JP3487675B2 - Manufacturing method of mechanical quantity sensor - Google Patents

Manufacturing method of mechanical quantity sensor

Info

Publication number
JP3487675B2
JP3487675B2 JP15074295A JP15074295A JP3487675B2 JP 3487675 B2 JP3487675 B2 JP 3487675B2 JP 15074295 A JP15074295 A JP 15074295A JP 15074295 A JP15074295 A JP 15074295A JP 3487675 B2 JP3487675 B2 JP 3487675B2
Authority
JP
Japan
Prior art keywords
electrode
firing
weight
paste
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15074295A
Other languages
Japanese (ja)
Other versions
JPH098324A (en
Inventor
晴彦 半田
堀  喜博
真也 長谷川
正樹 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP15074295A priority Critical patent/JP3487675B2/en
Publication of JPH098324A publication Critical patent/JPH098324A/en
Application granted granted Critical
Publication of JP3487675B2 publication Critical patent/JP3487675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧力、荷重、加速等の
応力を検知する力学量センサの製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a mechanical quantity sensor for detecting stress such as pressure, load and acceleration.

【0002】[0002]

【従来の技術】従来、厚膜抵抗タイプの力学量センサ
は、図3に示すように、金属基材4およびその表面に被
覆した結晶化ガラス5からなる絶縁絶縁基板6上に導電
ペーストを塗布、乾燥した後、高温で焼成することによ
り一対の電極2を形成し、次いで、電極2間に、それら
を接続するように抵抗ペーストを塗布、乾燥した後、高
温で焼成して感歪み抵抗体1を形成することにより作製
されている。
2. Description of the Related Art Conventionally, in a thick film resistance type mechanical quantity sensor, as shown in FIG. 3, a conductive paste is applied on an insulating insulating substrate 6 made of a metal base material 4 and a crystallized glass 5 covering the surface thereof. After drying, a pair of electrodes 2 is formed by firing at high temperature, and then a resistance paste is applied between the electrodes 2 so as to connect them, dried, and then fired at high temperature to obtain a strain-sensitive resistor. It is produced by forming 1.

【0003】[0003]

【発明が解決しようとする課題】力学量センサは、その
電極と外部回路を接続するためにリード部に半田づけを
行う必要があるため、導電ペーストとしてAg−Pd系
やAg−Pt系などの銀を含んだペーストが使用されて
いる。このように、銀を含む導電ペーストを使用する場
合、抵抗体を焼成により形成する際に、熱によって銀が
抵抗体中に溶出し、酸化することによって、電流ノイズ
特性や抵抗体の抵抗値バラツキが大きくなるという課題
があった。
In the mechanical quantity sensor, since it is necessary to solder the lead portion in order to connect the electrode to the external circuit, the conductive paste such as Ag-Pd system or Ag-Pt system is used. A paste containing silver is used. As described above, when a conductive paste containing silver is used, when the resistor is formed by firing, heat elutes silver in the resistor and oxidizes it, resulting in current noise characteristics and resistance value variation of the resistor. The problem was that

【0004】[0004]

【課題を解決するための手段】本発明の力学量センサの
製造方法は、金属弾性体を結晶化ガラスで被覆した絶縁
基板上に、導電ペーストを塗布、乾燥し、焼成すること
により電極を形成する第1の工程、前記電極と接触しな
い位置に抵抗ペーストを塗布、乾燥し、前記導電ペース
トの焼成温度より低い温度で焼成することにより感歪み
抵抗体を形成する第2の工程、および、前記電極と前記
感歪み抵抗体の間に導電ペーストを塗布、乾燥し、前記
抵抗ペーストの焼成温度より低い温度で焼成して前記電
極と前記感歪み抵抗体を電気的に接続する接続体を形成
する第3の工程を含むことを特徴とする。また、金属弾
性体を結晶化ガラスで被覆した絶縁基板上に、電極用導
電ペーストと、抵抗ペーストのいずれか一方を塗布、乾
燥した後、前記ペーストで塗布したパターンと接触しな
い位置に他方のペーストを塗布、乾燥して、焼成するこ
とにより前記電極および前記感歪み抵抗体を同時に形成
する第1の工程と、前記電極と感歪み抵抗体の間に導電
ペーストを塗布、乾燥し、前記焼成温度より低い温度で
焼成して前記電極と前記感歪み抵抗体を電気的に接続す
る接続体を形成する第2の工程を含むことを特徴とす
る。さらに、前記接続体形成用の導電ペーストが金を含
むことを特徴とする。また、前記結晶化ガラスが、Si
2:7〜33重量%、B23:5〜31重量%、Mg
O:16〜50重量%、CaO:0〜20重量%、Ba
O:0〜50重量%、La23:0〜40重量%、MO
2(MはZr、TiおよびSnからなる群より選択され
る少なくとも1種):0〜5重量%、およびP25:0
〜5重量%からなるからなることを特徴とする。
According to the method of manufacturing a mechanical quantity sensor of the present invention, an electrode is formed by applying a conductive paste on an insulating substrate having a metal elastic body coated with crystallized glass, drying and firing. A second step of forming a strain-sensitive resistor by applying a resistance paste to a position that does not come into contact with the electrode, drying it, and baking it at a temperature lower than the baking temperature of the conductive paste; and A conductive paste is applied between the electrode and the strain-sensitive resistor, dried, and fired at a temperature lower than the firing temperature of the resistance paste to form a connection body that electrically connects the electrode and the strain-sensitive resistor. It is characterized by including a third step. Further, on the insulating substrate coated with the crystallized glass metal elastic body, one of the conductive paste for electrodes and the resistance paste, after drying, the other paste at a position that does not contact the pattern coated with the paste A first step of simultaneously forming the electrode and the strain-sensitive resistor by applying, drying and firing, and applying and drying a conductive paste between the electrode and the strain-sensitive resistor at the firing temperature. The method is characterized by including a second step of firing at a lower temperature to form a connection body that electrically connects the electrode and the strain sensitive resistor. Further, the conductive paste for forming the connection body contains gold. Further, the crystallized glass is Si
O 2 : 7 to 33% by weight, B 2 O 3 : 5 to 31% by weight, Mg
O: 16 to 50% by weight, CaO: 0 to 20% by weight, Ba
O: 0 to 50% by weight, La 2 O 3 : 0 to 40% by weight, MO
2 (M is at least one selected from the group consisting of Zr, Ti and Sn): 0 to 5% by weight, and P 2 O 5 : 0
.About.5% by weight.

