to reduce pinholes and damage

Similar Documents

Publication Publication Date Title
EP0561397B1 (en) A pressure sensor
JP2001160327A (en) Manufacturing method for conductive coating film and support provided with the coating film
JPH08304200A (en) Distortion-sensing resistor paste and sensor for dynamical amount
JPH06137805A (en) Strain gauge and its manufacture
JPH0593659A (en) Distortion sensor and its manufacture
JP3810507B2 (en) Strain sensitive resistor paste
JPH0696847A (en) Surface heating unit and manufacture thereof
JP3720129B2 (en) Resistive paste for strain sensitive resistor elements
JP3030947B2 (en) Oil level sensor
JPH098325A (en) Production of electric insulation substrate and physical quantity sensor employing it
JPH07140022A (en) Paste for resistor element, resistor element and dynamic quantity sensor
JPH06137806A (en) Strain sensor
JP3487675B2 (en) Manufacturing method of mechanical quantity sensor
JPH07307210A (en) Manufacture of metal resistor and dynamic quantity sensor
JPH0658706A (en) Strain sensor
JPH0572017A (en) Level sensor and manufacture thereof
JPH06294692A (en) Resistor paste and pressure sensor employing the same
JPH06174567A (en) Torque sensor and manufacture thereof
JPH06137979A (en) Pressure sensor and pressure detector using it
JPH06294693A (en) Resistor and pressure sensor employing the same
JP3867990B2 (en) Mechanical quantity sensor
JP3636534B2 (en) Mechanical quantity sensor and manufacturing method thereof
JPH0545238A (en) Load sensing device and car suspension using it
JPH08145814A (en) Manufacture of dynamic-quantity sensor
JPH0482294A (en) Manufacture of circuit board