WO1995010640A1 - Process for producing oxide ceramic coating - Google Patents

Process for producing oxide ceramic coating Download PDF

Info

Publication number
WO1995010640A1
WO1995010640A1 PCT/JP1994/001718 JP9401718W WO9510640A1 WO 1995010640 A1 WO1995010640 A1 WO 1995010640A1 JP 9401718 W JP9401718 W JP 9401718W WO 9510640 A1 WO9510640 A1 WO 9510640A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
sol
producing
oxide ceramic
gel
Prior art date
Application number
PCT/JP1994/001718
Other languages
French (fr)
Japanese (ja)
Inventor
Taketo Sakuma
Kunichi Miyazawa
Yoshimi Baba
Yoshiki Mizuno
Original Assignee
Kabushiki Kaisya Advance
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisya Advance filed Critical Kabushiki Kaisya Advance
Priority to EP94929654A priority Critical patent/EP0677596A1/en
Publication of WO1995010640A1 publication Critical patent/WO1995010640A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemically Coating (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

A process for producing an oxide ceramic coating from a sol comprising a solution of a metallic compound, which aims at solving problems involved in various processes for producing an oxide ceramic coating, such as the vapor-phase methods including the chemical and physical vapor deposition methods which are generally low in productivity and the sol-gel method which, too, is low in productivity because only a thin coating of 0.1-0.3 νm in thickness is formed in one coating run and in which a thick coating, evenwhen formed, is apt to crack because gel shrinkage occurs in evaporating off the alcohol component from the sol. The invention process permits production of a noncracking uniform oxide ceramic coating by electrostatically atomizing a sol comprising a solution of a metallic or silicon compound to form a gel coating scarcely containing solvent molecules on the surface of a substrate, followed by firing.