【0005】[0005]

【作用】本発明の方法においては、感歪み抵抗体を形成
した後に、感歪み抵抗体と接する接続体を形成するた
め、感歪み抵抗体への銀の溶出を抑制することができ
る。さらに、感歪み抵抗体用ペーストより低い温度で焼
成するため、感歪み抵抗体への銀の拡散が少なくなり、
センサ回路の電流ノイズが小さくなるとともに感歪み抵
抗体の特性バラツキが小さくなる。また、電極と抵抗体
を接続する接続体に金系の導電ペーストを用いることに
より、抵抗体への銀の拡散が少なくなり、センサ回路の
電流ノイズや抵抗体の特性のバラツキが小さくなる。
In the method of the present invention, after the strain sensitive resistor is formed, the connection body which is in contact with the strain sensitive resistor is formed, so that the elution of silver to the strain sensitive resistor can be suppressed. Furthermore, since it is fired at a lower temperature than the strain-sensitive resistor paste, the diffusion of silver into the strain-sensitive resistor is reduced,
The current noise of the sensor circuit is reduced and the characteristic variation of the strain sensitive resistor is reduced. Further, by using the gold-based conductive paste for the connecting body connecting the electrode and the resistor, the diffusion of silver into the resistor is reduced, and the current noise of the sensor circuit and the variation in the characteristic of the resistor are reduced.

【0006】[0006]

【実施例】以下、本発明の力学量センサの製造方法につ
いて具体的に説明する。 (1)絶縁基板 (a)基材 本発明に使用される金属基材は、ほうろう用鋼、ステン
レス鋼、珪素鋼、ニッケル−クロム−鉄、ニッケル−
鉄、コバール、インバなどの各種合金材やそれらのクラ
ッド材などが好ましい。特に、絶縁層との密着性の観点
からステンレス鋼SUS430が最も好ましい。基材
は、その材質が決定されれば、負荷荷重の大きさや用途
に応じて、機械加工、エッチング加工、レーザ加工等に
より、円筒形や板状(箔状も含む)等の形状に加工され
る。形状加工の後、絶縁層との密着性を向上させる目的
で、基材は表面脱脂される。さらに、脱脂された表面
に、必要に応じてサンドブラスト処理、ニッケルやコバ
ルトなどの各種メッキ処理、もしくは酸化被覆層を形成
する熱酸化処理などを施す。
EXAMPLES The method of manufacturing the mechanical quantity sensor of the present invention will be specifically described below. (1) Insulating Substrate (a) Base Material The metal base material used in the present invention is enamel steel, stainless steel, silicon steel, nickel-chromium-iron, nickel-.
Various alloy materials such as iron, kovar, invar, and clad materials thereof are preferable. In particular, stainless steel SUS430 is most preferable from the viewpoint of adhesion with the insulating layer. Once the material is determined, the base material is processed into a cylindrical shape, plate shape (including foil shape), etc. by machining, etching, laser processing, etc., depending on the size of the load and the application. It After shaping, the surface of the substrate is degreased for the purpose of improving the adhesion to the insulating layer. Further, if necessary, the degreased surface is subjected to sandblasting, various kinds of plating such as nickel and cobalt, or thermal oxidation for forming an oxide coating layer.

【0007】(b)絶縁層 金属基材上に形成される絶縁層は、結晶化ガラスからな
る層が選択される。結晶化ガラス層は、電気絶縁性、耐
熱性、基板強度の観点から、無アルカリ結晶化ガラス
(焼成によって、たとえば、MgO系の結晶相を析出す
るガラス)からなることが好ましい。
(B) Insulating Layer As the insulating layer formed on the metal base material, a layer made of crystallized glass is selected. The crystallized glass layer is preferably made of alkali-free crystallized glass (eg, glass that precipitates a MgO-based crystal phase by firing) from the viewpoints of electrical insulation, heat resistance, and substrate strength.

