JP2007161569A - Glass composition for sealing - Google Patents

Glass composition for sealing Download PDF

Info

Publication number
JP2007161569A
JP2007161569A JP2006305992A JP2006305992A JP2007161569A JP 2007161569 A JP2007161569 A JP 2007161569A JP 2006305992 A JP2006305992 A JP 2006305992A JP 2006305992 A JP2006305992 A JP 2006305992A JP 2007161569 A JP2007161569 A JP 2007161569A
Authority
JP
Japan
Prior art keywords
mass
glass
powder
content
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006305992A
Other languages
Japanese (ja)
Other versions
JP4939906B2 (en
Inventor
Sadataka Mayumi
禎隆 真弓
Hideyuki Kuribayashi
秀行 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Yamamura Glass Co Ltd
Original Assignee
Nihon Yamamura Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co Ltd filed Critical Nihon Yamamura Glass Co Ltd
Priority to JP2006305992A priority Critical patent/JP4939906B2/en
Publication of JP2007161569A publication Critical patent/JP2007161569A/en
Application granted granted Critical
Publication of JP4939906B2 publication Critical patent/JP4939906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powdery composition which is substantially free of alkali metals and useful for forming highly thermally expansible crystallized glass, and can join a metal and a ceramic by firing at a temperature of ≤900°C. <P>SOLUTION: The powdery composition useful for forming the crystallized glass for sealing comprises a glass powder substantially free of alkali metals and containing, by mass in terms of oxide, 10-30% SiO<SB>2</SB>, 20-30% B<SB>2</SB>O<SB>3</SB>, 10-40% CaO, 15-40% MgO, 0-10% of BaO+SrO+ZnO, 0-5% La<SB>2</SB>O<SB>3</SB>, 0-5% Al<SB>2</SB>O<SB>3</SB>, and 0-3% RO<SB>2</SB>(wherein, R represents Zr, Ti or Sn). The crystallized glass, formed by firing the powdery composition at 900±50°C, has a coefficient of thermal expansion at 50-550°C of 90-120×10<SP>-7</SP>/°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、金属とセラミックス、金属と金属、セラミックスとセラミックスとの封着に用いられるガラス組成物に関し、より具体的には、固体酸化物型燃料電池(SOFC)のシール部、例えばSOFCのセルとこれを取り付ける燃料マニホールドとの間のシール部にシール材として用いられる封着用ガラス組成物に関する。   The present invention relates to a glass composition used for sealing metal and ceramic, metal and metal, ceramic and ceramic, and more specifically, a seal portion of a solid oxide fuel cell (SOFC), for example, a SOFC cell. It is related with the glass composition for sealing used as a sealing material in the seal part between this and the fuel manifold which attaches this.

固体酸化物型燃料電池(SOFC)用のシール材として、非晶質ガラス粉末と高膨張セラミックス粉末の混合粉が用いられていた(特許文献1参照)。しかしながら、SOFCは作動温度が700〜1000℃と非常に高く、非晶質ガラスの高温粘度が低下してシール材が変形し易くなり自らを支えることも困難となるため、このシール材では、荷重(自重を含む)をシール材自身が支えなくてもよいような、予め安定に支持された構造部位のみに適用が制限される、という問題があった。   As a sealing material for a solid oxide fuel cell (SOFC), a mixed powder of amorphous glass powder and high expansion ceramic powder has been used (see Patent Document 1). However, SOFC has a very high operating temperature of 700 to 1000 ° C., and the high temperature viscosity of amorphous glass is lowered, so that the sealing material is easily deformed and difficult to support itself. There is a problem that application is limited only to a structural portion that is stably supported in advance so that the sealing material itself does not need to support (including its own weight).

また、リチウムジシリケートを主として析出する結晶化ガラス、あるいは、SiO2−Al23−ZnO−K2O−Na2O系の非晶質ガラスが提案されている(それぞれ、特許文献2及び3参照)。しかし、これらのシール材は、原ガラスから析出した結晶相あるいは残存したガラス相にアルカリ金属が多量に含まれているため、絶縁性やシール性の耐久性に問題があり、SOFCが長期に渡って使用された場合、それが作動する高温多湿の条件の影響下で、絶縁やシールが破れ易くなることが予想される。 Further, crystallized glass mainly depositing lithium disilicate or SiO 2 —Al 2 O 3 —ZnO—K 2 O—Na 2 O-based amorphous glass has been proposed (respectively, Patent Document 2 and 3). However, since these sealing materials contain a large amount of alkali metal in the crystal phase precipitated from the original glass or the remaining glass phase, there is a problem in durability of insulation and sealing properties, and SOFC has been used for a long time. If used, the insulation and seal are expected to break easily under the influence of hot and humid conditions in which it operates.

特開平8−134434号公報JP-A-8-134434 特開2003−238201号公報JP 2003-238201 A 特開2004−123496号公報Japanese Patent Application Laid-Open No. 2004-123496

上記の背景において、本発明は、実質的にアルカリ金属を含まない高膨張性の結晶化ガラス形成用の、900℃以下で焼成することにより金属とセラミックスを封着することができるガラス組成物を提供することを目的とする。   In the above background, the present invention provides a glass composition capable of sealing a metal and a ceramic by firing at 900 ° C. or less for forming a highly expandable crystallized glass substantially free of alkali metal. The purpose is to provide.

本発明者らは、上記の課題を解決すべく研究を重ねた結果、SiO2−B23−CaO−MgO系のガラス組成物が、ある特定の成分範囲のときに、このガラス組成物からなるガラス粉末を900℃付近で焼成することにより金属やセラミックスに適合する熱膨張係数である90〜120×10-7/℃(50〜550℃)を有する結晶化ガラスを形成できることを見出し、この知見に基づき更に検討を重ねて本発明を完成させるに至った。 As a result of repeated studies to solve the above problems, the present inventors have found that when the SiO 2 —B 2 O 3 —CaO—MgO-based glass composition is in a specific component range, this glass composition It is found that a crystallized glass having a thermal expansion coefficient of 90 to 120 × 10 −7 / ° C. (50 to 550 ° C.) that is compatible with metals and ceramics can be formed by firing a glass powder made of Based on this knowledge, further studies have been made and the present invention has been completed.

すなわち、本発明は、以下を提供するものである。
(1) 実質的にアルカリ金属を含まず、酸化物換算で、
SiO2 ・・・10〜30質量%、
23 ・・・20〜30質量%、
CaO ・・・10〜40質量%、
MgO ・・・15〜40質量%、
BaO+SrO+ZnO ・・・0〜10質量%、
La23 ・・・0〜5質量%、
Al23 ・・・0〜5質量%、及び
RO2 ・・・0〜3質量%(ここに、Rは、Zr、Ti、又はSnを表す。)
を含有するガラス組成物であって、900±50℃の温度でこのガラス組成物からなるガラス粉末を焼成することにより形成される結晶化ガラスの50〜550℃における熱膨張係数が90〜120×10-7/℃である、封着用ガラス組成物。
(2)質量比率で、CaO含有量/MgO含有量が0.4〜2.0である、上記1のガラス組成物。
(3)質量比率で、SiO2含有量/B23含有量が0.33〜1.33である上記1又は2のガラス組成物。
(4)SiO2とB23の含有量の合計が30〜50質量%であり、かつ、CaOとMgOの含有量の合計が44〜65質量%である、上記1ないし3の何れかのガラス組成物。
(5)平均粒径が5〜250μmである、上記1ないし4の何れかのガラス組成物からなるガラス粉末。
(6)上記1ないし4の何れかのガラス組成物からなるガラス粉末100質量部と、ジルコニア粉末0.01〜20質量部とを含んでなる、ガラス・セラミックス粉末。
(7)上記1ないし4の何れかのガラス組成物からなるガラス粉末とマグネシア、フォルステライト、ステアタイト、ワラストナイト及びその前駆体からなる群より選ばれる1種又は2種以上のセラミックス粉末とを含んでなるガラス・セラミックス粉末であって、該ガラス粉末100質量部に対しマグネシア、フォルステライト、ステアタイト、ワラストナイト及びその前駆体からなる群より選ばれる1種又は2種以上のセラミックス粉末0.01〜5質量部を含有するものである、ガラス・セラミックス粉末。
(8)該ガラス粉末の平均粒径が5〜250μmである、上記6又は7のガラス・セラミックス粉末。
That is, the present invention provides the following.
(1) Substantially free of alkali metals, in terms of oxides,
SiO 2 ... 10 to 30% by mass,
B 2 O 3 20-30% by mass,
CaO ... 10 to 40% by mass,
MgO 15 to 40% by mass,
BaO + SrO + ZnO ... 0-10 mass%,
La 2 O 3 ... 0 to 5% by mass,
Al 2 O 3 ... 0 to 5 mass%, and RO 2 ... 0 to 3 mass% (here, R represents Zr, Ti, or Sn).
A crystallized glass formed by firing glass powder made of this glass composition at a temperature of 900 ± 50 ° C. has a thermal expansion coefficient at 50 to 550 ° C. of 90 to 120 ×. A glass composition for sealing, which is 10 −7 / ° C.
(2) The glass composition according to 1 above, wherein the CaO content / MgO content is 0.4 to 2.0 in terms of mass ratio.
(3) The glass composition according to the above 1 or 2, wherein the SiO 2 content / B 2 O 3 content is 0.33 to 1.33 by mass ratio.
(4) Any of 1 to 3 above, wherein the total content of SiO 2 and B 2 O 3 is 30 to 50% by mass, and the total content of CaO and MgO is 44 to 65% by mass. Glass composition.
(5) A glass powder comprising the glass composition according to any one of 1 to 4 above, having an average particle diameter of 5 to 250 μm.
(6) A glass / ceramic powder comprising 100 parts by mass of the glass powder comprising the glass composition of any one of 1 to 4 and 0.01 to 20 parts by mass of zirconia powder.
(7) One or more ceramic powders selected from the group consisting of the glass powder of any one of 1 to 4 above and magnesia, forsterite, steatite, wollastonite, and precursors thereof; One or more ceramic powders selected from the group consisting of magnesia, forsterite, steatite, wollastonite and precursors thereof with respect to 100 parts by mass of the glass powder Glass / ceramic powder containing 0.01 to 5 parts by mass.
(8) The glass / ceramic powder according to the above 6 or 7, wherein the glass powder has an average particle size of 5 to 250 μm.

上記各構成になる本発明によれば、焼成すると結晶化して高い熱膨張係数の結晶化ガラスを与えるガラス組成物の粉末を、アルカリ金属を実質的に含まない形で提供することができる。従って、高温で使用される金属とセラミックス、金属と金属、セラミックスとセラミックスとを封着する必要のある部位(例えば、固体酸化物型燃料電池や排気ガスセンサーのシール部)に、封着材として使用することができる。固体酸化物型燃料電池等で700〜1000℃という高温且つ多湿な条件に長期間曝されても絶縁性が損なわれるおそれがなく、また、そのような高温での粘性低下のおそれもないため、固体酸化物型燃料電池等のシール部に封着材として用いれば、シール部の絶縁性やシール性の耐久性を高めることができる。   According to the present invention having the above-described configurations, it is possible to provide a powder of a glass composition that crystallizes when fired to give a crystallized glass having a high thermal expansion coefficient in a form that is substantially free of alkali metals. Therefore, as a sealing material for parts that need to seal metal and ceramics, metal and metal, ceramics and ceramics used at high temperatures (for example, solid oxide fuel cells and exhaust gas sensor seals) Can be used. Even if it is exposed to a high temperature and high humidity of 700 to 1000 ° C. for a long period of time in a solid oxide fuel cell or the like, there is no risk of the insulation being impaired, and there is no risk of a decrease in viscosity at such a high temperature. If it is used as a sealing material for a sealing portion of a solid oxide fuel cell or the like, the insulation of the sealing portion and the durability of the sealing performance can be enhanced.

本発明の封着用ガラス組成物は、例えば、そのガラス粉末をペーストの形にして、燃料マニホールドとセルとから構成されるSOFCのシールすべき部位に充填し焼成することにより、燃料マニホールド及びセルを構成するセラミックス及び金属の表面と結合して結晶化ガラスとなり、それらを封着する。焼成は900℃以下(例えば900℃)で行えばよい。   In the sealing glass composition of the present invention, for example, the glass powder is formed into a paste form, filled into a portion to be sealed of the SOFC composed of the fuel manifold and the cell, and fired, whereby the fuel manifold and the cell are formed. Bonded with the surface of the ceramics and metals constituting it, it becomes crystallized glass and seals them. Firing may be performed at 900 ° C. or lower (eg, 900 ° C.).

本発明の封着用ガラス組成物からなるガラス粉末は、原料である金属酸化物を調合、混合し溶融(例えば、1400〜1500℃で)した後冷却して得られるガラス原体(結晶化していない)を粉砕して製造すればよい。   The glass powder comprising the glass composition for sealing of the present invention is a glass raw material (not crystallized) obtained by preparing a metal oxide as a raw material, mixing and melting (for example, at 1400 to 1500 ° C.) and then cooling. ) May be pulverized.

本発明において、「実質的にアルカリ金属を含有せず」とは、アルカリ金属を主成分とする原料を一切使用しないことをいい、ガラスを構成する各成分の原料および無機フィラーの不純物に由来する微量のアルカリ金属が混入したものの使用を排除するものではない。本発明の封着用ガラス組成物のアルカリ金属含量は、好ましくは100ppm以下、より好ましくは30ppm以下、特に好ましくは10ppm以下である。   In the present invention, “substantially does not contain an alkali metal” means that a raw material containing an alkali metal as a main component is not used at all, and is derived from the raw material of each component constituting the glass and impurities of the inorganic filler. The use of a mixture of a trace amount of alkali metal is not excluded. The alkali metal content of the glass composition for sealing of the present invention is preferably 100 ppm or less, more preferably 30 ppm or less, and particularly preferably 10 ppm or less.

また環境保護上の観点から、本発明の封着用ガラス組成物は無鉛(鉛が1000 ppm未満)であることが好ましいから、鉛を含有する材料を添加することは避けるべきである。   Moreover, since it is preferable that the glass composition for sealing of this invention is lead-free (lead is less than 1000 ppm) from a viewpoint on environmental protection, you should avoid adding the material containing lead.

本発明の封着用ガラス組成物において、SiO2は、ガラスの網目を形成する成分であり、ガラス粉末の製造のためのガラス原体の製造時にガラスの安定性を向上させて結晶化を防ぐために、及び、粉末化後の焼成においてCaO−MgO−SiO2系(ディオプサイド等)、MgO−SiO2系(フォルテライト等)の高膨張結晶を生成させる上で、必須の成分である。主としてCaO−MgO−SiO2系(ディオプサイド等)の結晶を析出するガラス組成は、焼成温度による結晶相の変態が少なく、結晶化後のバルク体の強度が安定化する傾向がある。
一方、ガラス原体中に結晶が析出していると、これを粉砕して得たガラス粉末は、封着焼成時において結晶化開始が早まり、そのため焼成開始から早期に組成物の流れ性が低下して流動が阻害され、焼成後の封着対象物との間に隙間ができるという問題を生じ易くなり好ましくない。SiO2の含有量は、10質量%未満では、ガラス原体の製造時における安定性が低下するため、好ましくない。またSiO2の含有量が30質量%を超えるのも好ましくない。これは、30質量%を超えると、焼成して得られる結晶化ガラスの熱膨張曲線の直線性が低下し、変曲点が現れるが、変曲点に対応する温度領域において、シール部位の封着対象物と結晶化ガラスとの境界面に強い剪断応力と歪みを生じ、ひびや剥離の原因ともなるためである。従ってSiO2の含有量は、好ましくは10質量%以上、より好ましくは12質量%以上、更に好ましくは14質量%以上であり、且つ、好ましくは30質量%以下、より好ましくは25質量%以下、更に好ましくは20質量%以下、特に好ましくは18質量%以下である。従ってSiO2の含有量は、例えば、10〜30質量%、12〜25質量%、又は14〜20質量%等とすることができる。
In the glass composition for sealing of the present invention, SiO 2 is a component that forms a glass network, in order to improve the stability of the glass and prevent crystallization during the production of the glass base for the production of glass powder. In addition, it is an essential component for generating CaO—MgO—SiO 2 (diopside, etc.) and MgO—SiO 2 (fortelite, etc.) high-expansion crystals in the calcination after pulverization. A glass composition that mainly precipitates CaO—MgO—SiO 2 (diopside, etc.) crystals has little transformation of the crystal phase due to the firing temperature, and tends to stabilize the strength of the bulk body after crystallization.
On the other hand, if crystals are precipitated in the glass raw material, the glass powder obtained by crushing the glass will start crystallization earlier at the time of sealing firing, and therefore the flowability of the composition will be reduced early from the beginning of firing. Thus, the flow is hindered, and a problem that a gap is formed between the object to be sealed after firing is likely to occur, which is not preferable. If the content of SiO 2 is less than 10% by mass, stability during production of the glass raw material is lowered, which is not preferable. Moreover, it is not preferable that the content of SiO 2 exceeds 30% by mass. If it exceeds 30% by mass, the linearity of the thermal expansion curve of the crystallized glass obtained by firing decreases and an inflection point appears, but in the temperature region corresponding to the inflection point, the sealing portion is sealed. This is because a strong shear stress and strain are generated at the interface between the object to be deposited and the crystallized glass, causing cracks and peeling. Accordingly, the content of SiO 2 is preferably 10% by mass or more, more preferably 12% by mass or more, still more preferably 14% by mass or more, and preferably 30% by mass or less, more preferably 25% by mass or less, More preferably, it is 20 mass% or less, Most preferably, it is 18 mass% or less. Therefore, the content of SiO 2 can be, for example, 10 to 30% by mass, 12 to 25% by mass, or 14 to 20% by mass.

23は、ガラスの網目を形成する成分であり、ガラス原体の製造時におけるガラスの安定性を向上させて結晶化を防ぐため、及び、粉末化後の焼成においてMgO・B23、CaO・B23系の高膨張結晶を生成させるのに必須の成分である。B23の含有量は、20質量%未満では、ガラス原体の製造時における安定性が低下して結晶が析出し易くなるため好ましくない。ガラス原体の製造時に結晶が析出していると好ましくないことは、SiO2含量との関係で上に述べたとおりである。また、B23の含有量が30質量%を超えると、熱膨張曲線の直線性が低下する(変曲点が現れる)ため、好ましくない。従ってB23の含有量は、好ましくは20質量%以上、より好ましくは22質量%以上、更に好ましくは24質量%以上であり、且つ、好ましくは30質量%以下、より好ましくは28質量%以下、更に好ましくは26質量%以下である。従ってB23の含有量は、例えば、20〜30質量%、22〜30質量%、又は24〜28質量%等とすることができる。 B 2 O 3 is a component that forms a network of glass. In order to prevent crystallization by improving the stability of the glass at the time of producing the glass raw material, and in firing after powdering, MgO · B 2 O 3 is an essential component for producing CaO · B 2 O 3 -based high expansion crystals. If the content of B 2 O 3 is less than 20% by mass, the stability during production of the glass raw material is lowered, and crystals are liable to precipitate, which is not preferable. As described above in relation to the SiO 2 content, it is not preferable that crystals are precipitated during the production of the glass raw material. On the other hand, if the content of B 2 O 3 exceeds 30% by mass, the linearity of the thermal expansion curve decreases (an inflection point appears), which is not preferable. Therefore, the content of B 2 O 3 is preferably 20% by mass or more, more preferably 22% by mass or more, still more preferably 24% by mass or more, and preferably 30% by mass or less, more preferably 28% by mass. Hereinafter, it is more preferably 26% by mass or less. The content of B 2 O 3 is, for example, can be 20 to 30 wt%, 22 to 30 wt%, or 24 to 28 wt%, etc. to.

SiO2含有量/B23含有量の質量比率が0.33未満では、ガラス原体の製造時における安定性が低下するため好ましくない。また、SiO2含有量/B23含有量の質量比率が、1.33以上では、封着焼成後の結晶化度が高まらず、結晶相に対するガラス相の残存割合が大きくなるため、熱膨張曲線に変曲点(ガラス転移点)が現れるようになり、シール部位に歪が生じるため好ましくない。従ってSiO2含有量/B23含有量の質量比率は、好ましくは0.33以上、より好ましくは0.45以上、更に好ましくは0.5以上であり、且つ、好ましくは1.33以下、より好ましくは1.3以下、更に好ましくは1.25以下である。なお、この比率を変化させることで、熱膨張係数を微調整することができる(すなわち、この比率を高めると熱膨張係数が小さくなる)ことから、SOFCのセルに使用されるセラミックスと金属の熱膨張係数が異なる場合、この比率を変化させた材料を数種類積層することでマッチングを取ることが可能となる。 A mass ratio of SiO 2 content / B 2 O 3 content of less than 0.33 is not preferable because stability during production of the glass raw material is lowered. Further, when the mass ratio of SiO 2 content / B 2 O 3 content is 1.33 or more, the degree of crystallinity after sealing firing does not increase, and the residual ratio of the glass phase to the crystal phase increases. Since an inflection point (glass transition point) appears in the expansion curve and distortion occurs in the seal part, it is not preferable. Accordingly, the mass ratio of SiO 2 content / B 2 O 3 content is preferably 0.33 or more, more preferably 0.45 or more, still more preferably 0.5 or more, and preferably 1.33 or less. More preferably, it is 1.3 or less, More preferably, it is 1.25 or less. By changing this ratio, the coefficient of thermal expansion can be finely adjusted (that is, increasing this ratio decreases the coefficient of thermal expansion), so the heat of ceramics and metal used in the SOFC cell can be reduced. When the expansion coefficients are different, matching can be achieved by laminating several types of materials with different ratios.

CaOは、CaO−B23系、CaO−MgO−B23系、CaO−MgO−SiO2系の高膨張結晶の生成に必須の成分である。CaOの含有量が10質量%未満であるか或いは40質量%を超えると、ガラス原体の製造時における安定性が低下し、粉末焼成時の組成物の流れ性が低下して流動が阻害されるため好ましくない。従ってCaOの含有量は、好ましくは10質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上であり、且つ、好ましくは40質量%以下、より好ましくは36質量%以下、更に好ましくは31質量%以下である。 CaO is an essential component for the formation of CaO—B 2 O 3 , CaO—MgO—B 2 O 3 , and CaO—MgO—SiO 2 high expansion crystals. If the content of CaO is less than 10% by mass or exceeds 40% by mass, the stability during production of the glass raw material is lowered, the flowability of the composition during powder firing is lowered, and the flow is inhibited. Therefore, it is not preferable. Therefore, the content of CaO is preferably 10% by mass or more, more preferably 15% by mass or more, further preferably 20% by mass or more, and preferably 40% by mass or less, more preferably 36% by mass or less, Preferably it is 31 mass% or less.

MgOは、MgO−SiO2系、MgO−B23系、CaO−MgO−B23系、CaO−MgO−SiO2系の高膨張性結晶の生成に必須の成分である。MgOの含有量が15質量%未満では、封着焼成後の結晶化度が高まらず、結晶相に対するガラス相の残存割合が大きくなるため、耐熱性が低下し、好ましくない。また、MgOの含有量が40質量%を超えると、ガラス原体の製造時における安定性が低下し、粉末焼成時の組成物の流れ性が低下し流動が阻害されるため好ましくない。従ってMgOの含有量は、好ましくは15質量%以上、より好ましくは20質量%以上、更に好ましくは22質量%以上であり、且つ、好ましくは40質量%以下、より好ましくは35質量%以下、更に好ましくは30質量%以下である。 MgO is an essential component for the production of highly expandable crystals of MgO—SiO 2 , MgO—B 2 O 3 , CaO—MgO—B 2 O 3 , and CaO—MgO—SiO 2 . If the content of MgO is less than 15% by mass, the degree of crystallinity after sealing firing does not increase, and the residual ratio of the glass phase to the crystal phase increases. On the other hand, if the content of MgO exceeds 40% by mass, the stability during production of the glass raw material is lowered, the flowability of the composition during powder firing is lowered, and the flow is hindered. Therefore, the content of MgO is preferably 15% by mass or more, more preferably 20% by mass or more, further preferably 22% by mass or more, and preferably 40% by mass or less, more preferably 35% by mass or less, Preferably it is 30 mass% or less.

CaO含有量/MgO含有量の質量比率が0.4未満、あるいは2.0を超えると、ガラス原体の製造時における安定性が低下し、粉末焼成時の組成物の流れ性が低下し流動が阻害されるため好ましくない。またCaO含有量/MgO含有量の質量比率が小さいガラス組成ほど、焼成温度による結晶層の変態が少なく、結晶化後のバルク体の強度が安定化する傾向がある。これらの兼ね合いから、従ってCaO含有量/MgO含有量の質量比率は、好ましくは0.4以上、より好ましくは0.45以上、更に好ましくは0.66以上、特に好ましくは1.1以上であり、且つ、好ましくは2以下、より好ましくは1.6以下、更に好ましくは1.4以下である。従って、CaO含有量/MgO含有量の質量比率は、例えば、0.45〜1.4、0.66〜1.25等、1.1〜1.25等とすることができる。なお、この比率を変化させることで、封着焼成時の組成物の流れ性と結晶化度の微調整をすることが可能となる(すなわち、この比率を高めると熱膨張係数が小さくなる)。   When the mass ratio of CaO content / MgO content is less than 0.4 or more than 2.0, the stability during the production of the glass raw material decreases, the flowability of the composition during powder firing decreases, and the flow Is not preferred because it is inhibited. Further, a glass composition having a smaller mass ratio of CaO content / MgO content has less transformation of the crystal layer due to the firing temperature, and tends to stabilize the strength of the bulk body after crystallization. Accordingly, the mass ratio of CaO content / MgO content is preferably 0.4 or more, more preferably 0.45 or more, still more preferably 0.66 or more, and particularly preferably 1.1 or more. And, Preferably it is 2 or less, More preferably, it is 1.6 or less, More preferably, it is 1.4 or less. Therefore, the mass ratio of CaO content / MgO content can be, for example, 0.45 to 1.4, 0.66 to 1.25, 1.1 to 1.25, and the like. By changing this ratio, it becomes possible to finely adjust the flowability and crystallinity of the composition during sealing firing (that is, increasing this ratio decreases the thermal expansion coefficient).

SiO2含有量とB23含有量の合計が30質量%未満では、ガラス原体の製造時における安定性が低下するため、好ましくなく、また、50質量%を超えると熱膨張係数が低下するため、好ましくない。従ってSiO2含有量とB23含有量の合計は、好ましくは30質量%以上、より好ましくは33質量%以上、更に好ましくは35質量%以上、特に好ましくは40質量%以上であり、且つ、好ましくは50質量%以下、より好ましくは48質量%以下、更に好ましくは45質量%以下、特に好ましくは43質量%以下である。従って、SiO2含有量とB23含有量の合計は、例えば、35〜50質量%、40〜48質量%等とすることができる。 If the total content of SiO 2 and B 2 O 3 is less than 30% by mass, the stability during the production of the glass raw material is unfavorable, and if it exceeds 50% by mass, the thermal expansion coefficient decreases. Therefore, it is not preferable. Therefore, the total of the SiO 2 content and the B 2 O 3 content is preferably 30% by mass or more, more preferably 33% by mass or more, still more preferably 35% by mass or more, particularly preferably 40% by mass or more, and The content is preferably 50% by mass or less, more preferably 48% by mass or less, still more preferably 45% by mass or less, and particularly preferably 43% by mass or less. Therefore, the total content of SiO 2 and B 2 O 3 content, for example, 35 to 50 wt%, may be 40 to 48 mass%, and the like.

CaO含有量とMgO含有量の合計が44質量%未満では、封着焼成後の結晶化度が高まらず、結晶相に対するガラス相の残存割合が高くなるため、好ましくない。CaO含有量とMgO含有量の合計が65質量%を超えると、ガラス原体の製造時における安定性が低下するため、好ましくない。従ってCaO含有量とMgO含有量の合計は、好ましくは44質量%、より好ましくは48質量%、更に好ましくは50質量%であり、且つ、好ましくは65質量%以下、より好ましくは63質量%以下、更に好ましくは61質量%以下である。   If the total of the CaO content and the MgO content is less than 44% by mass, the degree of crystallization after sealing firing does not increase, and the residual ratio of the glass phase to the crystal phase increases, which is not preferable. If the total of the CaO content and the MgO content exceeds 65% by mass, the stability during the production of the glass raw material is lowered, which is not preferable. Therefore, the total of the CaO content and the MgO content is preferably 44% by mass, more preferably 48% by mass, still more preferably 50% by mass, and preferably 65% by mass or less, more preferably 63% by mass or less. More preferably, it is 61% by mass or less.

BaO、SrO、ZnOは、結晶化度の調整及び金属との接着力を保つために役立つ成分である。BaO、SrO、ZnOの合計含有量が10質量%を超えると封着焼成後の結晶化度が高まらず、結晶相に対するガラス相の残存割合が高くなるため耐熱性が低下し、また金属表面との反応による腐食も進行するため、好ましくない。従ってBaO、SrO、ZnOの合計含有量は、10質量%以下であることが好ましく、より好ましくは5質量%以下、更に好ましくは1質量%以下である。   BaO, SrO, and ZnO are components that are useful for adjusting the crystallinity and maintaining the adhesion to the metal. If the total content of BaO, SrO and ZnO exceeds 10% by mass, the degree of crystallinity after sealing firing will not increase, the residual ratio of the glass phase to the crystal phase will increase, and the heat resistance will decrease. Since corrosion due to the reaction proceeds, it is not preferable. Therefore, the total content of BaO, SrO, and ZnO is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 1% by mass or less.

La23は、結晶化度の調整及び金属との接着力を保つために役立つ成分である。La23の含有量が5質量%を超えると、ガラス原体の製造時においてガラスが不安定となるため、好ましくない。従ってLa23の含有量は、5質量%以下であることが好ましく、より好ましくは0.1〜3質量%である。 La 2 O 3 is a component useful for adjusting the degree of crystallinity and maintaining adhesion to metal. If the content of La 2 O 3 exceeds 5% by mass, the glass becomes unstable during the production of the glass raw material, which is not preferable. Therefore, the content of La 2 O 3 is preferably 5% by mass or less, more preferably 0.1 to 3% by mass.

Al23は、ガラス原体の製造時における安定性を向上させ、結晶化開始温度の調整および金属との接着力を保つために役立つ成分である。Al23の含有量が5質量%を超えると熱膨張係数が低下するため、好ましくない。従ってAl23の含有量は5質量%以下であることが好ましく、より好ましくは0.5〜3質量%である。 Al 2 O 3 is a component useful for improving the stability during the production of the glass raw material, adjusting the crystallization start temperature, and maintaining the adhesive force with the metal. When the content of Al 2 O 3 exceeds 5% by mass, the thermal expansion coefficient decreases, which is not preferable. Therefore, the content of Al 2 O 3 is preferably 5% by mass or less, more preferably 0.5 to 3% by mass.

RO2(ここに、RはZr又はTi又はSnを表す。)は、結晶化度を向上させるために役立つ成分である。RO2の含有量が3質量%を超えると、ガラス原体の製造時においてガラスが不安定となるため、好ましくない。従ってRO2の含有量は、3質量%以下であることが好ましく、より好ましくは0.1〜1質量%である。 RO 2 (wherein R represents Zr, Ti, or Sn) is a component useful for improving crystallinity. If the content of RO 2 exceeds 3% by mass, the glass becomes unstable during the production of the glass raw material, which is not preferable. Therefore, the content of RO 2 is preferably 3% by mass or less, more preferably 0.1 to 1% by mass.

上記成分に加えて、ガラス製造時の安定性の向上、金属との反応抑制、金属とガラスシール材の接着性の改善、析出する結晶の種類や比率を調整する目的で、CaO、MgO、BaO、SrO、ZnOの一部を、Fe23、CuO、CoO、NiO、Ln23(ランタノイド)、Bi23で、合計3質量%以下で加えることができる。 In addition to the above components, CaO, MgO, BaO are used for the purpose of improving stability during glass production, suppressing reaction with metals, improving adhesion between metals and glass sealing materials, and adjusting the types and ratios of precipitated crystals. A part of SrO and ZnO can be added in Fe 2 O 3 , CuO, CoO, NiO, Ln 2 O 3 (lanthanoid), Bi 2 O 3 in a total amount of 3% by mass or less.

本発明のガラス組成物からなるガラス粉末は、焼成時に一旦収縮し、軟化流動しながら金属、セラミックスの表面を濡らすことが必要なため、焼成時の流動性が高いものである必要がある。このためには、乾式粉砕の条件により粒径を調整し、平均粒径を5〜250μm、最大粒径を500μm以下とすることが好ましい。   The glass powder made of the glass composition of the present invention is required to have high fluidity during firing because it needs to shrink once during firing and wet the surface of the metal or ceramic while softening and flowing. For this purpose, it is preferable to adjust the particle size according to dry pulverization conditions so that the average particle size is 5 to 250 μm and the maximum particle size is 500 μm or less.

ここで、粒子径が余り小さい微粉では結晶化開始が早くなり、封着焼成時における組成物の流れ性が低下して流動が阻害されるため、封止材の塗布・焼成回数を増加させる必要が生じて製造コストの増加につながり、好ましくない。一方、粒子径が余り大きい粗粉は、粉末をペースト化する際、あるいは塗布、乾燥の際に、粉末粒子が沈降し分離するという問題がある。上述の微粉、粗粉を分級等の操作により取り除くことによって粒径を調整することができる。平均粒径は、好ましくは5μm以上、より好ましくは15μm以上であり、且つ、好ましくは50μm以下、より好ましくは30μm以下である。また最大粒径は、好ましくは150μm以下、より好ましくは100μm以下である。従って、例えば、平均粒径5〜50μm、最大粒径150μm以下、又は、平均粒径5〜30μm、最大粒径100μm等とすることができる。   Here, if the particle size is too small, crystallization starts earlier, the flowability of the composition at the time of sealing firing is reduced and the flow is hindered, so it is necessary to increase the number of times the sealing material is applied and fired This leads to an increase in manufacturing cost, which is not preferable. On the other hand, the coarse powder having a too large particle diameter has a problem that the powder particles settle and separate when the powder is made into a paste, or when applied and dried. The particle diameter can be adjusted by removing the fine powder and coarse powder by operations such as classification. The average particle diameter is preferably 5 μm or more, more preferably 15 μm or more, and preferably 50 μm or less, more preferably 30 μm or less. The maximum particle size is preferably 150 μm or less, more preferably 100 μm or less. Therefore, for example, the average particle diameter can be 5 to 50 μm, the maximum particle diameter is 150 μm or less, or the average particle diameter is 5 to 30 μm, the maximum particle diameter is 100 μm, or the like.

本発明の封着用ガラス組成物はガラス粉末の形で、或いはこれをセラミックス粉末と混合した形で、セラミックスと金属の封着に使用することができる。封着においては、印刷により又はディスペンサーによって対象物に塗布した後、900℃以下で焼成することが可能である。一般に、安価に入手できるステンレス鋼(例えば、SUS430)の耐熱温度は約900℃であることから、焼成温度が900℃以下であることは意義がある。   The glass composition for sealing of the present invention can be used for sealing ceramics and metals in the form of glass powder or mixed with ceramic powder. In sealing, it can be fired at 900 ° C. or lower after being applied to an object by printing or dispenser. In general, stainless steel (for example, SUS430) that can be obtained at low cost has a heat resistance temperature of about 900 ° C., and therefore, it is meaningful that the firing temperature is 900 ° C. or less.

また、熱膨張の微調整及びガラスの結晶化を促進させ強度を向上させる目的で、該ガラス粉末にジルコニア粉末、好ましくは部分安定化ジルコニア粉末を、封着焼成時の組成物の流れ性を低下させない程度の量添加することができる。ジルコニア粉末又は部分安定化ジルコニアの添加量は、ガラス粉末の量に対し0.01質量%未満では効果がなく、20質量%を超えると封着焼成時に組成物の流れ性を低下させて流動を阻害するため、好ましくない。従って部分安定化ジルコニアの添加量は、ガラス粉末の量に対し0.01〜20質量%とするのが好ましく、0.01〜5質量%とすることがより好ましく、0.01〜1質量%以下とすることが更に好ましい。   In order to improve the strength by finely adjusting the thermal expansion and promoting crystallization of the glass, zirconia powder, preferably partially stabilized zirconia powder, is used for the glass powder to reduce the flowability of the composition during sealing firing. It can be added in such an amount that it does not occur. The addition amount of zirconia powder or partially stabilized zirconia is ineffective if it is less than 0.01% by mass relative to the amount of glass powder, and if it exceeds 20% by mass, the flowability of the composition is lowered during sealing firing, and the flow is reduced. Since it inhibits, it is not preferable. Therefore, the addition amount of the partially stabilized zirconia is preferably 0.01 to 20% by mass, more preferably 0.01 to 5% by mass, and more preferably 0.01 to 1% by mass with respect to the amount of the glass powder. More preferably, it is as follows.

また、ジルコニア粉末と同様の目的で、ガラス粉末にマグネシア、フォルステライト、ステアタイト、ワラストナイト及びその前駆体(すなわち焼成するとワラストナイトを生成するもの)の粉末を封着焼成時の組成物の流れ性を低下させない程度の量添加することができる。それらの添加量は、ガラス粉末の量に対し合計で0.01質量%未満では効果がなく、5質量%を超えると封着焼成時の組成物の流れ性を低下させるため、好ましくない。従ってマグネシア、フォルステライト、ステアタイト、ワラストナイト及びその前駆体の添加量は、ガラス粉末の量に対し合計で0.01〜5質量%とするのが好ましく、より好ましくは0.01〜1質量%以下、更に好ましくは0.01〜0.5質量%である。   In addition, for the same purpose as zirconia powder, a composition obtained by sealing and firing magnesia, forsterite, steatite, wollastonite and its precursor (that is, wollastonite when fired) is applied to glass powder. Can be added in such an amount that does not reduce the flowability of the liquid. If the total amount is less than 0.01% by mass with respect to the amount of the glass powder, there is no effect, and if it exceeds 5% by mass, the flowability of the composition during sealing firing is lowered, which is not preferable. Therefore, the total amount of magnesia, forsterite, steatite, wollastonite and its precursor is preferably 0.01 to 5% by mass, more preferably 0.01 to 1%, based on the amount of glass powder. It is not more than mass%, more preferably 0.01 to 0.5 mass%.

以下、典型的な実施例を挙げて本発明を更に詳細に説明するが、本発明がこれらの実施例により限定されることは意図しない。   Hereinafter, the present invention will be described in more detail with reference to typical examples, but the present invention is not intended to be limited by these examples.

〔ガラス原体及びガラス粉末の製造〕
実施例1〜13及び比較例1〜7:
表1、2及び4に示すガラス組成となるように原料を調合、混合し、調合原料を白金るつぼに入れて1400〜1500℃で2時間溶融後、ガラス原体であるガラスフレークを得た。ポットミルにこのガラスフレークを入れ、平均粒径が30〜40μmになるまで乾式粉砕を行い、その後、目開きが106μmの篩にて粗粒を除去し、実施例及び比較例のガラス粉末とした。
[Manufacture of glass bulk and glass powder]
Examples 1-13 and Comparative Examples 1-7:
The raw materials were prepared and mixed so as to have the glass compositions shown in Tables 1, 2 and 4, and the prepared raw materials were put in a platinum crucible and melted at 1400 to 1500 ° C. for 2 hours, and then glass flakes which were glass original materials were obtained. The glass flakes were put in a pot mill, and dry pulverization was performed until the average particle size became 30 to 40 μm. Thereafter, coarse particles were removed with a sieve having an opening of 106 μm to obtain glass powders of Examples and Comparative Examples.

実施例14〜17:
表3に示すガラス組成となるように原料を調合、混合し、調合原料を白金るつぼに入れて1400〜1500℃で2時間溶融後、ガラス原体であるガラスフレークを得た。ポットミルにこのガラスフレークを入れ、平均粒径が5〜25μmになるまで乾式粉砕を行い、その後、目開きが106μmの篩にて粗粒を除去し、実施例のガラス粉末とした。
〔試験方法〕
実施例及び比較例のガラス粉末について、下記の方法によりガラス粉末の平均粒径を測定し、焼成して、焼成によるフロー径(流動後の径)、焼結体の熱膨張係数、軟化点を測定し評価した。
(1)ガラス粉末の平均粒径
レーザー散乱式粒度分布計を用いて、体積分布モードのD50の値を求めた。
Examples 14-17:
The raw materials were prepared and mixed so that the glass composition shown in Table 3 was obtained, and the prepared raw materials were put into a platinum crucible and melted at 1400 to 1500 ° C. for 2 hours, to obtain glass flakes as a glass raw material. The glass flakes were put in a pot mill, and dry pulverization was performed until the average particle size became 5 to 25 μm. Then, coarse particles were removed with a sieve having an opening of 106 μm to obtain a glass powder of Example.
〔Test method〕
About the glass powder of an Example and a comparative example, the average particle diameter of glass powder is measured with the following method, it calcinates, the flow diameter (diameter after a flow) by baking, the thermal expansion coefficient of a sintered compact, and a softening point Measured and evaluated.
(1) using an average particle size laser scattering type particle size distribution meter of glass powder was determined a value of D 50 of the volume distribution mode.

(2)フロー径
粉砕して得られたガラス粉末5gをφ20mmに乾式プレス成形し、SUS430基板上で900℃で焼成した。得られた焼結体の最大の外径を求めた。なお、フロー径が20mm以上のものを◎(特に良好)、19mm以上20mm未満のものを○(適合)、19mm未満のものを×(不適合)とした。
(2) Flow diameter 5 g of glass powder obtained by pulverization was press-molded to a diameter of 20 mm and fired at 900 ° C. on a SUS430 substrate. The maximum outer diameter of the obtained sintered body was determined. A flow diameter of 20 mm or more was evaluated as ◎ (particularly good), 19 mm or more and less than 20 mm as ◯ (conformity), and less than 19 mm as x (nonconformity).

(3)熱膨張係数
上記(2)で得られた焼結体を約5×5×15mmに切り出し、試験体を作製した。試験体につき、TMA測定装置を用いて、室温から10℃/分で昇温したときに得られる熱膨張曲線から、50℃と550℃の2点に基づく熱膨張係数(α1)、及び50と700℃の2点に基づく熱膨張係数(α2)を、それぞれ求めた。
また、熱膨張曲線の変曲点が600℃付近に現れるため、上記α2とα1の差(△α=α2−α1)を算出した。
なお、熱膨張係数が90×10-7/℃に未満のものは、金属、セルとのマッチング性に問題があるため、測定値の横に×(不適合)を併記した。
(3) Thermal expansion coefficient The sintered body obtained in the above (2) was cut out to about 5 × 5 × 15 mm to prepare a test body. The thermal expansion coefficient (α1) based on two points of 50 ° C. and 550 ° C. is obtained from the thermal expansion curve obtained when the temperature of the test body is increased from room temperature at 10 ° C./min using a TMA measuring device, and 50 A thermal expansion coefficient (α2) based on two points at 700 ° C. was obtained.
In addition, since the inflection point of the thermal expansion curve appears around 600 ° C., the difference between α2 and α1 (Δα = α2−α1) was calculated.
In the case where the coefficient of thermal expansion is less than 90 × 10 −7 / ° C., there is a problem in matching properties with the metal and the cell, and therefore x (nonconformity) is written alongside the measured value.

(4)軟化点
上記(3)で得られた熱膨張曲線において、膨張から収縮に転じる(曲線が極大値をとる)温度を求め、軟化点とした。
SOFCのセルと金属を封止する焼成工程において、焼成が繰り返し行われる場合があり、シールガラス部が900℃以下で軟化することは構造材料として好ましくない。
なお、軟化点が900℃以上のものは○(適合)を、900℃未満のものは、測定値の横に×(不適合)を併記した。
(4) Softening point In the thermal expansion curve obtained in (3) above, the temperature at which the transition from expansion to contraction (the curve takes a maximum value) was determined and used as the softening point.
In the firing step of sealing the SOFC cell and the metal, firing may be repeatedly performed, and it is not preferable as a structural material that the sealing glass portion is softened at 900 ° C. or lower.
The softening point of 900 ° C. or higher is indicated by ○ (conformity), and the softening point of less than 900 ° C. is indicated by x (nonconformity) beside the measured value.

(5)腐食性
上記(2)で得られた焼結体の縁に近接した部位のSUS表面の外観を観察した。
なお、焼結体の縁に近接した部位のSUS表面とそれ以外の領域のSUS表面との差が実質的にないものを○(適合)、焼結体の縁に接するSUS表面が茶色に変色したものを×(不適合)とした。
(5) Corrosiveness The appearance of the SUS surface at a site close to the edge of the sintered body obtained in (2) above was observed.
In addition, ○ (conformity) when there is substantially no difference between the SUS surface in the region close to the edge of the sintered body and the SUS surface in other regions, and the SUS surface in contact with the edge of the sintered body turns brown. What was done was made into x (nonconformity).

Figure 2007161569
Figure 2007161569

Figure 2007161569
Figure 2007161569

・ワラストナイト前駆体は、ゾノハイジ(宇部マテリアル製)を使用した。
・ジルコニア粉末は、325メッシュアンダーの部分安定化電融ジルコニア(8%Y23含有)を使用した。
・マグネシア粉末は、200メッシュアンダーの電融マグネシアを使用した。
-As the wollastonite precursor, Zono Heidi (manufactured by Ube Material) was used.
-As the zirconia powder, 325 mesh under partially stabilized fused zirconia (containing 8% Y 2 O 3 ) was used.
-The magnesia powder used the electromelting magnesia of 200 mesh under.

Figure 2007161569
Figure 2007161569

Figure 2007161569
Figure 2007161569

表1〜4、に結果を示す。これらの表に見られるとおり、比較例のガラス組成物が封着用ガラスに求められる性能の何れかを欠いていたのに対し、実施例1〜17のガラス組成物は、焼成時のフロー径、焼結体(結晶ガラス)の熱膨張係数、軟化点のいずれの点においても、封着用ガラスに求められる性能を全て備えていた。また、例として挙げた図1〜図4に示すように、実施例(3及び10)の焼結体の熱膨張曲線(それぞれ、図1及び2)と比較例(2及び3)の焼結体の熱膨張曲線(それぞれ、図3及び4)において、比較例の焼結体の熱膨張曲線には変曲点が見られ、変曲点を挟んで温度変化に伴う熱膨張率の急激な変動があるのに対し、実施例の焼結体の熱膨張曲線には変曲点が見られず、温度変化に伴う熱膨張率の急激な変動はない。   Tables 1 to 4 show the results. As can be seen from these tables, the glass compositions of Comparative Examples lacked any of the performance required for sealing glass, whereas the glass compositions of Examples 1 to 17 had a flow diameter during firing, All the performances required for the sealing glass were provided in both the thermal expansion coefficient and the softening point of the sintered body (crystal glass). Moreover, as shown in FIGS. 1-4 shown as an example, the thermal expansion curve (FIGS. 1 and 2 respectively) and the sintering of a comparative example (2 and 3) of the sintered body of Example (3 and 10) In the thermal expansion curves of the bodies (FIGS. 3 and 4 respectively), inflection points are seen in the thermal expansion curves of the sintered bodies of the comparative examples, and the coefficient of thermal expansion accompanying the temperature change is sharp across the inflection points. While there are fluctuations, no inflection points are found in the thermal expansion curves of the sintered bodies of the examples, and there is no rapid fluctuation of the thermal expansion coefficient due to temperature changes.

本発明のガラス組成物は、金属とセラミックに接触させて900℃以下で焼成することにより金属とセラミックス、金属と金属、セラミックスとセラミックスを封着するための、アルカリ金属を含まない、固体酸化物型燃料電池(SOFC)のシール部に好適な封着材として利用することができる。   The glass composition of the present invention is a solid oxide containing no alkali metal for sealing a metal and a ceramic, a metal and a metal, or a ceramic and a ceramic by contacting the metal and the ceramic and firing at 900 ° C. or less. It can be used as a sealing material suitable for a sealing part of a fuel cell (SOFC).

実施例3の焼結体の熱膨張曲線Thermal expansion curve of the sintered body of Example 3 実施例10の焼結体の熱膨張曲線Thermal expansion curve of the sintered body of Example 10 比較例2の焼結体の熱膨張曲線Thermal expansion curve of the sintered body of Comparative Example 2 比較例3の焼結体の熱膨張曲線Thermal expansion curve of the sintered body of Comparative Example 3

Claims (8)

実質的にアルカリ金属を含まず、酸化物換算で、
SiO2 ・・・10〜30質量%、
23 ・・・20〜30質量%、
CaO ・・・10〜40質量%、
MgO ・・・15〜40質量%、
BaO+SrO+ZnO ・・・0〜10質量%、
La23 ・・・0〜5質量%、
Al23 ・・・0〜5質量%、及び
RO2 ・・・0〜3質量%(ここに、Rは、Zr、Ti、又はSnを表す。)
を含有するガラス組成物であって、900±50℃の温度でこのガラス組成物からなるガラス粉末を焼成することにより形成される結晶化ガラスの50〜550℃における熱膨張係数が90〜120×10-7/℃である、封着用ガラス組成物。
Substantially free of alkali metals, converted to oxide,
SiO 2 ... 10 to 30% by mass,
B 2 O 3 20-30% by mass,
CaO ... 10 to 40% by mass,
MgO 15 to 40% by mass,
BaO + SrO + ZnO ... 0-10 mass%,
La 2 O 3 ... 0 to 5% by mass,
Al 2 O 3 ... 0 to 5 mass%, and RO 2 ... 0 to 3 mass% (here, R represents Zr, Ti, or Sn).
A crystallized glass formed by firing glass powder made of this glass composition at a temperature of 900 ± 50 ° C. has a thermal expansion coefficient at 50 to 550 ° C. of 90 to 120 ×. A glass composition for sealing, which is 10 −7 / ° C.
質量比率で、CaO含有量/MgO含有量が0.4〜2.0である、請求項1のガラス組成物。   The glass composition of Claim 1 whose CaO content / MgO content is 0.4-2.0 by mass ratio. 質量比率で、SiO2含有量/B23含有量が0.33〜1.33である請求項1又は2のガラス組成物。 The glass composition according to claim 1 or 2, wherein the SiO 2 content / B 2 O 3 content is 0.33 to 1.33 in terms of mass ratio. SiO2とB23の含有量の合計が30〜50質量%であり、かつ、CaOとMgOの含有量の合計が44〜65質量%である、請求項1ないし3の何れかのガラス組成物。 The glass according to any one of claims 1 to 3, wherein the total content of SiO 2 and B 2 O 3 is 30 to 50% by mass, and the total content of CaO and MgO is 44 to 65% by mass. Composition. 平均粒径が5〜250μmである、請求項1ないし4の何れかのガラス組成物からなるガラス粉末。   The glass powder which consists of a glass composition in any one of Claim 1 thru | or 4 whose average particle diameter is 5-250 micrometers. 請求項1ないし4の何れかのガラス組成物からなるガラス粉末100質量部と、ジルコニア粉末0.01〜20質量部とを含んでなる、ガラス・セラミックス粉末。   A glass / ceramic powder comprising 100 parts by mass of the glass powder comprising the glass composition according to claim 1 and 0.01 to 20 parts by mass of zirconia powder. 請求項1ないし4の何れかのガラス組成物からなるガラス粉末とマグネシア、フォルステライト、ステアタイト、ワラストナイト及びその前駆体からなる群より選ばれる1種又は2種以上のセラミックス粉末とを含んでなるガラス・セラミックス粉末であって、該ガラス粉末100質量部に対しマグネシア、フォルステライト、ステアタイト、ワラストナイト及びその前駆体からなる群より選ばれる1種又は2種以上のセラミックス粉末0.01〜5質量部を含有するものである、ガラス・セラミックス粉末。   A glass powder comprising the glass composition of any one of claims 1 to 4 and one or more ceramic powders selected from the group consisting of magnesia, forsterite, steatite, wollastonite and precursors thereof. 1 or two or more ceramic powders selected from the group consisting of magnesia, forsterite, steatite, wollastonite and precursors thereof with respect to 100 parts by mass of the glass powder. Glass-ceramics powder containing 01-5 mass parts. 該ガラス粉末の平均粒径が5〜250μmである、請求項6又は7のガラス・セラミックス粉末。   The glass-ceramic powder according to claim 6 or 7, wherein the glass powder has an average particle size of 5 to 250 µm.
JP2006305992A 2005-11-18 2006-11-10 Glass composition for sealing Active JP4939906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006305992A JP4939906B2 (en) 2005-11-18 2006-11-10 Glass composition for sealing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005334588 2005-11-18
JP2005334588 2005-11-18
JP2006305992A JP4939906B2 (en) 2005-11-18 2006-11-10 Glass composition for sealing

Publications (2)

Publication Number Publication Date
JP2007161569A true JP2007161569A (en) 2007-06-28
JP4939906B2 JP4939906B2 (en) 2012-05-30

Family

ID=38244886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006305992A Active JP4939906B2 (en) 2005-11-18 2006-11-10 Glass composition for sealing

Country Status (1)

Country Link
JP (1) JP4939906B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149430A (en) * 2005-11-25 2007-06-14 Nippon Telegr & Teleph Corp <Ntt> Seal material for solid oxide fuel cell, and its manufacturing method
WO2009017173A1 (en) * 2007-08-01 2009-02-05 Asahi Glass Company, Limited Lead-free glass
WO2009025313A1 (en) * 2007-08-22 2009-02-26 Nihon Yamamura Glass Co., Ltd. Glass composition for sealing
JP2009238431A (en) * 2008-03-26 2009-10-15 Kyocera Corp Horizontal stripe type solid oxide fuel cell stack, and fuel cell
JP2010060404A (en) * 2008-09-03 2010-03-18 Denso Corp Temperature sensing body for temperature sensors
US7964523B2 (en) * 2008-06-19 2011-06-21 Nihon Yamamura Glass Co., Ltd. Composition for sealing glass
KR20110128332A (en) * 2009-03-04 2011-11-29 쇼오트 아게 Crystallizing glass solder and use thereof
WO2013035500A1 (en) * 2011-09-08 2013-03-14 日本電気硝子株式会社 Crystalline glass composition and adhesive material using same
JP2013203627A (en) * 2012-03-29 2013-10-07 Asahi Glass Co Ltd Glass composition
JP2014026800A (en) * 2012-07-26 2014-02-06 Nippon Electric Glass Co Ltd Seal material for solid oxide fuel cell
US8664134B2 (en) 2009-03-04 2014-03-04 Schott Ag Crystallizing glass solders and uses thereof
US8741792B2 (en) 2010-02-24 2014-06-03 Nihon Yamamura Glass Co., Ltd. Glass composition and sealing material
WO2016129543A1 (en) * 2015-02-09 2016-08-18 日本山村硝子株式会社 Glass composition for sealing
KR20160125903A (en) * 2015-04-22 2016-11-01 쇼오트 아게 Vitreous or at least partly crystallised sealing material, joint connection, barrier layer and layer system comprising the sealing material, and integration thereof into components
CN107698164A (en) * 2017-09-22 2018-02-16 杨潮平 Seal glass, its preparation method and application
JP2018181406A (en) * 2017-04-03 2018-11-15 日本特殊陶業株式会社 Junction structure and electrochemical reaction cell stack
WO2019231975A1 (en) * 2018-05-31 2019-12-05 Bloom Energy Corporation Cross-flow interconnect and fuel cell system including same
WO2019233857A1 (en) * 2018-06-07 2019-12-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Seal for an integral joint with sealing effect between stacks of electrochemical cells or a joint between a stack and a planar adapter, and method for producing said seal
JP7453289B2 (en) 2018-07-27 2024-03-19 日本山村硝子株式会社 Crystalline glass encapsulant and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104042A (en) * 1981-11-23 1983-06-21 コ−ニング・グラス・ワ−クス Glass ceramic for metal substrate and manufacture
JPH01239038A (en) * 1988-02-05 1989-09-25 Matsushita Electric Ind Co Ltd Glass ceramic for coating metallic substrate
JPH02303184A (en) * 1989-05-18 1990-12-17 Matsushita Electric Ind Co Ltd Enamelled circuit board and manufacture thereof
JPH0482294A (en) * 1990-07-24 1992-03-16 Matsushita Electric Ind Co Ltd Manufacture of circuit board
JPH06137805A (en) * 1992-10-27 1994-05-20 Matsushita Electric Ind Co Ltd Strain gauge and its manufacture
JP2000119041A (en) * 1998-10-16 2000-04-25 Murata Mfg Co Ltd Crystallized glass composition for circuit board and crystallized glass sintered compact
JP2002338295A (en) * 2001-05-17 2002-11-27 Asahi Glass Co Ltd Alkali-free glass, composition for electronic circuit board and electronic circuit board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104042A (en) * 1981-11-23 1983-06-21 コ−ニング・グラス・ワ−クス Glass ceramic for metal substrate and manufacture
JPH01239038A (en) * 1988-02-05 1989-09-25 Matsushita Electric Ind Co Ltd Glass ceramic for coating metallic substrate
JPH02303184A (en) * 1989-05-18 1990-12-17 Matsushita Electric Ind Co Ltd Enamelled circuit board and manufacture thereof
JPH0482294A (en) * 1990-07-24 1992-03-16 Matsushita Electric Ind Co Ltd Manufacture of circuit board
JPH06137805A (en) * 1992-10-27 1994-05-20 Matsushita Electric Ind Co Ltd Strain gauge and its manufacture
JP2000119041A (en) * 1998-10-16 2000-04-25 Murata Mfg Co Ltd Crystallized glass composition for circuit board and crystallized glass sintered compact
JP2002338295A (en) * 2001-05-17 2002-11-27 Asahi Glass Co Ltd Alkali-free glass, composition for electronic circuit board and electronic circuit board

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149430A (en) * 2005-11-25 2007-06-14 Nippon Telegr & Teleph Corp <Ntt> Seal material for solid oxide fuel cell, and its manufacturing method
WO2009017173A1 (en) * 2007-08-01 2009-02-05 Asahi Glass Company, Limited Lead-free glass
GB2464052A (en) * 2007-08-01 2010-04-07 Asahi Glass Co Ltd Lead-free glass
US8178453B2 (en) 2007-08-01 2012-05-15 Asahi Glass Company, Limited Non-lead glass
US8288298B2 (en) 2007-08-22 2012-10-16 Nihon Yamamura Glass Co., Ltd. Glass composition for sealing
WO2009025313A1 (en) * 2007-08-22 2009-02-26 Nihon Yamamura Glass Co., Ltd. Glass composition for sealing
JP2009046371A (en) * 2007-08-22 2009-03-05 Nihon Yamamura Glass Co Ltd Glass composition for sealing
JP2009238431A (en) * 2008-03-26 2009-10-15 Kyocera Corp Horizontal stripe type solid oxide fuel cell stack, and fuel cell
US7964523B2 (en) * 2008-06-19 2011-06-21 Nihon Yamamura Glass Co., Ltd. Composition for sealing glass
JP2010060404A (en) * 2008-09-03 2010-03-18 Denso Corp Temperature sensing body for temperature sensors
KR101640275B1 (en) * 2009-03-04 2016-07-15 쇼오트 아게 Crystallizing glass solder and use thereof
KR20110128332A (en) * 2009-03-04 2011-11-29 쇼오트 아게 Crystallizing glass solder and use thereof
JP2012519149A (en) * 2009-03-04 2012-08-23 ショット アクチエンゲゼルシャフト Crystallized glass solder and use thereof
US8664134B2 (en) 2009-03-04 2014-03-04 Schott Ag Crystallizing glass solders and uses thereof
US8658549B2 (en) 2009-03-04 2014-02-25 Schott Ag Crystallizing glass solder and use thereof
US8741792B2 (en) 2010-02-24 2014-06-03 Nihon Yamamura Glass Co., Ltd. Glass composition and sealing material
JP2013056795A (en) * 2011-09-08 2013-03-28 Nippon Electric Glass Co Ltd Crystalline glass composition and adhesive material using the same
CN103748050A (en) * 2011-09-08 2014-04-23 日本电气硝子株式会社 Crystalline glass composition and adhesive material using same
WO2013035500A1 (en) * 2011-09-08 2013-03-14 日本電気硝子株式会社 Crystalline glass composition and adhesive material using same
US9409814B2 (en) 2011-09-08 2016-08-09 Nippon Electric Glass Co., Ltd. Crystalline glass composition and adhesive material using same
CN103748050B (en) * 2011-09-08 2016-12-28 日本电气硝子株式会社 Crystallinity glass composition and the adhesives using it
JP2013203627A (en) * 2012-03-29 2013-10-07 Asahi Glass Co Ltd Glass composition
JP2014026800A (en) * 2012-07-26 2014-02-06 Nippon Electric Glass Co Ltd Seal material for solid oxide fuel cell
WO2016129543A1 (en) * 2015-02-09 2016-08-18 日本山村硝子株式会社 Glass composition for sealing
JPWO2016129543A1 (en) * 2015-02-09 2017-12-28 日本山村硝子株式会社 Glass composition for sealing
JP2017019708A (en) * 2015-04-22 2017-01-26 ショット アクチエンゲゼルシャフトSchott AG Vitreous or at least partly crystallized sealing material, joint connection, barrier layer, layer system comprising that sealing material, and integration thereof into components
JP2018052812A (en) * 2015-04-22 2018-04-05 ショット アクチエンゲゼルシャフトSchott AG Glassy or at least partially crystallized fusion material, joining coupled part, shielding layer, layer system including the fusion material, and assembling to the member
US10214442B2 (en) 2015-04-22 2019-02-26 Schott Ag Vitreous or at least partly crystallised sealing material, joint connection, barrier layer, and layer system comprising the sealing material and integration thereof into components
KR20160125903A (en) * 2015-04-22 2016-11-01 쇼오트 아게 Vitreous or at least partly crystallised sealing material, joint connection, barrier layer and layer system comprising the sealing material, and integration thereof into components
JP2018181406A (en) * 2017-04-03 2018-11-15 日本特殊陶業株式会社 Junction structure and electrochemical reaction cell stack
CN107698164B (en) * 2017-09-22 2021-06-01 潮州三环(集团)股份有限公司 Sealing glass, preparation method and application thereof
CN107698164A (en) * 2017-09-22 2018-02-16 杨潮平 Seal glass, its preparation method and application
JP2021525949A (en) * 2018-05-31 2021-09-27 ブルーム エネルギー コーポレイション Cross-flow type interconnect and fuel cell system including the interconnect
CN112166515A (en) * 2018-05-31 2021-01-01 博隆能源股份有限公司 Cross-flow interconnect and fuel cell system including the same
WO2019231975A1 (en) * 2018-05-31 2019-12-05 Bloom Energy Corporation Cross-flow interconnect and fuel cell system including same
US11355762B2 (en) 2018-05-31 2022-06-07 Bloom Energy Corporation Cross-flow interconnect and fuel cell system including same
JP7333795B2 (en) 2018-05-31 2023-08-25 ブルーム エネルギー コーポレイション Cross-flow type interconnect and fuel cell system including the same interconnect
US11916263B2 (en) 2018-05-31 2024-02-27 Bloom Energy Corporation Cross-flow interconnect and fuel cell system including same
WO2019233857A1 (en) * 2018-06-07 2019-12-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Seal for an integral joint with sealing effect between stacks of electrochemical cells or a joint between a stack and a planar adapter, and method for producing said seal
JP7453289B2 (en) 2018-07-27 2024-03-19 日本山村硝子株式会社 Crystalline glass encapsulant and its manufacturing method

Also Published As

Publication number Publication date
JP4939906B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4939906B2 (en) Glass composition for sealing
JP5128203B2 (en) Glass composition for sealing
US7964523B2 (en) Composition for sealing glass
JP5703285B2 (en) Glass composition and sealing material
JP5818454B2 (en) High temperature glass solder and its use
EP2007689B1 (en) Glass-ceramic seals for use in solid oxide fuel cells
JP5365517B2 (en) Lead-free glass
JP6328566B2 (en) Glass composition for sealing
JP5787928B2 (en) Barium and strontium-free vitreous or glass-ceramic bonding materials and their use
JPWO2004031088A1 (en) Glass frit for sealing
JP6456834B2 (en) Glass composition for sealing
JP6621425B2 (en) Glass composition for sealing
JP5906888B2 (en) Glass frit and crystallized glass
WO2005073142A1 (en) Sealing composition
JP6966461B2 (en) Crystallized glass sealing material
JP4266109B2 (en) Glass frit for sealing
JP5545589B2 (en) Manufacturing method of sealing material
JP5887339B2 (en) Sealing glass composition and sealing material
JP7103095B2 (en) Glass
WO2009119433A1 (en) Lead-free glass and composition for lead-free glass ceramics
JPH05170479A (en) Glass composition
JP2023149969A (en) Sealing glass composition
US20190177205A1 (en) Glass
RU2188171C2 (en) Glass for glass ceramic cement
JPH03148101A (en) Resistance paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4939906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250