Description

明 細 書 酸化物系セラ ミ ッ クス膜の製造方法 技術分野  Description Manufacturing method of oxide-based ceramic film
本発明は金属化合物の溶液、 ゾルを原料と した酸化物系セラ ミ ッ クス膜の製造方法に関する。 酸化物系セラ ミ ッ クス膜はその特徴を 生かし、 耐熱性コーティ ング、 耐摩耗性コーティ ング、 反射防止膜 などの機能材料として、 超電導材料、 イオン導電性材料、 キャパシ ター、 メ モ リ ー材料などの電子材料、 さ らには、 圧電性、 焦電性を 利用したセンサーゃァクチユエ一夕一などと産業の発展に幅広く寄 与している。 背景技術  The present invention relates to a method for producing an oxide-based ceramic film using a metal compound solution or sol as a raw material. Oxide-based ceramic films take advantage of their features, and as functional materials such as heat-resistant coatings, abrasion-resistant coatings, and anti-reflection coatings, superconducting materials, ionic conductive materials, capacitors, and memory materials. It contributes widely to the development of industries, such as electronic materials, such as sensors and piezoelectric devices that use piezoelectricity and pyroelectricity. Background art
酸化物系セラ ミ ッ クス膜は近年の機能性セラ ミ ッ クスの多様化に ともない、 その製造方法もまた多様化している。 セラ ミ ッ クス膜の 製造方法には化学気相蒸着法やスパッ 夕 リ ングに代表される物理気 相法やゾルゲル法に代表される液相法などがある。 これらのうち気 相法は最も数多 く産業化しているが、 一般に生産性が低く、 また複 雑な組成のコ ン トロールが難しい。 それに対し液相法は複雑で均一 な組成が容易に得られ、 且つ、 焼成温度も比較的低いなどの長所が ある。 しかしながら、 液相法においても生産性は必ずしも高く な く - 例えば、 ゾルゲル法のディ ッ ビングでは 1 回のコーティ ングで 0. 1 〜 0. 3 z mの薄膜しか作成できず、 用途によっては数 1 0〜数 1 00回 のコーティ ングを繰り返す必要がある。 ゾルゲル法で厚膜が困難な もう 1 つの理由はゾルのアルコール分の揮発乾燥の時にゲルの収縮 が起こるため割れ易く、 その傾向は'膜が厚く なるに従い顕著となる こ とである。 With the diversification of functional ceramics in recent years, the production method of oxide-based ceramic films has also diversified. Manufacturing methods for ceramic films include physical vapor methods represented by chemical vapor deposition and sputtering, and liquid methods represented by sol-gel methods. Of these, the gas phase method is the most industrialized, but generally has low productivity and it is difficult to control complex compositions. On the other hand, the liquid phase method has advantages that a complicated and uniform composition can be easily obtained and the firing temperature is relatively low. However, the productivity is not always high even in the liquid phase method-For example, in the case of diving by the sol-gel method, only 0.1 to 0.3 zm thin film can be produced by one coating, and several 1 It is necessary to repeat the coating from 0 to several 100 times. Another reason that the sol-gel method makes it difficult to form a thick film is that the gel shrinks during the volatilization and drying of the alcohol in the sol, so it tends to crack, and this tendency becomes more pronounced as the film becomes thicker. That is.
ゾルゲル法で処理対象物表面に作成したゲルを空気中で乾燥させ て溶媒を除去しょう と した場合には、 乾燥が進むにつれゲルは収縮 し割れてしま う。 これは、 乾燥が進む段階で表面層にゲル骨格 (固 体) と溶媒 (液体) と空気 (気体) の三者の境界が生じるので、 ゲ ル骨格を細孔側に引っ張るような毛細管力が生じるためである。 そ れに対しゲル内部は体積をそのまま保とう とするので、 表面層の引 つ張り力がゲル骨格の強さより も大きいときは表面層が亀裂し、 激 しいときは全体が破壊するためであるといわれている。 毛細管力の 大きさは一般に式 :  If the gel created on the surface of the object to be treated by the sol-gel method is dried in the air to remove the solvent, the gel shrinks and cracks as the drying proceeds. This is because the boundary between the gel skeleton (solid), the solvent (liquid), and the air (gas) is formed in the surface layer as the drying proceeds, so that the capillary force that pulls the gel skeleton toward the pores is generated. This is because it occurs. On the other hand, the inside of the gel tries to keep the volume as it is, so if the tensile strength of the surface layer is greater than the strength of the gel skeleton, the surface layer will crack, and if it is severe, the whole will break. It is said that. The magnitude of the capillary force is generally given by:
A P = 2 γ - c o s ^ / r · · · ( I )  A P = 2 γ-cos ^ / r (I)
r : 毛細管半径 Θ : 濡れ角 Ί : 表面張力 で表される。 発明の開示  r: Capillary radius Θ: Wetting angle :: Expressed by surface tension. Disclosure of the invention
従って、 本発明は、 溶液を静電霧化により微粒子化するこ とによ り、 霧化部と処理対象間で揮散させ、 処理対象表面上に、 溶媒分子 をほとんど含まないゲル膜を形成するこ とにより、 式 ( I ) で定義 される毛細管力を生じな く なるようにするこ とにより、 割れのない 均一な膜を形成しょう という ものである。  Therefore, in the present invention, the solution is atomized by electrostatic atomization, so that the solution is volatilized between the atomization unit and the object to be processed, and a gel film containing almost no solvent molecules is formed on the surface of the object to be processed. Thus, by preventing the capillary force defined by the formula (I) from being generated, a uniform film without cracks is formed.
また、 本発明はワ ンパスプロセスで厚膜を形成させ、 生産性も飛 躍的に向上させよう という ものである。  Further, the present invention is to form a thick film by a one-pass process, and to dramatically improve productivity.
本発明に従えば、 金属化合物又は珪素化合物のアルコール溶液、 水溶液又はゾルを静電霧化し、 次いで処理対象物表面に塗着させて 均一な厚さの膜を形成させ、 そして焼成するこ とにより、 処理対象 物表面にセラ ミ ッ クス膜を形成するこ とを特徴とする酸化物系セラ ミ ッ クス膜の製造方法が提供される。 発明を実施するための最良の形態 According to the present invention, an alcohol solution, an aqueous solution, or a sol of a metal compound or a silicon compound is electrostatically atomized, then applied to the surface of the object to be processed to form a film having a uniform thickness, and then fired. Further, there is provided a method for producing an oxide-based ceramic film, which comprises forming a ceramic film on the surface of an object to be treated. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は上記目的達成のために、 大別して 3つのプロセスからな る  The present invention generally comprises three processes for achieving the above-mentioned object.
第一のプロセスは原料溶液の調製である。 構成元素の供給源と なる金属化合物又は珪素化合物は溶媒に溶けることが必要であり、 蒸気圧が低い (例えば 60mmHg以下) ことが望ま しい。 このような化 合物としては、 例えば、 Si(0C2H5)4、 A1(0C3H7)3などのようなアル コキシ ド、 In(C0CH2C0CH3)などの金属ァセチルアセテー ト、 Pb(CH3 C00)2 、 Y (C17H35C00)3などの金属カルボキシレー ト、 Ni(N03)2、 Y(N03)3などの硝酸塩があげられる。 また原料自体は蒸気圧が高く ても溶液中で反応して蒸気圧の低い物質に変化する化合物であれば 本発明において使用することができる。 特に、 アルコキシ ド化合物 は少量の水と共に用いると溶液中で加水分解、 重縮合反応を経由し て高分子量物質となるので好適である。 The first process is the preparation of a stock solution. The metal compound or silicon compound serving as the supply source of the constituent elements needs to be dissolved in a solvent, and the vapor pressure is desirably low (for example, 60 mmHg or less). Such reduction compounds, e.g., Si (0C 2 H 5) 4, A1 (0C 3 H 7) 3 alkoxy de like, In (C0CH 2 C0CH 3) such as metal Asechiruasete bets, Pb Examples include metal carboxylates such as (CH 3 C00) 2 and Y (C 17 H 35 C00) 3 and nitrates such as Ni (N 0 3 ) 2 and Y (N 0 3 ) 3 . In addition, the raw material itself can be used in the present invention as long as it is a compound which reacts in a solution even if the vapor pressure is high and changes into a substance having a low vapor pressure. In particular, the alkoxide compound is preferably used together with a small amount of water because it becomes a high molecular weight substance through hydrolysis and polycondensation in a solution.
本発明に用いる溶媒は上記の金属化合物又は珪素化合物を溶解す ることが必要であり、 比熱が小さ く蒸気圧が高いこ とが望ましい。 そのような溶媒の例としては、 エチルアルコール、 メチルアルコー ル、 イソプロピルアルコール、 ジメ トキシェタンなどがあげられる c 特に、 赤外線吸収の大きい水酸基を有する化合物は、 赤外線を照射 することにより揮散を促進することができるので、 いっそう望まし い。 The solvent used in the present invention needs to dissolve the above-mentioned metal compound or silicon compound, and desirably has a low specific heat and a high vapor pressure. Examples of such solvents include ethyl alcohol, methyl alcohol, isopropyl alcohol, especially c etc. dimethyl Tokishetan the like, compounds having a large hydroxyl group of infrared absorption, to promote volatilization by irradiating infrared rays It is even more desirable because it can.
前記金属化合物又は珪素化合物と溶媒との混合は任意のプロセス によることができるが、 大気中の水分との反応を防止したい場合に は乾燥窒素、 乾燥アルゴン雰囲気で行うのが望ましい。 大気中で行 う場合には、 安定化剤 (キレー ト剤) を混合すればよく、 安定化剤 としては、 ジエタノールァミ ン、 ァセチルアセ トンなどを用いるこ とができる。 また、 溶液には、 目的'に応じて粘度調節剤や酸、 アル カ リなどを加えてもよい。 The mixing of the metal compound or the silicon compound with the solvent can be carried out by any process. However, when it is desired to prevent the reaction with moisture in the atmosphere, it is preferable to carry out the mixing in a dry nitrogen or dry argon atmosphere. When the reaction is performed in the air, a stabilizer (chelating agent) may be mixed, and as the stabilizer, diethanolamine, acetylacetone, or the like can be used. In addition, the solution may contain a viscosity modifier, an acid, or an alcohol, depending on the purpose. Curry may be added.
本発明方法の第二のプロセスは静電霧化によるコーティ ングプロ セスである。 この方法は、 アースした処理対象物を陽極とし、 溶液 霧化装置を陰極とし、 これに負の高電圧を適用して両極間に静電界 を作り、 霧化した微粒子を負に帯電させて、 反対極である処理対象 物に効率よく コーティ ングさせる方法である。 高電圧範囲は、 好ま しく は— 30〜― 120kV であり、 更に好ま しく は一 30〜― 70kVである ( 電極間の距離は好ま しく は 5〜40cmであり、 更に好ましく は 10〜30 cmである。 この間隔が 40cmより広く なると静電界が弱くなり、 コ一 ティ ング効率が低くなるおそれがあるので好ま しく なく、 一方、 10 cmより狭くなると、 溶媒微粒子が揮散し難くなるおそれがあるので 好ま しく ない。 溶液に 10— 8 Scn ]以上の導電性がある場合には、 静 電圧と溶液を霧化直前まで絶縁状態を保つようにすればよい。 The second process of the method of the present invention is a coating process by electrostatic atomization. In this method, the grounded object is used as the anode, the solution atomizer is used as the cathode, and a negative high voltage is applied to this to create an electrostatic field between the two electrodes, and the atomized fine particles are negatively charged. This is a method of efficiently coating the object to be treated, which is the opposite pole. The high voltage range is preferably between 30 and 120 kV, more preferably between 30 and 70 kV ( the distance between the electrodes is preferably between 5 and 40 cm, more preferably between 10 and 30 cm). If the distance is larger than 40 cm, the electrostatic field is weakened and the coating efficiency may be lowered, which is not preferable.On the other hand, if the distance is smaller than 10 cm, the solvent fine particles may be difficult to volatilize. preferred not properly. If there is a 10- 8 Scn] or more electrically conductive solution may be a static voltage and the solution so as to keep the insulation state immediately before atomization.
処理対象物はアースとするために少なく とも処理表面に導電性が ある必要があるが、 対象物形状に関しては大きな制限はなく 曲面で も均一な膜を形成できる。 処理対象表面は、 ブルとの濡れ性が高い 方がよく、 低い場合には、 表面処理を施してもよい。 処理対象物の 好ま しい例としては鉄、 銅などの各種金属や、 導電性ガラス、 白金 蒸着したシリ コン基板などがあげられる。  At least the surface of the object to be processed must be conductive in order to be grounded. However, there is no great limitation on the shape of the object, and a uniform film can be formed even on a curved surface. The surface to be treated preferably has a high wettability with the bull, and if low, may be subjected to a surface treatment. Preferred examples of the object to be processed include various metals such as iron and copper, conductive glass, and a silicon substrate on which platinum is deposited.
溶媒分子の揮散は、 電極間に赤外線又はマイク口波を照射するこ とにより促進することができる。 赤外線の発生装置は特に限定はし ないが、 例えば、 赤外線ランプ光をゴールドミ ラーにより平行光と したものなどが使用できる。 マイクロ波の出力も特に限定はしない が、 好ま しく は 500〜3000Wであり、 更に好ましく は 1000〜2000W である。  The volatilization of the solvent molecules can be promoted by irradiating infrared rays or microphone mouth waves between the electrodes. The infrared ray generating device is not particularly limited. For example, a device in which the infrared lamp light is converted into parallel light by a gold mirror can be used. The output of the microwave is not particularly limited, but is preferably 500 to 3000 W, more preferably 1000 to 2000 W.
本発明の方法の第三のプロセスは処理対象物を焼成するプロセス であり、 目的に応じて、 大気中、 窒素雰囲気、 または真空中などで であり、 目的に応じて、 大気中、 窒素雰囲気、 または真空中などで 行う こ とができる。 焼成温度はセラ ミ ッ クス種によ り異なるが、 好 ま し く は概ね 400〜 1200°Cで目的のセラ ミ ッ クスを得るこ とができ る。 プログラ ミ ング温度コ ン トローラなどで昇降温プロセスを管理 するこ とが望ま しい。 実施例 The third process of the method of the present invention is a process of firing the object to be treated, and may be performed in the air, in a nitrogen atmosphere, or in a vacuum depending on the purpose. It can be performed in the air, in a nitrogen atmosphere, or in a vacuum depending on the purpose. The firing temperature varies depending on the type of ceramics, but the desired ceramics can be obtained preferably at about 400 to 1200 ° C. It is desirable to control the heating and cooling process with a programming temperature controller. Example
以下、 実施例によって本発明を更に具体的に説明するが、 本発明 を以下の実施例に限定する ものでないこ とはいう までもない。  Hereinafter, the present invention will be described more specifically with reference to Examples, but it goes without saying that the present invention is not limited to the following Examples.
実施例 1 Example 1
ステン レス表面へのチタ ン酸ジルコ ン酸鉛系セラ ミ ッ クス膜の作 製  Production of lead zirconate titanate-based ceramic film on stainless steel surface
2 -プロパノ ール (和光純薬工業株式会社製 SCグレー ド) 約 にジエタノ ールア ミ ン (和光純薬工業株式会社製特級) 21.2 gを添 加し、 よ く攪拌した。 この液にチタニウムイ ソプロボキシ ド (関東 化学株式会社製) 27.0g、 ジルコニウム一 n —プロボキシ ド 45.2g (添川理化学株式会社製) を順に加え、 約 1 時間攪拌した。  21.2 g of diethanolamine (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) was added to about 2-propanol (SC grade, manufactured by Wako Pure Chemical Industries, Ltd.), and the mixture was stirred well. To this solution were added 27.0 g of titanium isopropoxide (manufactured by Kanto Chemical Co., Ltd.) and 45.2 g of zirconium 1-n-propoxide (manufactured by Soegawa Rikagaku Co., Ltd.), and the mixture was stirred for about 1 hour.
酢酸鉛 ( E ) 3水和物 (和光純薬工業株式会社製特級) を真空中 120°Cで、 3時間加熱乾燥し無水酢酸鉛を得た。 これを上で用意し た溶液に凝固しないように 64.9 g加えた。 この時点では酢酸鉛は溶 解しない。 更に、 イ ソプロ ピルアルコールで希釈した蒸留水 40gを 1 滴ずつ攪拌しながら加えるこ とにより、 酢酸鉛は完全に溶解し均 一なゾルを得るこ とができ、 これをコーティ ング用のゾルと した。 処理対象物には、 ステン レス 304板 (10cm x l0cm x l.5mm厚) を真 空中 1050°Cで 1 時間熱処理し、 それを鏡面研磨して用いた。  Lead acetate (E) trihydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) was dried by heating at 120 ° C. in a vacuum for 3 hours to obtain anhydrous lead acetate. 64.9 g of this was added to the solution prepared above so as not to coagulate. At this point, the lead acetate does not dissolve. Furthermore, by adding 40 g of distilled water diluted with isopropyl alcohol dropwise with stirring, lead acetate can be completely dissolved and a uniform sol can be obtained, and this can be used as a coating sol. did. For the object to be treated, a 304 stainless steel plate (10 cm x 10 cm x l.5 mm thick) was heat-treated at 1050 ° C for 1 hour in the air, and was used after mirror polishing.
静電霧化には、 岩田塗装製静電塗装機 ESG- 110型を用い、 塗料噴 出量を 1 Z秒、 霧化エアー圧力を 3 kg f Z crfに調節した。 静電ィ オン化部の針状電極には、 一 60kVの電圧を印加した。 For electrostatic atomization, paint spraying was performed using Iwata Coating's electrostatic coating machine ESG-110. The output was adjusted to 1 Z second and the atomizing air pressure was adjusted to 3 kg f Z crf. A voltage of 60 kV was applied to the needle electrode of the electrostatic ionization section.
処理対象物のステンレス板と塗装機の距離を 22craに保ち、 塗装機 を 20cm /秒の速度で右から左に走査し静電霧化コーティ ングした。 膜厚を厚く するためには、 この走査を数回繰り返すこ とができる。 1 回の走査で得られる焼成後の膜厚は約 0. 35〃 mであった。  The distance between the stainless steel plate to be treated and the coating machine was maintained at 22 cra, and the coating machine was scanned from right to left at a speed of 20 cm / sec to perform electrostatic atomization coating. This scanning can be repeated several times to increase the film thickness. The film thickness after firing obtained by one scan was about 0.35 m.
3回の走査により コーティ ングしたステンレス板を約 2分間放置 乾燥させた後、 電気炉 (マツ フル炉 アサヒ理化製作所製 AMF-20- 2P ) で、 1 5で 分の速度で 600 °Cまで昇温し、 600 °Cに 1 時間保持し、 その後放冷した。 この方法により均一で割れの無い緻密なチタ ン酸 ジルコ ン酸鉛膜が得られ、 X線回折法により この化合物に固有のぺ ロブスカイ ト構造が確認された。  The stainless steel plate coated by three scans was left to dry for about 2 minutes, then dried in an electric furnace (Matsufull furnace, AMF-20-2P manufactured by Asahi Rika Seisakusho) at a speed of 15 minutes to 600 ° C. The mixture was heated, kept at 600 ° C for 1 hour, and allowed to cool. By this method, a uniform lead-free zirconate titanate film without cracks was obtained, and a perovskite structure unique to this compound was confirmed by X-ray diffraction.
焼成後の膜厚は、 赤外光による干渉縞を利用する方法とステン レ ス板のコーティ ング前後の重量差を利用する方法の 2通りで求めた 力 、 共に 1 . 05〃 mであった。 産業上の利用可能性  The film thickness after sintering was 1.05 m for both the force obtained by using the interference fringes due to infrared light and the method using the weight difference before and after coating the stainless steel plate. . Industrial applicability
本発明に係る酸化物系セラ ミ ッ クスの製造方法によれば、 処理対 象物表面に酸化物系セラ ミ ッ クスの膜を割れるこ となく容易に製造 するこ とができ、 また、 コーティ ング効率が高く、 曲面にも適用で き、 さ らには焼成温度も比較的低いのでプロセスの高度化に大き く 貢献するこ とができる。  According to the method for producing an oxide-based ceramic according to the present invention, it is possible to easily produce an oxide-based ceramics film without cracking the surface of an object to be treated. It has a high fining efficiency, can be applied to curved surfaces, and has a relatively low firing temperature, which can greatly contribute to the advancement of the process.

Claims

請 求 の 範 囲 The scope of the claims
1 . 金属化合物又は珪素化合物のアルコール溶液、 水溶液又はゾ ルを静電霧化し、 次いで処理対象物表面に塗着させて均一な厚さの 膜を形成させ、 そして焼成するこ とにより、 処理対象物表面にセラ ミ ッ クス膜を形成するこ とを特徴とする酸化物系セラ ミ ッ クス膜の 製造方法。 1. An alcohol solution, aqueous solution or sol of a metal compound or a silicon compound is electrostatically atomized, then applied to the surface of the object to be processed to form a film having a uniform thickness, and then baked to be processed. A method for producing an oxide-based ceramic film, comprising forming a ceramic film on an object surface.
2 . 霧化部と、 処理対象物表面の間に空間を設け、 静電霧化によ りその空間を移動する噴霧体に対し、 赤外線又はマイ ク口波を照射 しアルコールおよび水分を揮散させる請求の範囲第 1 項記載の酸化 物系セラ ミ ッ クス膜の製造方法。 2. A space is provided between the atomization unit and the surface of the object to be treated, and the spray that moves through the space by electrostatic atomization is irradiated with infrared rays or microwaves to volatilize alcohol and moisture. The method for producing an oxide-based ceramic film according to claim 1.
3 . 金属化合物又は珪素化合物の少な く とも 1 つがアルコキシ ド 化合物である請求の範囲第 1 項記載の酸化物系セラ ミ ッ クス膜の製 造方法。 3. The method for producing an oxide-based ceramic film according to claim 1, wherein at least one of the metal compound and the silicon compound is an alkoxide compound.
4 . 金属化合物又は珪素化合物の少なく とも 1 つがアルコキシ ド 化合物である請求の範囲第 2項記載の酸化物系セラ ミ ッ クス膜の製 造方法。 4. The method for producing an oxide-based ceramic film according to claim 2, wherein at least one of the metal compound and the silicon compound is an alkoxide compound.
PCT/JP1994/001718 1993-10-14 1994-10-13 Process for producing oxide ceramic coating WO1995010640A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP94929654A EP0677596A1 (en) 1993-10-14 1994-10-13 Process for producing oxide ceramic coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5/280291 1993-10-14
JP28029193A JPH07173634A (en) 1993-10-14 1993-10-14 Production of oxide ceramics film

Publications (1)

Publication Number Publication Date
WO1995010640A1 true WO1995010640A1 (en) 1995-04-20

Family

ID=17622942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001718 WO1995010640A1 (en) 1993-10-14 1994-10-13 Process for producing oxide ceramic coating

Country Status (3)

Country Link
EP (1) EP0677596A1 (en)
JP (1) JPH07173634A (en)
WO (1) WO1995010640A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007030585A1 (en) * 2007-06-27 2009-01-02 Siemens Ag Method for producing a ceramic layer on a component
CN107146670A (en) * 2017-04-19 2017-09-08 安泰科技股份有限公司 A kind of preparation method of rare earth permanent-magnetic material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998732A (en) * 1973-01-29 1974-09-18
JPS5191949A (en) * 1975-02-12 1976-08-12 Surariitoryono tosohoho
JPS61107974A (en) * 1984-07-06 1986-05-26 ピ−タ− リブニツツ Method and device for coating inside of hollow body
JPS63277770A (en) * 1987-05-09 1988-11-15 Nippon Soda Co Ltd Composition for forming superconductive thin ceramic film and production of superconductive thin ceramic film
JPS63291665A (en) * 1987-05-21 1988-11-29 Nisshin Steel Co Ltd Stainless steel plate with high fingerprint process and wear resistance and its manufacture
JPH05246701A (en) * 1992-03-04 1993-09-24 Sekisui Chem Co Ltd Production for metal oxide coated body
JPH06137805A (en) * 1992-10-27 1994-05-20 Matsushita Electric Ind Co Ltd Strain gauge and its manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998732A (en) * 1973-01-29 1974-09-18
JPS5191949A (en) * 1975-02-12 1976-08-12 Surariitoryono tosohoho
JPS61107974A (en) * 1984-07-06 1986-05-26 ピ−タ− リブニツツ Method and device for coating inside of hollow body
JPS63277770A (en) * 1987-05-09 1988-11-15 Nippon Soda Co Ltd Composition for forming superconductive thin ceramic film and production of superconductive thin ceramic film
JPS63291665A (en) * 1987-05-21 1988-11-29 Nisshin Steel Co Ltd Stainless steel plate with high fingerprint process and wear resistance and its manufacture
JPH05246701A (en) * 1992-03-04 1993-09-24 Sekisui Chem Co Ltd Production for metal oxide coated body
JPH06137805A (en) * 1992-10-27 1994-05-20 Matsushita Electric Ind Co Ltd Strain gauge and its manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0677596A4 *

Also Published As

Publication number Publication date
JPH07173634A (en) 1995-07-11
EP0677596A1 (en) 1995-10-18
EP0677596A4 (en) 1995-08-23

Similar Documents

Publication Publication Date Title
US6331330B1 (en) Film or coating deposition and powder formation
JP2938376B2 (en) Liquid for forming titania film, titania film and method for producing the same
EP1118385A1 (en) Method for producing high-performance material having photocatalytic function and device therefor
KR19980703207A (en) Manufacturing Method of Ceramic Thick Film by Sol Gel Coating
CA2359822A1 (en) Material fabrication
JP3484094B2 (en) Silica-coated plastic film and method for producing the same
KR20080050356A (en) Method of manufacturing composite structure, impurity removal processing apparatus, film forming apparatus, composite structure and raw material powder
US6387446B1 (en) Method for depositing titanium oxide layers using soluble powders
JP4144042B2 (en) Gas barrier plastic packaging material and manufacturing method thereof
WO1995010640A1 (en) Process for producing oxide ceramic coating
JP4015543B2 (en) Layer containing silicon-titanium mixed oxide powder produced by flame hydrolysis, process for its production, dispersion of silicon-titanium mixed oxide powder and use of layer
JP2018157182A (en) Method for manufacturing liquid composition for piezoelectric film formation, and method for forming piezoelectric film by use thereof
US20130260047A1 (en) Coating and methods thereof
JPH08143302A (en) Production of oxide ceramic film
EP0607967B1 (en) Production of thin films of a lead titanate system
CN115403378B (en) Leadless piezoelectric coating and preparation method thereof
JP2005125169A (en) Surface treating method
JPH0217630B2 (en)
JPH04139064A (en) Production of lead titanate zirconate
JP7155730B2 (en) Liquid composition for forming piezoelectric film and method for forming piezoelectric film using this liquid composition
JP4756253B2 (en) Surface modification apparatus and surface modification method
WO2019181656A1 (en) Liquid composition for forming piezoelectric film and method for forming piezoelectric film in which said liquid composition is used
KR100529420B1 (en) Process of producing Bismuth Sodium Titanium Oxide compound
JP2862283B2 (en) Method for producing conductive ceramic fiber
JP2000086242A (en) Thin film and its production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 448345

Date of ref document: 19950612

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1994929654

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994929654

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1994929654

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994929654

Country of ref document: EP