【0008】結晶化ガラスを基材上に被覆する方法とし
て、スプレー法、粉末静電塗装法、電気泳動電着法等が
好ましいが、基材が金属の場合、被覆の緻密性や電気絶
縁性等の観点から、電気泳動電着法が最も好ましい。こ
の電気泳動電着法は、まず、ガラスとアルコールおよび
少量の水を入れてボールミル中で約20時間粉砕、混合
し、ガラスの平均粒径を1〜5μm程度にする。得られ
たスラリーを電解槽に入れて、循環させる。上記のよう
に準備された金属基材を、このスラリー中に浸漬し、1
00〜400Vで陰分極させることにより、金属基材表
面にガラス粒子を付着させる。これを乾燥後、850〜
900℃で10分〜1時間焼成することによって、結晶
化ガラス層が得られる。この焼成によって、ガラスの微
粒子が溶融すると共に、ガラスの成分と金属基材の成分
が、充分に相互拡散するため結晶化ガラス層と金属基材
との強固な密着が得られる。
As a method for coating the substrate with the crystallized glass, a spray method, a powder electrostatic coating method, an electrophoretic electrodeposition method and the like are preferable. However, when the substrate is a metal, the denseness of the coating and the electrical insulation property are obtained. From the viewpoints of the above, the electrophoretic electrodeposition method is most preferable. In this electrophoretic electrodeposition method, first, glass, alcohol and a small amount of water are put and crushed and mixed in a ball mill for about 20 hours to make the average particle diameter of the glass about 1 to 5 μm. The obtained slurry is put in an electrolytic cell and circulated. The metal substrate prepared as described above is dipped in this slurry to
The glass particles are attached to the surface of the metal base material by performing negative polarization at 00 to 400V. After drying this,
A crystallized glass layer is obtained by firing at 900 ° C. for 10 minutes to 1 hour. By this firing, the glass fine particles are melted, and the glass component and the metal substrate component are sufficiently interdiffused, so that a strong adhesion between the crystallized glass layer and the metal substrate can be obtained.

【0009】この結晶化ガラスの組成について、以下の
検討を行った。金属基材にSUS430(100mm×
100mm×0.5mm)を用い、上述の方法で、基材
の表面に、表1〜8に示す組成番号1〜44のガラス粒
子を電気泳動電着させた後、880℃で10分間焼成す
ることにより、基材表面に厚さ100μmの結晶化ガラ
ス質層を形成した絶縁基板を得た。これら絶縁基板につ
いて、その表面粗度やうねり性といった表面性、耐熱性
等の諸特性を測定した。なお、表面粗度は、タリサーフ
表面粗さ計で測定し、表面中心線平均粗さRaとした。
また、うねり性は、その表面のうねりの山と谷の差の最
大値Rmaxとした。耐熱性は、サンプルを850℃の電
気炉中に10分間入れ、次に炉から取り出し30分間自
然放冷するサイクルを繰り返すスポーリングテストを行
って、サンプルのクラックや剥離の状態を調べた。な
お、クラックの有無は、サンプルを赤インク中に浸漬し
た後、サンプル表面のインクを拭き取り、目視観察によ
って、サンプルの表面に赤インクが残存するか否かによ
り判定した。表中の○、△、×はそれぞれ、○が10サ
イクル以上スポーリングテストを行っても異常が認めら
れないもの、△は5〜9サイクルで異常が発生したも
の、×は4サイクル以下で異常が発生したものを示す。
密着性は、絶縁基板の曲げ試験を行い、結晶化ガラス層
が剥離して金属部が露出したものを×、金属部が一部だ
け露出したものを△、金属部が露出しなかったものを○
とした。以上の評価に基づき総合評価を行い、その結果
を○、△、×で示した。
The following studies were conducted on the composition of this crystallized glass. SUS430 (100 mm x
100 mm × 0.5 mm), the glass particles having the composition numbers 1 to 44 shown in Tables 1 to 8 are electrophoretically electrodeposited on the surface of the substrate by the method described above, and then baked at 880 ° C. for 10 minutes. As a result, an insulating substrate having a 100 μm thick crystallized glassy layer formed on the surface of the base material was obtained. For these insulating substrates, various properties such as surface roughness such as surface roughness and waviness and heat resistance were measured. The surface roughness is measured with a Talysurf surface roughness meter, and a surface center line average roughness R a.
The waviness was defined as the maximum value R max of the difference between the ridge and the valley of the undulation on the surface. Regarding the heat resistance, the sample was placed in an electric furnace at 850 ° C. for 10 minutes, then taken out of the furnace and spontaneously cooled for 30 minutes. A spalling test was repeated, and the state of cracking and peeling of the sample was examined. The presence or absence of cracks was determined by immersing the sample in the red ink, wiping off the ink on the surface of the sample, and visually observing whether or not the red ink remained on the surface of the sample. In the table, ○, △, and × are the ones in which ○ is no abnormality after a spalling test for 10 cycles or more, Δ is the abnormality in 5 to 9 cycles, and × is the abnormality in 4 cycles or less. Indicates what has occurred.
Adhesion was measured by conducting a bending test on an insulating substrate, and x when the crystallized glass layer was peeled off to expose the metal part, Δ when the metal part was partially exposed, and when the metal part was not exposed. ○
And A comprehensive evaluation was performed based on the above evaluations, and the results are shown by ◯, Δ, and ×.

【0010】表1に示すNo.1〜8は他の成分を一定
として、SiO2とB23を変化させたものである。
No. 1 shown in Table 1 Nos. 1 to 8 are obtained by changing SiO 2 and B 2 O 3 while keeping other components constant.

【0011】[0011]

【表1】 [Table 1]

【0012】これらから明らかなように、SiO2を増
加していくと、耐熱性は向上するが、表面性、および密
着性が悪くなる。逆に、B23量を増加していくと、表
面性、密着性は向上するが耐熱性が低下する。これらを
考慮すると、SiO2の組成比は7〜33重量%、B2
3の組成比は5〜31重量%であることが好ましい。
As is clear from these, as the content of SiO 2 is increased, the heat resistance is improved, but the surface property and the adhesion are deteriorated. On the contrary, when the amount of B 2 O 3 is increased, the surface property and the adhesion are improved, but the heat resistance is decreased. Taking these into consideration, the composition ratio of SiO 2 is 7 to 33% by weight, B 2 O
The composition ratio of 3 is preferably 5 to 31% by weight.

【0013】表2に示すNo.9〜15は、SiO2
23をほぼ一定にし、MgO量を変化させたものであ
る。
No. 1 shown in Table 2 9 to 15 are SiO 2 /
B 2 O 3 was made almost constant and the amount of MgO was changed.

【0014】[0014]

【表2】 [Table 2]

【0015】MgOの添加量が50重量%を超えると、
結晶が析出しやすく、ガラス溶融時に簡単に結晶化す
る。そのため、均質なガラスを得ることが難しく、さら
に表面粗度が大きくなる。MgO量は結晶性と相関があ
り、16重量%未満では結晶析出が不十分で、耐熱性に
劣る。そのため、MgOの組成比は16〜50重量%の
範囲内であることが好ましい。
If the amount of MgO added exceeds 50% by weight,
Crystals tend to precipitate and easily crystallize when the glass melts. Therefore, it is difficult to obtain a homogeneous glass, and the surface roughness becomes large. The amount of MgO has a correlation with crystallinity, and if it is less than 16% by weight, crystal precipitation is insufficient and heat resistance is poor. Therefore, the composition ratio of MgO is preferably in the range of 16 to 50% by weight.

【0016】表3に示すNo.16〜19は、SiO2
/B23をほぼ一定にし、CaO量を変化させたもので
ある。表4に示すNo.20〜24は、同じく、BaO
量を変化させたものである。また、表5に示すNo.2
5〜29は、同じく、La23量を変化させたものであ
る。
No. 1 shown in Table 3 16 to 19 are SiO 2
/ B 2 O 3 is kept substantially constant, and the amount of CaO is changed. No. shown in Table 4 20-24 are also BaO
The amount is changed. In addition, No. Two
Similarly, in Nos. 5 to 29, the amount of La 2 O 3 was changed.

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【表4】 [Table 4]

【0019】[0019]

【表5】 [Table 5]

【0020】CaOの添加量が、20重量%を超える
と、表面性が悪くなり好ましくない。そのため、CaO
の添加量は、0〜20%が好ましい。BaOの添加量
が、50重量%を超えると、耐熱性、および密着性が劣
化し好ましくない。そのため、BaOの添加量は、0〜
50%が好ましい。La23の添加量が、40重量%を
超えると、耐熱性が劣化し好ましくない。そのため、L
23の添加量は、0〜40%が好ましい。
When the amount of CaO added exceeds 20% by weight, the surface properties are deteriorated, which is not preferable. Therefore, CaO
The addition amount of is preferably 0 to 20%. When the added amount of BaO exceeds 50% by weight, heat resistance and adhesion are deteriorated, which is not preferable. Therefore, the addition amount of BaO is 0 to
50% is preferable. When the amount of La 2 O 3 added exceeds 40% by weight, heat resistance deteriorates, which is not preferable. Therefore, L
The addition amount of a 2 O 3 is preferably 0 to 40%.

【0021】表6〜表8に示すNo.30〜44はそれ
ぞれ、ZrO2、TiO2、SnO2、P25、ZnOの
添加量を変化させたものである。
No. 1 shown in Tables 6-8. 30-44 is that each changing the added amount of ZrO 2, TiO 2, SnO 2 , P 2 O 5, ZnO.

【0022】[0022]

【表6】 [Table 6]

【0023】[0023]

【表7】 [Table 7]

【0024】[0024]

【表8】 [Table 8]

【0025】ZrO2、TiO2、SnO2、P25、Z
nOなどは、5重量%までなら添加可能である。
ZrO 2 , TiO 2 , SnO 2 , P 2 O 5 , Z
nO and the like can be added up to 5% by weight.

【0026】次に、本発明の力学量センサの製造方法に
ついて説明する。 [実施例1]図1に示すように、直径40mm、厚さ1
00μmの円板状のステンレス鋼SUS430からなる
金属基材4に脱脂・水洗・酸洗・水洗・ニッケルメッキ
・水洗の各前処理を施した後、表1のNo.7で示した
組成のガラス粒子からなるスラリー中に浸漬して、対極
と基材4間に直流電圧を印加することにより、基材4の
表面にガラス粒子を被覆させた。次いで、常温から88
0℃まで2時間かけて昇温し、さらにこの温度で10分
間保持する焼成を行ない、基材4表面に厚さ70μmの
結晶化ガラスからなる絶縁層5を形成した絶縁基板6を
得た。図2は、本実施例の検討に用いた力学量センサの
パターン図である。このパターンを用いて、感歪み抵抗
体1、一対の湾曲した電極2、および感歪み抵抗体1と
電極2を接続するT字状の接続体3からなる力学量セン
サを、同一の絶縁基板6上に2個形成した。まず、得ら
れた絶縁基板6の表面に、図2の(a)に示すパターン
にAg−Pd系導電ペーストを塗布、乾燥し、これらを
850℃で焼成することにより、一対の電極2を形成し
た。次に、同じく図2の(a)に示すように、この電極
2の間に、電極2と接触しないようにRuO2系抵抗ペ
ーストを塗布、乾燥し、電極2の焼成温度より低い70
0℃で焼成し、抵抗体1を形成した。最後に、図2の
(b)に示すパターンに、金系の導電ペーストを塗布、
乾燥し、抵抗体の焼成温度より低い500℃で焼成し
て、抵抗体1と電極2を電気的に接続する接続体3を形
成することにより、力学量センサを得た。
Next, a method of manufacturing the mechanical quantity sensor of the present invention will be described. [Example 1] As shown in FIG. 1, a diameter of 40 mm and a thickness of 1
No. 1 in Table 1 was obtained after performing pretreatments such as degreasing, washing with water, pickling, washing with water, nickel plating, and washing on the metal base material 4 made of disc-shaped stainless steel SUS430 of 00 μm. The surface of the base material 4 was coated with the glass particles by immersing in a slurry composed of glass particles having the composition shown in 7 and applying a DC voltage between the counter electrode and the base material 4. Then, from room temperature to 88
The temperature was raised to 0 ° C. over 2 hours, and the temperature was maintained for 10 minutes to carry out baking to obtain an insulating substrate 6 having a 70 μm thick insulating layer 5 made of crystallized glass on the surface of the base material 4. FIG. 2 is a pattern diagram of the mechanical quantity sensor used in the examination of the present embodiment. By using this pattern, a mechanical quantity sensor including a strain sensitive resistor 1, a pair of curved electrodes 2, and a T-shaped connecting body 3 connecting the strain sensitive resistor 1 and the electrode 2 is formed on the same insulating substrate 6. Two pieces were formed on the top. First, a pair of electrodes 2 is formed by applying Ag-Pd-based conductive paste in a pattern shown in FIG. 2A on the surface of the obtained insulating substrate 6, drying the paste, and baking the paste at 850 ° C. did. Next, as also shown in FIG. 2A, a RuO 2 -based resistance paste is applied between the electrodes 2 so as not to come into contact with the electrodes 2 and dried.
The resistor 1 was formed by firing at 0 ° C. Finally, apply a gold-based conductive paste to the pattern shown in FIG.
A mechanical sensor was obtained by drying and firing at 500 ° C., which is lower than the firing temperature of the resistor, to form a connector 3 that electrically connects the resistor 1 and the electrode 2.

【0027】[実施例2]実施例1と同様の絶縁基板6
の表面に、実施例1と同様のパターンに電極2用のAg
−Pd系の導電ペーストを塗布、乾燥し、さらに実施例
1と同様のパターンにRuO2系抵抗ペーストを塗布、
乾燥した後、これらを700℃で焼成して、抵抗体1と
電極2を同時に形成した。次に、実施例1と同様のパタ
ーンに金系の導電ペーストを塗布、乾燥し、500℃で
焼成して、接続体3を形成することにより、力学量セン
サを得た。
[Embodiment 2] Insulating substrate 6 similar to that of Embodiment 1
On the surface of, the Ag for the electrode 2 in the same pattern as in Example 1
-Pd-based conductive paste is applied and dried, and then a RuO 2 -based resistance paste is applied in the same pattern as in Example 1,
After drying, these were baked at 700 ° C. to simultaneously form the resistor 1 and the electrode 2. Next, a gold-based conductive paste was applied to the same pattern as in Example 1, dried, and fired at 500 ° C. to form the connector 3 to obtain a mechanical quantity sensor.

【0028】[実施例3]実施例1と同様の絶縁基板6
の表面に、実施例1と同様のパターンにRuO2系抵抗
ペーストを塗布、乾燥し、さらに実施例1と同様のパタ
ーンに電極用のAg−Pd系の導電ペーストを塗布、乾
燥した後、700℃で焼成し、抵抗体1および電極2を
同時に形成した。次に、実施例1と同様のパターンに金
系導電ペーストを塗布、乾燥し、500℃で焼成して、
接続体3を形成することにより、力学量センサを得た。
これを実施例3の力学量センサの製造方法とする。
[Embodiment 3] Insulating substrate 6 similar to that of Embodiment 1
After the RuO 2 -based resistance paste was applied and dried on the surface of Example 1 in the same pattern as in Example 1, and the Ag-Pd-based conductive paste for electrodes was applied and dried in the same pattern as in Example 1, 700 The resistor 1 and the electrode 2 were simultaneously formed by firing at a temperature of ℃. Next, a gold-based conductive paste was applied to the same pattern as in Example 1, dried, and baked at 500 ° C.
By forming the connection body 3, a mechanical quantity sensor was obtained.
This is a manufacturing method of the mechanical quantity sensor of the third embodiment.

【0029】[比較例]実施例1と同様の金属基材4お
よび絶縁層5からなる絶縁基板6の表面に、実施例1に
おける電極2と接続体3を一体化した形状の電極パター
ンにAgーPd系の導電ペーストを塗布、乾燥した後、
800℃で焼成して一対の電極を形成した。次に、電極
間に、実施例1と同様のパターンに抵抗ペーストを塗
布、乾燥し、700℃で焼成し、抵抗体1を形成するこ
とにより、力学量センサを得た。
[Comparative Example] On the surface of an insulating substrate 6 composed of the same metal base material 4 and insulating layer 5 as in Example 1, an electrode pattern having a shape in which the electrode 2 and the connecting body 3 in Example 1 were integrated was Ag. -After applying Pd-based conductive paste and drying,
The pair of electrodes was formed by firing at 800 ° C. Next, a resistance paste was applied between the electrodes in the same pattern as in Example 1, dried, and baked at 700 ° C. to form the resistor 1, thereby obtaining a mechanical quantity sensor.

【0030】これらのセンサについて、(株)アドバン
テスト製デジタルマルチメーターTR6871を用い
て、それぞれ50個、25℃における抵抗値と電流ノイ
ズを測定した。抵抗値についてはそのバラツキを求め
た。なおバラツキは、最大値と最小値の差の1/2とし
た。その結果を表9に示す。
With respect to these sensors, the resistance value and current noise at 25 ° C. were measured for 50 each using a digital multimeter TR6871 manufactured by Advantest Corporation. Regarding the resistance value, the variation was obtained. The variation was ½ of the difference between the maximum value and the minimum value. The results are shown in Table 9.

【0031】[0031]

【表9】 [Table 9]

【0032】表9から明らかなように、実施例1〜3の
センサは、抵抗値バラツキ、ノイズ特性ともに、比較例
より優れた特性を示すことがわかる。これは、抵抗体1
と電極2が、その間に銀を含まない接続体3を介するこ
とにより、直接、接続されないため、焼成中の電極2中
の銀の抵抗体1への溶出が抑制されることによるものと
考えられる。また、抵抗体1を形成した後、抵抗体1を
形成した焼成温度より低い温度で抵抗体1に接続する接
続体3を焼成により形成することにより、接続体3を形
成する焼成時の高温下において、抵抗体1中の組成物の
流動性が低下するため、抵抗体1中の銀の拡散を抑制す
るものと考えられる。
As can be seen from Table 9, the sensors of Examples 1 to 3 have better resistance variation and noise characteristics than the Comparative Example. This is resistor 1
It is considered that this is because the electrode 2 and the electrode 2 are not directly connected to each other by interposing the connector 3 containing no silver therebetween, so that the elution of silver in the electrode 2 during firing to the resistor 1 is suppressed. . Further, after the resistor 1 is formed, the connecting body 3 connected to the resistor 1 is formed by firing at a temperature lower than the firing temperature at which the resistor 1 is formed. In the above, since the fluidity of the composition in the resistor 1 is lowered, it is considered that the diffusion of silver in the resistor 1 is suppressed.

【0033】[実施例4]実施例1と同様の製造方法に
おいて、接続体3形成用の導電ペーストに、電極2形成
用と同様のAg−Pd系のペーストを用いた力学量セン
サを作製した。 [実施例5]実施例2と同様の製造方法において、接続
体3形成用の導電ペーストに、電極2形成用と同様のA
g−Pd系のペーストを用いた力学量センサを作製し
た。 [実施例6]実施例3と同様の製造方法において、接続
体3形成用の導電ペーストに、電極2形成用と同様のA
g−Pd系のペーストを用いた力学量センサを作製し
た。 これらの製造方法により作製した力学量センサについ
て、実施例1〜3と同様にそれぞれ50個、25℃にお
ける抵抗値と電流ノイズを測定した。抵抗値については
そのバラツキを求めた。なおバラツキは、最大値と最小
値の差の1/2とした。これらの結果を表10に示す。
[Embodiment 4] In a manufacturing method similar to that of Embodiment 1, a mechanical quantity sensor using the same Ag-Pd-based paste for forming the electrode 2 as the conductive paste for forming the connecting body 3 was prepared. . [Embodiment 5] In the same manufacturing method as in Embodiment 2, a conductive paste for forming the connecting body 3 was formed with the same A as for forming the electrode 2.
A mechanical sensor using a g-Pd-based paste was manufactured. [Sixth Embodiment] In the same manufacturing method as in the third embodiment, the same A as that for forming the electrode 2 is added to the conductive paste for forming the connection body 3.
A mechanical sensor using a g-Pd-based paste was manufactured. With respect to the mechanical quantity sensors manufactured by these manufacturing methods, 50 resistance values and current noises at 25 ° C. were measured in the same manner as in Examples 1 to 3. Regarding the resistance value, the variation was obtained. The variation was ½ of the difference between the maximum value and the minimum value. The results are shown in Table 10.

【0034】[0034]

【表10】 [Table 10]

【0035】これによると、接続体3形成用に金系の導
電ペーストを用いた実施例1〜3と比べて、その効果は
若干小さいものの、比較例と比べると抵抗値、電流ノイ
ズともに大きく改善されたことが分かる。この結果によ
ると、感歪み抵抗体1を焼成により形成した後、その焼
成温度より低い温度で焼成して感歪み抵抗体1に接続す
る接続体3を形成することによる効果が確認される。
According to this, although the effect is slightly smaller than those of Examples 1 to 3 using the gold-based conductive paste for forming the connection body 3, both the resistance value and the current noise are greatly improved as compared with the comparative example. You can see that it was done. According to this result, the effect of forming the strain sensitive resistor 1 by firing and then firing at a temperature lower than the firing temperature to form the connection body 3 connected to the strain sensitive resistor 1 is confirmed.

【0036】[0036]

【発明の効果】以上のように、本発明によると、抵抗値
のバラツキが小さく、ノイズ特性に優れた力学量センサ
を作製することが可能となる。
As described above, according to the present invention, it is possible to manufacture a mechanical quantity sensor having a small variation in resistance value and an excellent noise characteristic.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の製造方法による力学量センサ
の縦断面図である。
FIG. 1 is a vertical sectional view of a mechanical quantity sensor according to a manufacturing method of an embodiment of the present invention.

【図2】本発明の実施例に用いた力学量センサの電極お
よび感歪み抵抗体等のパターンを示す平面図で、(a)
は電極と感歪み抵抗体のパターンを示し、(b)はさら
に接続体を形成したパターンを示す。
FIG. 2 is a plan view showing a pattern of electrodes, strain sensitive resistors, etc. of the mechanical quantity sensor used in the embodiment of the present invention, FIG.
Shows a pattern of electrodes and strain sensitive resistors, and (b) shows a pattern in which a connecting body is further formed.

【図3】比較例の製造方法による力学量センサの縦断面
図である。
FIG. 3 is a vertical sectional view of a mechanical quantity sensor according to a manufacturing method of a comparative example.

【符号の説明】[Explanation of symbols]

1 抵抗体 2 電極 3 接続体 4 金属基材 5 絶縁層 6 絶縁基板 1 resistor 2 electrodes 3 connection 4 metal base materials 5 insulating layers 6 insulating substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 正樹 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平6−137979(JP,A) 特開 平3−63537(JP,A) 特開 昭59−18669(JP,A) 特開 平2−223836(JP,A) 特開 平6−137805(JP,A) 特開 昭55−55575(JP,A) 特開 昭48−102258(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 29/84 C23C 24/08 G01B 7/16 G01L 1/18 G01P 15/12 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masaki Ikeda 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-6-137979 (JP, A) JP-A-3- 63537 (JP, A) JP 59-18669 (JP, A) JP 2-223836 (JP, A) JP 6-137805 (JP, A) JP 55-55575 (JP, A) JP-A-48-102258 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 29/84 C23C 24/08 G01B 7/16 G01L 1/18 G01P 15/12

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属弾性体を結晶化ガラスで被覆した絶
縁基板上に、導電ペーストを塗布、乾燥し、焼成するこ
とにより電極を形成する第1の工程、前記電極と接触し
ない位置に抵抗ペーストを塗布、乾燥し、前記導電ペー
ストの焼成温度より低い温度で焼成することにより感歪
み抵抗体を形成する第2の工程、および、前記電極と前
記感歪み抵抗体の間に導電ペーストを塗布、乾燥し、前
記抵抗ペーストの焼成温度より低い温度で焼成して前記
電極と前記感歪み抵抗体を電気的に接続する接続体を形
成する第3の工程を含む力学量センサの製造方法。
1. A first step of forming an electrode by coating, drying and firing a conductive paste on an insulating substrate having a metal elastic body coated with crystallized glass, and a resistance paste at a position not in contact with the electrode. A second step of forming a strain-sensitive resistor by applying, drying and firing at a temperature lower than the firing temperature of the conductive paste, and applying a conductive paste between the electrode and the strain-sensitive resistor, A method for manufacturing a mechanical quantity sensor, comprising a third step of drying and firing at a temperature lower than a firing temperature of the resistance paste to form a connection body for electrically connecting the electrode and the strain sensitive resistor.
【請求項2】金属弾性体を結晶化ガラスで被覆した絶縁
基板上に、電極用導電ペーストと、抵抗ペーストのいず
れか一方を塗布、乾燥した後、前記ペーストで塗布した
パターンと接触しない位置に他方のペーストを塗布、乾
燥して、焼成することにより前記電極および前記感歪み
抵抗体を同時に形成する第1の工程と、前記電極と感歪
み抵抗体の間に導電ペーストを塗布、乾燥し、前記焼成
温度より低い温度で焼成して前記電極と前記感歪み抵抗
体を電気的に接続する接続体を形成する第2の工程を含
む力学量センサの製造方法。
2. An insulating substrate having a metal elastic body coated with crystallized glass is coated with either one of a conductive paste for electrodes and a resistance paste and dried, and then placed at a position not in contact with the pattern coated with the paste. A first step of simultaneously forming the electrode and the strain sensitive resistor by applying the other paste, drying and firing, and applying and drying a conductive paste between the electrode and the strain sensitive resistor, A method of manufacturing a mechanical quantity sensor comprising a second step of firing at a temperature lower than the firing temperature to form a connection body for electrically connecting the electrode and the strain sensitive resistor.
【請求項3】 前記接続体形成用の導電ペーストが金を
含む請求項1または2記載の力学量センサの製造方法。
3. The method for manufacturing a mechanical quantity sensor according to claim 1, wherein the conductive paste for forming the connection body contains gold.
【請求項4】 前記結晶化ガラスが、SiO2:7〜3
3重量%、B23:5〜31重量%、MgO:16〜5
0重量%、CaO:0〜20重量%、BaO:0〜50
重量%、La23:0〜40重量%、MO2(MはZ
r、TiおよびSnからなる群より選択される少なくと
も1種):0〜5重量%、およびP25:0〜5重量%
からなる請求項1または2記載の力学量センサの製造方
法。
4. The crystallized glass is SiO 2 : 7 to 3
3% by weight, B 2 O 3 : 5 to 31% by weight, MgO: 16 to 5
0% by weight, CaO: 0 to 20% by weight, BaO: 0 to 50
% By weight, La 2 O 3 : 0 to 40% by weight, MO 2 (M is Z
at least one selected from the group consisting of r, Ti and Sn): 0 to 5% by weight, and P 2 O 5 : 0 to 5% by weight
The method for manufacturing a mechanical quantity sensor according to claim 1 or 2, comprising:
JP15074295A 1995-06-16 1995-06-16 Manufacturing method of mechanical quantity sensor Expired - Fee Related JP3487675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15074295A JP3487675B2 (en) 1995-06-16 1995-06-16 Manufacturing method of mechanical quantity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15074295A JP3487675B2 (en) 1995-06-16 1995-06-16 Manufacturing method of mechanical quantity sensor

Publications (2)

Publication Number Publication Date
JPH098324A JPH098324A (en) 1997-01-10
JP3487675B2 true JP3487675B2 (en) 2004-01-19

Family

ID=15503431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15074295A Expired - Fee Related JP3487675B2 (en) 1995-06-16 1995-06-16 Manufacturing method of mechanical quantity sensor

Country Status (1)

Country Link
JP (1) JP3487675B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803157B2 (en) * 2002-08-07 2011-10-26 パナソニック株式会社 Load sensor and manufacturing method thereof
EP3617683A1 (en) * 2018-08-31 2020-03-04 Mettler Toledo (Changzhou) Precision Instrument Ltd. Method of insulating a strain gauge against moisture penetration
KR102107805B1 (en) * 2018-12-26 2020-05-08 주식회사 이엠티 Method for manufacturing ceramic diaphragm for pressure sensor by thick film printing process and pressure sensor using the same method

Also Published As

Publication number Publication date
JPH098324A (en) 1997-01-10

Similar Documents

Publication Publication Date Title
JPH0475460B2 (en)
EP0573945B1 (en) Process for manufacturing a PTC thermistor
JP2591205B2 (en) Thermistor
JPH0235475B2 (en)
US4758814A (en) Structure and method for wire lead attachment to a high temperature ceramic sensor
JP3810507B2 (en) Strain sensitive resistor paste
JPH0593659A (en) Distortion sensor and its manufacture
JP3487675B2 (en) Manufacturing method of mechanical quantity sensor
JPH0696847A (en) Surface heating unit and manufacture thereof
JPH0616461B2 (en) Chip type porcelain capacitor
JPH0136243B2 (en)
JP3720129B2 (en) Resistive paste for strain sensitive resistor elements
JP3636534B2 (en) Mechanical quantity sensor and manufacturing method thereof
JPH06137805A (en) Strain gauge and its manufacture
JPH06137806A (en) Strain sensor
JPS635842B2 (en)
JP3030947B2 (en) Oil level sensor
JPH098325A (en) Production of electric insulation substrate and physical quantity sensor employing it
JPH07307210A (en) Manufacture of metal resistor and dynamic quantity sensor
JPH0658706A (en) Strain sensor
JPH06294692A (en) Resistor paste and pressure sensor employing the same
JPH07140022A (en) Paste for resistor element, resistor element and dynamic quantity sensor
JPH06137979A (en) Pressure sensor and pressure detector using it
JPS62122104A (en) Electrode treatment of laminated chip varistor
JPH08145814A (en) Manufacture of dynamic-quantity sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees