JP3720129B2 - Resistive paste for strain sensitive resistor elements - Google Patents

Resistive paste for strain sensitive resistor elements Download PDF

Info

Publication number
JP3720129B2
JP3720129B2 JP20052196A JP20052196A JP3720129B2 JP 3720129 B2 JP3720129 B2 JP 3720129B2 JP 20052196 A JP20052196 A JP 20052196A JP 20052196 A JP20052196 A JP 20052196A JP 3720129 B2 JP3720129 B2 JP 3720129B2
Authority
JP
Japan
Prior art keywords
resistance
mechanical quantity
quantity sensor
paste
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20052196A
Other languages
Japanese (ja)
Other versions
JPH1038733A (en
Inventor
晴彦 半田
善博 堀
真也 長谷川
正樹 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP20052196A priority Critical patent/JP3720129B2/en
Publication of JPH1038733A publication Critical patent/JPH1038733A/en
Application granted granted Critical
Publication of JP3720129B2 publication Critical patent/JP3720129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、荷重、圧力、変位等の力学量およびその変化量を計測する感歪み抵抗素子を形成する抵抗ペーストに関する。
【0002】
【従来の技術】
近年、荷重、圧力等を検出する力学量センサは、機械、船舶、自動車等の各部に生じる応力や荷重の大きさを計測するために広く用いられている。この種のセンサは、基板の種類、抵抗素子に用いる感歪み材料の種類によってさまざまなものが提案されている。
その代表的なものとして、
(1)ポリエステル、エポキシ、ポリイミド等の樹脂からなるフィルムを基板とし、この表面にCu−Ni合金、Ni−Cr合金等からなる薄膜状の抵抗素子を蒸着またはスパッタリングにより形成したもの、
(2)上記の樹脂製フィルムの代りにガラスプレートを用いたもの(特公平3−20682号公報)、および
(3)表面を結晶化ガラス層で被覆した金属基材を基板とし、この表面にペーストを塗布、焼成して抵抗素子を形成したもの特開平5−93659号公報が提案されている。
【0003】
力学量の大きさは、次のようにして測定される。外部からの力や荷重が力学量センサに加わると、基板とともに、その表面に形成された抵抗素子が変形する。抵抗素子の長さおよび断面積の変化による電気抵抗の変化を、抵抗素子に接続して形成された一対の電極間で測定することにより、加わった力学量を検出するものである。
ところで、力学量センサの需要が大きい市場の1つとして、自動車等に使用される車両用サスペンションがある。車両用サスペンションでは、例えばショックアブソーバのシャフトの表面に力学量センサを接着剤等で貼り付け、この力学量センサの電気抵抗の変化から車体に加わる荷重変化を検出する。
【0004】
しかしながら、基板に樹脂製フィルムを用いた力学量センサでは、車両用サスペンションのように環境温度が−50℃から150℃といった広範囲におよび、最大荷重が2トンにも達する過酷な環境条件下で長期間使用すると、接着強度が低下して力学量センサが部材から剥離する問題がある。
また、基板にガラスプレートを用いた力学量センサでは、蒸着やスパッタリングにより形成した抵抗素子は、基板との密着性に難がある。さらに、ガラスプレートをシャフトのような曲面に溶着した場合、密着性が乏しいため、強固な接着が難しく、剥離し易い。
一方、表面に結晶化ガラス層を形成した金属基材を基板に用いた力学量センサは、金属基材と結晶化ガラス層、および結晶化ガラス層と抵抗素子の間でそれぞれの成分元素が相互拡散しているため、それらの間の密着性が非常に強く、過酷な環境条件で使用するセンサとしては最適である。この種の力学量センサの抵抗素子として、現在のところ、抵抗材料である酸化ルテニウムにガラス粉末およびビヒクルを加えた抵抗ペーストを塗布、乾燥・焼成して形成したものが知られているが、抵抗素子中に抵抗材料以外の成分が含まれることから、得られたセンサの歪みに対する感度は低く、未だ実用化されていない。そこで、高感度の抵抗素子を形成することのできる抵抗ペーストの開発が待たれていた。
【0005】
【発明が解決しようとする課題】
本発明は、上記の課題を解決し、歪みに対する感度が高い抵抗素子を得ることのできる抵抗ペーストを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の感歪み抵抗素子用抵抗ペーストは、銅含有複合酸化物、ガラスフリット、有機ビヒクルおよび希釈剤を含むものであり、これを絶縁性基板表面に塗布し、乾燥・焼成することにより、高感度の感歪み抵抗素子を得ることができる。
【0007】
【発明の実施の形態】
本発明の感歪み抵抗素子用抵抗ペーストは、銅含有複合酸化物、ガラスフリット、有機ビヒクルおよび希釈剤を含むものである。
さらに、銅含有複合酸化物が、Bi、SrおよびCaを含む複合酸化物であることが好ましい。
また、銅含有複合酸化物が、Bi、Pb、Sr、CaおよびCuをモル比でBi:Pb:Sr:Ca:Cu=2−x:x:2:2:3(0≦x≦2)の割合で含むことが好ましい。
【0008】
本発明の感歪み抵抗素子用抵抗ペーストを用いて作製される力学量センサは、絶縁性基板と、絶縁性基板の表面に形成された感歪み抵抗素子と、感歪み抵抗素子の電気抵抗変化を検出する一対の電極を具備し、感歪み抵抗素子が、銅含有複合酸化物およびガラスを含むものである。銅含有複合酸化物粉体とガラスフリットの混合物を焼成して抵抗素子を形成することにより、高感度の力学量センサが得られる。特に上記感歪み抵抗素子用抵抗ペーストを用いた場合、ペースト中の有機ビヒクルおよび希釈剤は乾燥・焼成時に飛散し、優れた力学量センサが得られる。
また、絶縁性基板は、表面に結晶化ガラスからなる層を被覆した金属基材からなるものであることが好ましい。
さらに、結晶化ガラスは、SiO2:7〜33重量%、B23:5〜31重量%、MgO:16〜50重量%、CaO:0〜20重量%、BaO:0〜50重量%、La23:0〜40重量%、P25:0〜5重量%およびMO2:0〜5重量%(但し、MはZr、TiおよびSnのうち少なくとも一種の元素)からなることが好ましい。
【0009】
本発明の感歪み抵抗素子用抵抗ペーストを用いて作製される力学量センサに用いる絶縁性基板について説明する。
(a)金属基材
金属基材は、ホーロ鋼、ステンレス鋼、珪素鋼、ニッケル−クロム−鉄、ニッケル−鉄、コバール、インバーなどの各種合金材やそれらのクラッド材などが選択されるが、絶縁層との密着性の観点からステンレス鋼SUS430が最も好ましい。
金属基材の材質が決定されれば、通常の機械加工、エッチング加工、レーザ加工等により所望の形状に加工される。その形状は、負荷荷重の大きさや用途により、円筒形や板状(箔状も含む)等が選択される。
これら金属基材は、絶縁層の密着性を向上させる目的で、表面脱脂された後、サンドブラスト処理、ニッケル、コバルトなどの各種メッキ処理、あるいは酸化被覆層を形成するための熱酸化処理等が施される。
【0010】
(b)絶縁層
金属基材上に形成される絶縁層は、結晶化ガラスからなることが好ましく、特に、絶縁性、耐熱性の観点から、無アルカリ結晶化ガラス(焼成によって、たとえば、MgO系の結晶相を析出)からなることが好ましい。
結晶化ガラス層を金属基材上に被覆する方法としては、印刷法、スプレー法、粉末静電塗装法、電気泳動電着法等が挙げられる。被膜のち密性、電気絶縁性等の観点から、電気泳動電着法が、最も好ましい。
【0011】
電気泳動電着法は、例えば以下のようにして行われる。
ガラスにアルコールおよび少量の水を加えてボールミル中で約20時間粉砕、混合し、ガラスの平均粒径を1〜5μm程度にして、スラリー状する。得られたスラリーを電解槽に入れ、液を循環させる。金属基材をこのスラリー中に浸漬し、金属基材を負極として対極との間に100〜400Vの電圧を印加して、金属基材表面にガラス粒子を被覆させる。これを乾燥後、850〜900℃で10分〜1時間焼成して、ガラスの微粒子を溶融させ、結晶化ガラス層を形成する。また、このとき、ガラスが溶融するとともに、ガラスの成分と金属材料の成分が充分に相互拡散するため、結晶化ガラス層と金属基材との強固な密着が得られる。
なお、焼成の際に、常温から徐々に上記温度まで昇温させることにより、微細針状結晶を無数に析出させ、そのアンカー効果により、ガラス層自体の機械強度や抵抗素子との密着性を向上させることができる。
【0012】
【実施例】
次に、本発明の具体的な実施例について詳細に説明する。
まず、この結晶化ガラスの組成について、以下の検討を行った。
前述の絶縁層形成工程に従い、長さ100mm、幅100mmで厚さ0.5mmのステンレス鋼(SUS430)製の金属基材の表面に、表1〜7に示すNo.1〜42の組成の結晶化ガラスを上記の電気泳動法により電着させ、これを880℃で10分焼成して、厚さ100μmの結晶化ガラス層を形成した。得られたサンプルの表面粗度やうねり性といった表面性、耐熱性等の諸特性を調べた。
【0013】
なお、表面粗度は、タリサーフ表面粗さ計で測定した表面中心線平均粗さRaで表し、うねり性は、このとき得られたうねりの山と谷の差Rmaxで表わした。
耐熱性は、サンプルを850℃の電気炉中に10分間入れ、炉から取り出した後、30分間、室温で自然放冷するサイクルを繰り返すスポーリングテストを行って、サンプルのクラックや剥離の状態を調べた。なお、クラックは、サンプルを赤インク中に浸漬した後、サンプル表面のインクを拭き取り、目視観察によってサンプルの表面に赤インクが残存するか否かにより判定した。表中の○、△および×は、○が10サイクル以上行っても、異常が認められないもの、△は5〜9サイクルで異常が発生したもの、×は4サイクル以下で異常が発生したものを示す。
密着性は、絶縁性基板の曲げ試験を行い、結晶化ガラス層が剥離して金属部が露出したものを×、金属部が一部だけ露出したものを△、金属部が露出しなかったものを○とした。
以上の評価に基づき総合評価を行い、その結果を○、△、×で示した。
【0014】
表1に示すNo.1〜8は他の成分を一定として、SiO2とB23の比を変化させたものである。
【0015】
【表1】

Figure 0003720129
【0016】
これらから明らかなように、SiO2を増加していくと、耐熱性は向上するが、表面性、および密着性が悪くなる。逆に、B23量を増加していくと、表面性、密着性は向上するが、一方で耐熱性が低下する。
これらを考慮すると、SiO2の組成比は7〜33重量%、B23の組成比は5〜31重量%であることが好ましい。
【0017】
表2に示すNo.9〜15は、SiO2/B23をほぼ一定にし、MgO量を変化させたものである。
【0018】
【表2】
Figure 0003720129
【0019】
MgOの添加量が50重量%を超えると、結晶が析出しやすく、ガラス溶融時に簡単に結晶化する。そのため、均質なガラスを得ることが難しく、また表面粗度が大きくなる。MgO量は結晶性と相関があり、16重量%未満では結晶析出が不十分で、耐熱性に劣る。そのため、MgOの組成比は16〜50重量%の範囲内であることが好ましい。
【0020】
表3に示すNo.16〜19は、SiO2/B23をほぼ一定にし、CaO量を変化させたものである。表4に示すNo.20〜24は、同じく、BaO量を変化させたものである。また、表5に示すNo.25〜29は、同じく、La23量を変化させたものである。
【0021】
【表3】
Figure 0003720129
【0022】
【表4】
Figure 0003720129
【0023】
【表5】
Figure 0003720129
【0024】
CaOの添加量が、20重量%を超えると、表面性が悪くなり好ましくない。そのため、CaOの添加量は、0〜20%が好ましい。
BaOの添加量が、50重量%を超えると、耐熱性、および密着性が劣化し好ましくない。そのため、BaOの添加量は、0〜50%が好ましい。
La23の添加量が、40重量%を超えると、耐熱性が劣化し好ましくない。そのため、La23の添加量は、0〜40%が好ましい。
【0025】
表6〜表8に示すNo.30〜44はそれぞれ、ZrO2、TiO2、SnO2、P25およびZnOの添加量を変化させたものである。
ZrO2、TiO2、SnO2、P25およびZnOは、5重量%までなら添加可能である。
【0026】
【表6】
Figure 0003720129
【0027】
【表7】
Figure 0003720129
【0028】
【表8】
Figure 0003720129
【0029】
《実施例1》
前述の製造方法に基づいて以下のようにして力学量センサを作製した。
所定のパターンに加工した厚さ1.2mmの金属基材に、前処理として脱脂・水洗・酸洗・水洗・ニッケルメッキ・水洗の各処理を施した。次に、これを上記のNo.7で示した組成のガラス粒子を含むスラリー中に浸漬して、対極と金属基材の間に一定電圧を印加することにより、金属基材1の表面にガラス粒子を被覆した。この金属基材1を常温から880℃まで2時間かけて昇温し、さらにこの温度で10分間保持する焼成処理を行ない、金属基材1の表面に絶縁層として厚さ100μmの結晶化ガラス層2を形成して絶縁性基板を得た。次に、結晶化ガラス層2の表面にAg−Pd系導電ペーストを所定のパターンにスクリーン印刷し、850℃で10分焼成することにより電極3を形成した。
【0030】
次に、Bi23、SrO、CaOおよびCuOを、モル比が1:2:2:3となるように秤量し、これらを乳鉢で十分に混合した。この混合粉末を1000℃で24時間、熱処理して固相反応させることにより、銅含有複合酸化物を合成した。得られた銅含有複合酸化物を平均粒径0.3μmに粉砕した。
また、Pb34、SiO2、H3BO3およびAl(OH)3をそれぞれ所定量秤量し、乳鉢で十分混合した。この混合粉末を1300℃で加熱して溶融させ、板上に流し出すことにより、PbO、SiO2、B23およびAl23をモル比で52:25:10:1含むガラスを合成した。このガラスを平均粒径1μmに粉砕した。
得られた銅含有複合酸化物およびガラスを重量比で1:1の割合になるように秤量混合し、これに有機ビヒクルと希釈剤を適量加えて乳鉢で混合した後、3本ロールで十分に混合することによって、抵抗ペーストを調製した。このペーストをあらかじめ電極3を形成した絶縁性基板にスクリーン印刷した後、空気中830℃で焼成処理を行い、抵抗素子4を形成して図1に示す洗濯機用力学量センサを得た。
【0031】
《実施例2》
Bi23、PbO、SrO、CaOおよびCuOを、モル比で0.9:0.2:2:2:3の割合になるように秤量し、これを乳鉢で十分混合した。次いで、これを1000℃で24時間、熱処理して固相反応させることにより、銅含有複合酸化物を合成した。得られた銅含有複合酸化物を平均粒径0.3μmに粉砕した。この銅含有複合酸化物と実施例1で用いたものと同様のガラスを重量比で1:1の割合になるように秤量混合し、これに有機ビヒクルと希釈剤を適量加えて乳鉢で混合した後、3本ロールで十分に混合することによって抵抗ペーストを調製した。この抵抗ペーストを用いて、実施例1と同様に力学量センサを作製した。
【0032】
《比較例1》
実施例1で用いたものと同様のガラスと平均粒径0.3μmの酸化ルテニウム(RuO2)を重量比で1:1の割合になるように秤量混合し、これに有機ビヒクルと希釈剤を適量加えて乳鉢で混合した後、3本ロールで十分に混合することによって抵抗ペーストを調製した。
このペーストを実施例と同様にあらかじめ電極を形成した絶縁性基板に印刷し、焼成することにより、抵抗素子を形成し、力学量センサを得た。
【0033】
上記のようにして得られた力学量センサ10を、図2に示すように洗濯機に取り付けた。外枠9の内部に収容された外槽6は、複数の支持棒7により吊持されている。力学量センサ10は、図3に示すように、支持棒7と支持固定部材8の間に接続して配され、衣類等が脱水槽5に投入されると、支持棒7に加わる張力が増加し、力学量センサ10が変形する。この力学量センサ10は、変形による抵抗素子4の電気抵抗の変化により投入された布量を検出する。
脱水槽5内に投入した布量に対するセンサの電気抵抗を測定した。
図4に、投入した布量と力学量センサの電気抵抗の関係を示す。このように、実施例の抵抗ペーストを用いることにより、比較例の抵抗ペーストを用いた場合と比較して、歪みに対する感度が高い抵抗素子および力学量センサを得ることができる。
【0034】
なお、PbO、SrO、CaOおよびCuOをモル比が2:2:2:3となるように混合して、上記実施例と同様に合成した銅含有複合酸化物を用いた場合にも、感度の高い力学量センサが得られた。
また、抵抗素子に用いる銅含有複合酸化物の一例として、金属導電性を示すBi2-xPbxSr2Ca2Cu3yについて説明したが、金属導電性や半導電性を示す他の銅含有複合酸化物を抵抗素子に用いた場合にも同様の効果が得られる。
また、本実施例では、力学量センサの一例として洗濯機に用いる重量センサについて説明したが、この他に加速度センサ、圧力センサ、パソコン用ポインティングデバイス用センサなど種々の製品への応用が可能であることは言うまでもない。
【0035】
【発明の効果】
本発明によると、高い抵抗変化率を示す高感度な感歪み抵抗素子および力学量センサを得ることのできる抵抗ペーストを提供することができる。
【図面の簡単な説明】
【図1】 本発明の実施例で作製した力学量センサを示す図であり、(a)は斜視図、(b)は縦断面図である。
【図2】 同力学量センサを取り付けた洗濯機の要部の縦断面図である。
【図3】 同力学量センサの取付箇所の縦断面図である。
【図4】 同力学量センサの洗濯機に投入した布量に対する電気抵抗値を示す特性図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resistance paste for forming a strain sensitive resistance element for measuring a mechanical quantity such as load, pressure, displacement and the amount of change thereof.
[0002]
[Prior art]
In recent years, a mechanical quantity sensor that detects a load, a pressure, and the like is widely used to measure a stress and a magnitude of a load generated in each part of a machine, a ship, an automobile, and the like. Various sensors of this type have been proposed depending on the type of substrate and the type of strain-sensitive material used for the resistance element.
As a representative example,
(1) A film made of a resin such as polyester, epoxy, polyimide, etc. is used as a substrate, and a thin film resistive element made of Cu—Ni alloy, Ni—Cr alloy or the like is formed on this surface by vapor deposition or sputtering,
(2) Using a glass plate instead of the above resin film (Japanese Patent Publication No. 3-20682), and (3) A metal substrate whose surface is covered with a crystallized glass layer is used as a substrate, A material in which a resistive element is formed by applying and baking a paste ( Japanese Patent Laid-Open No. 5-93659 ) has been proposed.
[0003]
The magnitude of the mechanical quantity is measured as follows. When an external force or load is applied to the mechanical quantity sensor, the resistance element formed on the surface of the substrate is deformed together with the substrate. The applied mechanical quantity is detected by measuring a change in electrical resistance due to a change in the length and cross-sectional area of the resistance element between a pair of electrodes formed connected to the resistance element.
By the way, as one of the markets where the demand for mechanical quantity sensors is great, there is a vehicle suspension used for automobiles and the like. In a vehicle suspension, for example, a mechanical quantity sensor is attached to the surface of a shaft of a shock absorber with an adhesive or the like, and a change in load applied to the vehicle body is detected from a change in electrical resistance of the mechanical quantity sensor.
[0004]
However, a mechanical quantity sensor using a resin film as a substrate can be used in a wide range of environmental temperatures from −50 ° C. to 150 ° C., as in a vehicle suspension, and under severe environmental conditions where the maximum load reaches 2 tons. When used for a period, there is a problem that the adhesive strength is lowered and the mechanical quantity sensor is peeled off from the member.
Further, in a mechanical quantity sensor using a glass plate as a substrate, a resistance element formed by vapor deposition or sputtering has difficulty in adhesion to the substrate. Furthermore, when the glass plate is welded to a curved surface such as a shaft, the adhesiveness is poor, so that strong adhesion is difficult and easy to peel off.
On the other hand, in a mechanical quantity sensor using a metal substrate with a crystallized glass layer formed on the surface as a substrate, each component element is mutually connected between the metal substrate and the crystallized glass layer, and between the crystallized glass layer and the resistance element. Since they are diffused, the adhesion between them is very strong, making it ideal as a sensor for use in harsh environmental conditions. As a resistance element of this type of mechanical quantity sensor, a resistance element formed by applying a resistance paste obtained by adding glass powder and a vehicle to ruthenium oxide, which is a resistance material, and then drying and firing is known. Since the element contains a component other than the resistance material, the sensitivity of the obtained sensor to distortion is low and has not yet been put into practical use. Therefore, development of a resistance paste capable of forming a highly sensitive resistance element has been awaited.
[0005]
[Problems to be solved by the invention]
The present invention is to solve the above problems, and an object thereof is to provide a resistance paste that can be sensitive to strain to obtain a high resistance element.
[0006]
[Means for Solving the Problems]
The resistance paste for a strain sensitive resistor element of the present invention contains a copper-containing composite oxide, a glass frit, an organic vehicle and a diluent, which is applied to the surface of an insulating substrate, dried and fired, A sensitive strain sensitive resistor element can be obtained.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The resistance paste for a strain sensitive resistance element of the present invention contains a copper-containing composite oxide, a glass frit, an organic vehicle and a diluent.
Furthermore, the copper-containing composite oxide is preferably a composite oxide containing Bi, Sr and Ca.
Further, the copper-containing composite oxide is Bi: Pb: Sr: Ca: Cu = 2-x: x: 2: 2: 3 (0 ≦ x ≦ 2) in a molar ratio of Bi, Pb, Sr, Ca and Cu. It is preferable to contain in the ratio.
[0008]
The mechanical quantity sensor manufactured using the resistance paste for strain sensitive resistance element of the present invention includes an insulating substrate, a strain sensitive resistance element formed on the surface of the insulating substrate, and a change in electric resistance of the strain sensitive resistance element. The strain-sensitive resistance element includes a copper-containing composite oxide and glass. A highly sensitive mechanical quantity sensor can be obtained by firing a mixture of copper-containing composite oxide powder and glass frit to form a resistance element. In particular, when the above-mentioned resistance paste for strain sensitive resistance elements is used, the organic vehicle and diluent in the paste are scattered during drying and firing, and an excellent mechanical quantity sensor can be obtained.
Moreover, it is preferable that an insulating substrate consists of a metal base material which coat | covered the layer which consists of crystallized glass on the surface.
Furthermore, crystallized glass, SiO 2: seven to thirty-three wt%, B 2 O 3: 5~31 wt%, MgO: 16 to 50 wt%, CaO: 0 to 20 wt%, BaO: 0 to 50 wt% La 2 O 3 : 0 to 40% by weight, P 2 O 5 : 0 to 5% by weight and MO 2 : 0 to 5% by weight (wherein M is at least one element of Zr, Ti and Sn) It is preferable.
[0009]
The insulating substrate used for the mechanical quantity sensor manufactured using the resistance paste for strain sensitive resistance elements of the present invention will be described.
(A) Metal base material As the metal base material, various alloy materials such as horo steel, stainless steel, silicon steel, nickel-chromium-iron, nickel-iron, kovar, invar, and cladding materials thereof are selected. Stainless steel SUS430 is most preferable from the viewpoint of adhesion to the insulating layer.
Once the material of the metal substrate is determined, it is processed into a desired shape by normal machining, etching, laser processing, or the like. As the shape, a cylindrical shape, a plate shape (including a foil shape), or the like is selected depending on the magnitude and application of the load.
For the purpose of improving the adhesion of the insulating layer, these metal substrates are subjected to surface defatting and then subjected to sand blasting treatment, various plating treatments such as nickel and cobalt, or thermal oxidation treatment for forming an oxide coating layer. Is done.
[0010]
(B) Insulating layer The insulating layer formed on the metal base material is preferably made of crystallized glass. In particular, from the viewpoint of insulation and heat resistance, non-alkali crystallized glass (for example, MgO-based by firing). It is preferable that the crystal phase is precipitated.
Examples of the method of coating the crystallized glass layer on the metal substrate include a printing method, a spray method, a powder electrostatic coating method, and an electrophoretic electrodeposition method. The electrophoretic electrodeposition method is most preferable from the viewpoints of the denseness of the coating, electrical insulation, and the like.
[0011]
The electrophoresis electrodeposition method is performed, for example, as follows.
Alcohol and a small amount of water are added to the glass, and the mixture is pulverized and mixed in a ball mill for about 20 hours, so that the glass has an average particle size of about 1 to 5 μm and is slurried. The obtained slurry is put into an electrolytic cell and the liquid is circulated. A metal base material is immersed in this slurry, and a voltage of 100 to 400 V is applied between the metal base material as a negative electrode and a counter electrode to coat glass particles on the surface of the metal base material. This is dried and then fired at 850 to 900 ° C. for 10 minutes to 1 hour to melt the glass fine particles and form a crystallized glass layer. At this time, the glass melts, and the glass component and the metal material component sufficiently interdiffuse, so that the crystallized glass layer and the metal substrate can be firmly adhered to each other.
During firing, by gradually raising the temperature from room temperature to the above temperature, an infinite number of fine acicular crystals are precipitated, and the anchor effect improves the mechanical strength of the glass layer itself and the adhesion to the resistance element. Can be made.
[0012]
【Example】
Next, specific examples of the present invention will be described in detail.
First, the following examination was performed about the composition of this crystallized glass.
In accordance with the above-described insulating layer forming step, No. 1 shown in Tables 1 to 7 were formed on the surface of a metal base made of stainless steel (SUS430) having a length of 100 mm, a width of 100 mm, and a thickness of 0.5 mm. Crystallized glass having a composition of 1 to 42 was electrodeposited by the above-described electrophoresis method and baked at 880 ° C. for 10 minutes to form a crystallized glass layer having a thickness of 100 μm. Various characteristics such as surface properties such as surface roughness and waviness and heat resistance of the obtained samples were examined.
[0013]
The surface roughness is expressed by Talysurf surface roughness meter to measure the surface average roughness Ra, waviness resistance was expressed by the difference R max of peaks and valleys of the undulation obtained at this time.
For heat resistance, the sample is placed in an electric furnace at 850 ° C. for 10 minutes, removed from the furnace, and then subjected to a spalling test in which the sample is naturally cooled at room temperature for 30 minutes. Examined. The crack was determined by immersing the sample in red ink, wiping off the ink on the sample surface, and visually observing whether the red ink remained on the surface of the sample. ○, Δ and × in the table indicate that no abnormality is observed even if ○ is performed for 10 cycles or more, Δ indicates that an abnormality has occurred in 5 to 9 cycles, and × indicates that an abnormality has occurred in 4 cycles or less. Indicates.
Adhesiveness is determined by conducting a bending test on an insulating substrate, where the crystallized glass layer is peeled off and the metal part is exposed x, when the metal part is only partially exposed Δ, when the metal part is not exposed Was marked as ○.
Comprehensive evaluation was performed based on the above evaluation, and the result was shown by (circle), (triangle | delta), x.
[0014]
No. shown in Table 1. 1 to 8 are obtained by changing the ratio of SiO 2 and B 2 O 3 while keeping other components constant.
[0015]
[Table 1]
Figure 0003720129
[0016]
As is apparent from these figures, when SiO 2 is increased, the heat resistance is improved, but the surface properties and adhesion are deteriorated. On the contrary, when the amount of B 2 O 3 is increased, surface properties and adhesion are improved, but heat resistance is lowered.
Considering these, it is preferable that the composition ratio of SiO 2 is 7 to 33% by weight and the composition ratio of B 2 O 3 is 5 to 31% by weight.
[0017]
No. shown in Table 2 In Nos. 9 to 15, SiO 2 / B 2 O 3 is made substantially constant and the amount of MgO is changed.
[0018]
[Table 2]
Figure 0003720129
[0019]
If the added amount of MgO exceeds 50% by weight, crystals are likely to precipitate and crystallize easily when the glass is melted. Therefore, it is difficult to obtain a homogeneous glass, and the surface roughness is increased. The amount of MgO correlates with crystallinity, and if it is less than 16% by weight, crystal precipitation is insufficient and heat resistance is poor. Therefore, the composition ratio of MgO is preferably in the range of 16 to 50% by weight.
[0020]
No. shown in Table 3 Nos. 16 to 19 are obtained by making SiO 2 / B 2 O 3 substantially constant and changing the amount of CaO. No. shown in Table 4 Similarly, 20 to 24 are obtained by changing the BaO amount. In addition, as shown in Table 5, No. Similarly, 25 to 29 are obtained by changing the amount of La 2 O 3 .
[0021]
[Table 3]
Figure 0003720129
[0022]
[Table 4]
Figure 0003720129
[0023]
[Table 5]
Figure 0003720129
[0024]
When the amount of CaO added exceeds 20% by weight, the surface property is deteriorated, which is not preferable. Therefore, the addition amount of CaO is preferably 0 to 20%.
When the addition amount of BaO exceeds 50% by weight, the heat resistance and adhesion are deteriorated, which is not preferable. Therefore, the addition amount of BaO is preferably 0 to 50%.
When the addition amount of La 2 O 3 exceeds 40% by weight, the heat resistance is deteriorated, which is not preferable. Therefore, the addition amount of La 2 O 3 is preferably 0 to 40%.
[0025]
No. shown in Tables 6-8. 30 to 44 are obtained by changing the amount of ZrO 2 , TiO 2 , SnO 2 , P 2 O 5 and ZnO added.
ZrO 2 , TiO 2 , SnO 2 , P 2 O 5 and ZnO can be added up to 5% by weight.
[0026]
[Table 6]
Figure 0003720129
[0027]
[Table 7]
Figure 0003720129
[0028]
[Table 8]
Figure 0003720129
[0029]
Example 1
Based on the manufacturing method described above, a mechanical quantity sensor was manufactured as follows.
A 1.2-mm-thick metal substrate processed into a predetermined pattern was subjected to degreasing, water washing, pickling, water washing, nickel plating, and water washing as pretreatments. Next, this is changed to the above-mentioned No. The surface of the metal substrate 1 was coated with the glass particles by immersing in a slurry containing glass particles having the composition shown in 7 and applying a constant voltage between the counter electrode and the metal substrate. The metal substrate 1 is heated from room temperature to 880 ° C. over 2 hours, and further subjected to a baking treatment for 10 minutes at this temperature. A crystallized glass layer having a thickness of 100 μm is formed on the surface of the metal substrate 1 as an insulating layer. 2 was formed to obtain an insulating substrate. Next, the electrode 3 was formed by screen-printing Ag—Pd-based conductive paste in a predetermined pattern on the surface of the crystallized glass layer 2 and firing at 850 ° C. for 10 minutes.
[0030]
Next, Bi 2 O 3 , SrO, CaO and CuO were weighed so that the molar ratio was 1: 2: 2: 3, and these were sufficiently mixed in a mortar. The mixed powder was subjected to a solid phase reaction by heat treatment at 1000 ° C. for 24 hours to synthesize a copper-containing composite oxide. The obtained copper-containing composite oxide was pulverized to an average particle size of 0.3 μm.
In addition, Pb 3 O 4 , SiO 2 , H 3 BO 3 and Al (OH) 3 were weighed in predetermined amounts and sufficiently mixed in a mortar. This mixed powder is heated and melted at 1300 ° C. and poured onto a plate to synthesize a glass containing PbO, SiO 2 , B 2 O 3 and Al 2 O 3 in a molar ratio of 52: 25: 10: 1. did. This glass was pulverized to an average particle size of 1 μm.
The obtained copper-containing composite oxide and glass are weighed and mixed so that the weight ratio is 1: 1, and an appropriate amount of organic vehicle and diluent is added thereto and mixed in a mortar. Resistive paste was prepared by mixing. The paste was screen-printed on an insulating substrate on which the electrode 3 had been formed in advance, and then baked at 830 ° C. in air to form the resistance element 4 to obtain the mechanical quantity sensor for a washing machine shown in FIG.
[0031]
Example 2
Bi 2 O 3 , PbO, SrO, CaO and CuO were weighed in a molar ratio of 0.9: 0.2: 2: 2: 3 and mixed well in a mortar. Next, this was heat treated at 1000 ° C. for 24 hours to cause a solid phase reaction, thereby synthesizing a copper-containing composite oxide. The obtained copper-containing composite oxide was pulverized to an average particle size of 0.3 μm. The copper-containing composite oxide and the same glass as used in Example 1 were weighed and mixed so that the weight ratio was 1: 1, and an organic vehicle and a diluent were added in an appropriate amount and mixed in a mortar. Thereafter, a resistance paste was prepared by thoroughly mixing with three rolls. Using this resistance paste, a mechanical quantity sensor was fabricated in the same manner as in Example 1.
[0032]
<< Comparative Example 1 >>
A glass similar to that used in Example 1 and ruthenium oxide (RuO 2 ) having an average particle diameter of 0.3 μm are weighed and mixed at a weight ratio of 1: 1, and an organic vehicle and a diluent are added thereto. After adding an appropriate amount and mixing in a mortar, a resistance paste was prepared by thoroughly mixing with three rolls.
This paste was printed on an insulating substrate on which electrodes had been formed in the same manner as in the example and baked to form a resistance element, thereby obtaining a mechanical quantity sensor.
[0033]
The mechanical quantity sensor 10 obtained as described above was attached to a washing machine as shown in FIG. The outer tub 6 accommodated inside the outer frame 9 is suspended by a plurality of support bars 7. As shown in FIG. 3, the mechanical quantity sensor 10 is connected and arranged between the support bar 7 and the support fixing member 8, and when clothes or the like is put into the dehydration tank 5, the tension applied to the support bar 7 increases. Then, the mechanical quantity sensor 10 is deformed. This mechanical quantity sensor 10 detects the amount of cloth thrown in due to a change in electrical resistance of the resistance element 4 due to deformation.
The electrical resistance of the sensor with respect to the amount of cloth put into the dewatering tank 5 was measured.
FIG. 4 shows the relationship between the amount of cloth input and the electrical resistance of the mechanical quantity sensor. As described above, by using the resistance paste of the example, it is possible to obtain a resistance element and a mechanical quantity sensor having higher sensitivity to distortion as compared with the case of using the resistance paste of the comparative example.
[0034]
In addition, even when PbO, SrO, CaO and CuO are mixed so that the molar ratio is 2: 2: 2: 3, and a copper-containing composite oxide synthesized in the same manner as in the above example is used, the sensitivity is also improved. A high mechanical quantity sensor was obtained.
In addition, Bi 2-x Pb x Sr 2 Ca 2 Cu 3 O y exhibiting metal conductivity has been described as an example of the copper-containing composite oxide used for the resistance element. The same effect can be obtained when a copper-containing composite oxide is used for the resistance element.
In this embodiment, the weight sensor used in the washing machine is described as an example of the mechanical quantity sensor. However, the present invention can be applied to various products such as an acceleration sensor, a pressure sensor, and a pointing device sensor for personal computers. Needless to say.
[0035]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the resistance paste which can obtain the highly sensitive strain sensitive resistive element and mechanical quantity sensor which show a high rate of resistance change can be provided.
[Brief description of the drawings]
1A and 1B are diagrams illustrating a mechanical quantity sensor manufactured in an example of the present invention, in which FIG. 1A is a perspective view and FIG. 1B is a longitudinal sectional view.
FIG. 2 is a longitudinal sectional view of a main part of a washing machine to which the mechanical quantity sensor is attached.
FIG. 3 is a vertical cross-sectional view of an attachment location of the mechanical quantity sensor.
FIG. 4 is a characteristic diagram showing an electrical resistance value with respect to the amount of cloth thrown into the washing machine of the mechanical quantity sensor.

Claims (3)

銅含有複合酸化物、ガラスフリット、有機ビヒクルおよび希釈剤を含む感歪み抵抗素子用抵抗ペースト。A resistance paste for a strain sensitive resistance element , comprising a copper-containing composite oxide, a glass frit, an organic vehicle and a diluent. 前記銅含有複合酸化物が、Bi、SrおよびCaを含む複合酸化物である請求項1記載の感歪み抵抗素子用抵抗ペースト。The resistance paste for a strain sensitive resistor element according to claim 1, wherein the copper-containing composite oxide is a composite oxide containing Bi, Sr, and Ca. 前記銅含有複合酸化物が、Bi、Pb、Sr、CaおよびCuをモル比でBi:Pb:Sr:Ca:Cu=2−x:x:2:2:3(0≦x≦2)の割合で含む請求項1記載の感歪み抵抗素子用抵抗ペースト。The copper-containing composite oxide is Bi: Pb: Sr: Ca: Cu = 2-x: x: 2: 2: 3 (0 ≦ x ≦ 2) in a molar ratio of Bi, Pb, Sr, Ca and Cu. The resistance paste for strain sensitive resistance elements according to claim 1, which is contained in a proportion.
JP20052196A 1996-07-30 1996-07-30 Resistive paste for strain sensitive resistor elements Expired - Fee Related JP3720129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20052196A JP3720129B2 (en) 1996-07-30 1996-07-30 Resistive paste for strain sensitive resistor elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20052196A JP3720129B2 (en) 1996-07-30 1996-07-30 Resistive paste for strain sensitive resistor elements

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005113681A Division JP3867990B2 (en) 2005-04-11 2005-04-11 Mechanical quantity sensor

Publications (2)

Publication Number Publication Date
JPH1038733A JPH1038733A (en) 1998-02-13
JP3720129B2 true JP3720129B2 (en) 2005-11-24

Family

ID=16425702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20052196A Expired - Fee Related JP3720129B2 (en) 1996-07-30 1996-07-30 Resistive paste for strain sensitive resistor elements

Country Status (1)

Country Link
JP (1) JP3720129B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241274A (en) * 1999-02-23 2000-09-08 Matsushita Electric Works Ltd Semiconductor pressure sensor, manufacture thereof and parts thereof
JP3958280B2 (en) 2003-02-28 2007-08-15 新日鐵住金ステンレス株式会社 High Al content ferritic stainless steel sheet for weight detection sensor substrate, manufacturing method thereof, and weight detection sensor
DE102005004603B3 (en) * 2005-02-01 2006-06-08 Siemens Ag Pressure sensor for use in automobile field, has membrane like support and dielectric layer arranged between support and thick film resistances, and between thick film conducting paths and support
JP2007303914A (en) * 2006-05-10 2007-11-22 Matsushita Electric Ind Co Ltd Load sensor

Also Published As

Publication number Publication date
JPH1038733A (en) 1998-02-13

Similar Documents

Publication Publication Date Title
EP0561397B1 (en) A pressure sensor
EP0327106B1 (en) Glass ceramic for coating metal substrate
US5242722A (en) Strain sensor
JP3810507B2 (en) Strain sensitive resistor paste
JP3720129B2 (en) Resistive paste for strain sensitive resistor elements
JPH08304200A (en) Distortion-sensing resistor paste and sensor for dynamical amount
JPH0593659A (en) Distortion sensor and its manufacture
JP3867990B2 (en) Mechanical quantity sensor
JPH0696847A (en) Surface heating unit and manufacture thereof
JPH07307210A (en) Manufacture of metal resistor and dynamic quantity sensor
JPH07140022A (en) Paste for resistor element, resistor element and dynamic quantity sensor
JPH098325A (en) Production of electric insulation substrate and physical quantity sensor employing it
JP3636534B2 (en) Mechanical quantity sensor and manufacturing method thereof
JP3030947B2 (en) Oil level sensor
JP3487675B2 (en) Manufacturing method of mechanical quantity sensor
JPH06137805A (en) Strain gauge and its manufacture
JPH06137806A (en) Strain sensor
JP2979757B2 (en) Load detecting device and vehicle suspension using the load detecting device
JPH0658706A (en) Strain sensor
JPH06294692A (en) Resistor paste and pressure sensor employing the same
JPH06137979A (en) Pressure sensor and pressure detector using it
JPH06294693A (en) Resistor and pressure sensor employing the same
JPH07318441A (en) Strain sensor for measuring instrument and load cell type measuring instrument using this
JPH01239038A (en) Glass ceramic for coating metallic substrate
JPH0572017A (en) Level sensor and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees