JPH0613749A - Copper foil for printed circuit use and manufacture thereof - Google Patents

Copper foil for printed circuit use and manufacture thereof

Info

Publication number
JPH0613749A
JPH0613749A JP19029392A JP19029392A JPH0613749A JP H0613749 A JPH0613749 A JP H0613749A JP 19029392 A JP19029392 A JP 19029392A JP 19029392 A JP19029392 A JP 19029392A JP H0613749 A JPH0613749 A JP H0613749A
Authority
JP
Japan
Prior art keywords
copper foil
layer
cobalt
nickel
chromate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19029392A
Other languages
Japanese (ja)
Other versions
JP2631061B2 (en
Inventor
Misako Itou
美砂子 伊藤
Kazuyoshi Aso
和義 阿曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denkai Co Ltd
Original Assignee
Nippon Denkai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denkai Co Ltd filed Critical Nippon Denkai Co Ltd
Priority to JP19029392A priority Critical patent/JP2631061B2/en
Publication of JPH0613749A publication Critical patent/JPH0613749A/en
Application granted granted Critical
Publication of JP2631061B2 publication Critical patent/JP2631061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal

Abstract

PURPOSE:To provide a copper foil for printed circuit use, which is superior in migration resistance and maintains high bonding strength between the copper foil and a board when the copper foil is used on a copper-clad laminated board for printed circuit, and a method of manufacturing the copper foil. CONSTITUTION:A copper foil for printed circuit is a foil, which has a ternary alloy coating layer made of nickel, molybdenum and cobalt on the surface of the copper foil, and is manufactured by a method wherein a copper foil is dipped in a plating bath, in which nickel ions, molybdenum acid ions and cobalt ions coexist, and a cathode treatment is performed to form the ternary alloy coating layer made of nickel, molybdenum and cobalt on the surface of the copper foil.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプリント回路用銅箔及び
その製造方法に関し、更に詳しくは、銅張積層板の製造
に用いた場合、銅箔と基板間の接着強度を高く維持する
とともに、特に耐マイグレーション性に優れた銅張積層
板を提供しうるプリント回路用銅箔及びその製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper foil for printed circuits and a method for producing the same, and more specifically, when used for producing a copper clad laminate, while maintaining high adhesive strength between the copper foil and the substrate, Particularly, the present invention relates to a copper foil for a printed circuit capable of providing a copper clad laminate having excellent migration resistance and a method for producing the same.

【0002】[0002]

【従来の技術】プリント配線板に実装される電子部品の
小型化、高密度化、高性能化に伴い、導体回路材料とな
る銅箔の品質に対する要求も一段と厳しくなり、より信
頼性に優れた特性が要求されるようになった。
2. Description of the Related Art As electronic components mounted on printed wiring boards have become smaller, higher in density and higher in performance, the requirements for the quality of copper foil, which is a conductor circuit material, have become more stringent, resulting in higher reliability. Characteristics have come to be required.

【0003】最も、基本的な要求特性としては銅箔と樹
脂基板間の接着強度に優れていることが挙げられる。こ
れに関しては、銅箔を樹脂基材と加熱加圧し、積層した
直後の接着強度はもとより、酸やアルカリなどの化学薬
品中に浸漬されたり、あるいは加熱されたりするなどの
苛酷な環境条件下におかれた後にも依然としてその接着
強度を高く維持することが品質上の高信頼性を得る上で
極めて重要な課題となっている。
The most basic required characteristic is that the adhesive strength between the copper foil and the resin substrate is excellent. Regarding this, copper foil is heated and pressed against a resin base material, and not only the adhesive strength immediately after lamination, but also under severe environmental conditions such as being immersed in chemicals such as acid and alkali, or being heated. Maintaining a high adhesive strength after being placed is still an extremely important issue for obtaining high reliability in quality.

【0004】そこで、上記の課題を解決する一般的な手
段として、樹脂基材に積層する銅箔の被接着面の粗面化
処理、例えば、銅メッキ液を用いる陰極電解により予め
銅箔の被接着面に銅粒状物を電着形成する処理が行なわ
れている。これにより、銅箔面の表面積の増大と粒状物
がもたらす投錨効果とが相俟って、接着強度は顕著に改
善される。
Therefore, as a general means for solving the above problems, the surface of the copper foil to be laminated on the resin base material is roughened, for example, by cathodic electrolysis using a copper plating solution. A process of electrodepositing copper particles on the bonding surface is performed. As a result, the adhesive strength is remarkably improved by combining the increase in the surface area of the copper foil surface and the anchoring effect brought about by the granular material.

【0005】しかしながら、この粗面形成のみでは耐化
学薬品性や耐熱性などの接着強度特性は改善されず、い
わゆる接着強度の劣化率が増大し、実用上の水準を満た
すには至らない。
However, the formation of the rough surface alone does not improve the adhesive strength characteristics such as chemical resistance and heat resistance, and the deterioration rate of so-called adhesive strength increases, which does not reach the practical level.

【0006】このことから前記粗面化処理後に、更に多
様な表面処理層を形成し、接着強度の劣化率を小さくさ
せることが行われている。この銅箔面への表面処理層の
形成については、従来より多くの提案がなされている。
例えば、粗面化した面上にクロメート層を形成した銅箔
(特公昭61−33908号公報)、また粗面化した面
上に亜鉛層を形成した後に更にクロメート層を形成した
銅箔(特公昭61−33906号公報)などが提案され
ている。しかしながらこれら先行技術による銅箔は前述
した要求特性の一部の改善に効を奏するものの、その反
面悪化させる場合もある。
For this reason, after the surface roughening treatment, various surface treatment layers are formed to reduce the deterioration rate of the adhesive strength. Many proposals have been made for the formation of the surface treatment layer on the copper foil surface.
For example, a copper foil having a chromate layer formed on a roughened surface (Japanese Patent Publication No. 61-33908), or a copper foil having a zinc layer formed on the roughened surface and then a chromate layer (special Japanese Patent Publication No. 61-33906) has been proposed. However, although the copper foils according to these prior arts are effective in improving some of the above-mentioned required characteristics, they may deteriorate them.

【0007】具体的に言えば、クロメート層を有する銅
箔は特に長時間加熱後の接着強度の向上効果が不十分で
ある。また亜鉛層を形成した後に更にクロメート層を形
成した銅箔では前記加熱後の接着強度をある程度改善す
るものの、耐化学薬品性として重要視される塩酸浸漬後
の接着強度は著しく低下し、その劣化率は実用上の水準
を下回る値を示すこともあって高品質、高信頼性に十分
対応するものではない。
Specifically, a copper foil having a chromate layer has an insufficient effect of improving the adhesive strength, especially after heating for a long time. Further, in the case of a copper foil having a zinc layer and then a chromate layer formed thereon, although the adhesive strength after heating is improved to some extent, the adhesive strength after dipping in hydrochloric acid, which is regarded as important for chemical resistance, is remarkably lowered, and its deterioration is caused. Since the rate is below the practical level, it does not sufficiently correspond to high quality and high reliability.

【0008】一方、銅箔表面にモリブデンあるいはタン
グステンのいずれか一方、又は両者を含むコバルト層を
形成して得られる銅箔(特公平2−24037号公報)
やモリブデンを含むニッケル層を形成して得られる銅箔
(特公昭62−142389号公報)も知られている。
On the other hand, a copper foil obtained by forming a cobalt layer containing either or both of molybdenum and tungsten on the surface of the copper foil (Japanese Patent Publication No. 2-24037).
Copper foil (Japanese Patent Publication No. 62-142389) obtained by forming a nickel layer containing molybdenum or molybdenum is also known.

【0009】これら銅箔から得られる接着強度特性は、
各層中の金属成分固有の特徴が発揮されて長時間加熱処
理後、塩酸浸漬後の劣化を低く抑えることに効果がある
ものの、アルカリ液例えばシアン化カリウム水溶液浸漬
後の劣化が大きくなる傾向を示す欠点がある。
The adhesive strength characteristics obtained from these copper foils are as follows:
Although the characteristics peculiar to the metal components in each layer are exerted and the effect of suppressing deterioration after immersion in hydrochloric acid for a long time after heat treatment is low, there is a drawback that the deterioration tends to increase after immersion in an alkaline solution such as an aqueous solution of potassium cyanide. is there.

【0010】また、プリント回路用銅箔には接着強度特
性の他に電気的特性の点でも優れていることが強く望ま
れている。このことについて述べると、プリント配線板
の導体となる銅箔の回路幅やその間隔の狭小化、ファイ
ン化、特には樹脂絶縁層の厚みもますます薄くなる傾向
から、電気特性の一つである耐マイグレーション性に優
れていることが大切な要件となっている。
Further, it is strongly desired that the copper foil for printed circuit is excellent not only in adhesive strength characteristics but also in electrical characteristics. Regarding this, it is one of the electrical characteristics because the circuit width and spacing of copper foil, which is the conductor of the printed wiring board, becomes narrower and finer, and especially the thickness of the resin insulation layer becomes thinner. Excellent migration resistance is an important requirement.

【0011】例えば、アルミニウム板、鉄板などの金属
ベースを基板とする金属ベースプリント配線板において
は、金属ベースと銅箔との間に樹脂絶縁層などの薄い絶
縁層が設けられている。このような配線板に前記先行技
術の形成層を有する銅箔を用いた場合、絶縁層の厚さが
薄いこともあって、金属ベースと銅箔間の層間絶縁性が
十分ではなく、マイグレーションの進行度合いが早いと
いう欠点がある。特に前記特公平2−24037号公報
で提案された銅箔を用いた配線板ではマイグレーション
による絶縁性能の低下が著しく、絶縁特性の信頼性が大
幅に低下する。また、特公昭62−142389号公報
のニッケル、モリブデン層を有する銅箔も同様に改善す
る余地が残されている。
For example, in a metal base printed wiring board using a metal base such as an aluminum plate or an iron plate as a substrate, a thin insulating layer such as a resin insulating layer is provided between the metal base and the copper foil. When a copper foil having the formation layer of the prior art is used for such a wiring board, the interlayer insulating property between the metal base and the copper foil is not sufficient due to the thin insulating layer, which may cause migration. It has the drawback that it progresses quickly. In particular, in the wiring board using the copper foil proposed in Japanese Patent Publication No. 2-24037, the insulation performance is remarkably deteriorated due to the migration, and the reliability of the insulation characteristics is significantly deteriorated. Further, the copper foil having nickel and molybdenum layers disclosed in Japanese Patent Publication No. 62-142389 has room for improvement as well.

【0012】ここにマイグレーションとは、プリント配
線板の回路間や層間などで電位差が生じると、湿気や水
分が介在する場合、回路となる銅箔がイオン化して溶出
が起こり、溶出する銅イオンが時間の経過とともに還元
されて金属あるいは化合物状態となって樹枝状に成長す
ることである。そしてこれが他方の金属体に到達し固着
すると、品質上極めて致命的な欠陥、すなわち、短絡と
いう不良の発生を招くことになる。いわゆる銅イオンマ
イグレーションによる短絡事故の発生である。
The term "migration" as used herein means that when a potential difference occurs between circuits of a printed wiring board or between layers, when moisture or water intervenes, the copper foil serving as a circuit is ionized and eluted, and the eluted copper ions are generated. It is a dendritic growth that is reduced over time into a metal or compound state. Then, when this reaches the other metal body and adheres thereto, a very fatal defect in terms of quality, that is, a defect such as a short circuit is caused. This is the occurrence of a short circuit accident due to so-called copper ion migration.

【0013】本来、このような事態を未然に防止するに
は、銅箔と積層接着する高分子の絶縁性樹脂や基材など
が全く吸湿しないこと、あるいは水分の混入を防止する
ような環境下にしておくことが望ましいことであるが、
現状ではそのようなことは至難である。
Originally, in order to prevent such a situation, the polymeric insulating resin or the base material to be laminated and adhered to the copper foil should not absorb moisture at all, or the environment should be such as to prevent the mixing of water. It is desirable to keep
At present, such a thing is extremely difficult.

【0014】一方、耐マイグレーション性において比較
的良好な傾向を示す銅合金層を有する銅箔も開示されて
いる。例えば銅箔面に黄銅層(銅−亜鉛合金層)を有す
る銅箔(特公昭51−35711号公報)も知られてい
る。この銅箔の場合、接着強度の各種要求特性を略々満
足するものの、未だ改善の余地を残す。耐マイグレーシ
ョン性については、この黄銅層は銅を主成分の1つとす
る銅と亜鉛の合金であり、銅イオンのマイグレーション
に対する防止措置が何ら施されていないこともあって、
絶縁性能の向上は望めないことが予想される。加えて、
この黄銅層はシアン化合物を含むメッキ浴を用いて電着
形成されており、安全衛生上、公害の発生という危険性
が高いことなど、銅箔の特性面、製造面の障害が克服さ
れていない。
On the other hand, a copper foil having a copper alloy layer showing a relatively good tendency in migration resistance is also disclosed. For example, a copper foil having a brass layer (copper-zinc alloy layer) on the copper foil surface (Japanese Patent Publication No. 51-35711) is also known. In the case of this copper foil, although various required properties of adhesive strength are substantially satisfied, there is still room for improvement. Regarding migration resistance, this brass layer is an alloy of copper and zinc containing copper as one of the main components, and since there are no measures to prevent migration of copper ions,
It is expected that no improvement in insulation performance can be expected. in addition,
This brass layer is formed by electrodeposition using a plating bath containing a cyanide compound, and for the sake of safety and health, there is a high risk of pollution, and obstacles to the characteristics and manufacturing of copper foil have not been overcome. .

【0015】[0015]

【発明が解決しようとする課題】本発明の目的は、上記
従来技術の欠点を解消し、銅箔と樹脂基板間の接着強度
を高く維持するとともに、耐マイグレーション性に優れ
たプリント回路用銅箔を提供することにある。本発明の
他の目的は、このプリント回路用銅箔の製造方法を提供
することにある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned drawbacks of the prior art, maintain a high adhesive strength between a copper foil and a resin substrate, and to provide a copper foil for a printed circuit which is excellent in migration resistance. To provide. Another object of the present invention is to provide a method for manufacturing this copper foil for printed circuits.

【0016】[0016]

【課題を解決するための手段】本発明者等は上記した従
来技術の欠点を解消するために種々検討した結果、本発
明を完成するに至った。
As a result of various investigations by the present inventors in order to solve the above-mentioned drawbacks of the prior art, the present invention has been completed.

【0017】すなわち、本発明は、銅箔の表面にニッケ
ル、モリブデン及びコバルトからなる三元合金被覆層を
有することを特徴とするプリント回路用銅箔を提供する
ものである。
That is, the present invention provides a copper foil for a printed circuit, comprising a ternary alloy coating layer made of nickel, molybdenum and cobalt on the surface of the copper foil.

【0018】また本発明は、前記三元合金被覆層上に更
にクロメート処理層を有するプリント回路用銅箔、並び
に前記三元合金被覆層上にクロメート処理層及びシラン
カップリング剤処理層を順次有するプリント回路用銅箔
を提供するものである。
The present invention also provides a printed circuit copper foil having a chromate treatment layer on the ternary alloy coating layer, and a chromate treatment layer and a silane coupling agent treatment layer on the ternary alloy coating layer in this order. A copper foil for a printed circuit is provided.

【0019】以下、本発明のプリント回路用銅箔につい
て詳述する。
The copper foil for a printed circuit according to the present invention will be described in detail below.

【0020】本発明に適用される銅箔は主に電解銅箔、
圧延銅箔である。また、アルミニウムやプラスチックフ
ィルムなどを用いてその表面に電気メッキ、無電解メッ
キ、真空蒸着、スパッタリングなどの手段により1〜1
0μm程度の極薄銅層を設けてなる複合箔であってもよ
い。
The copper foil applied to the present invention is mainly electrolytic copper foil,
It is a rolled copper foil. In addition, the surface is made of aluminum or plastic film by electroplating, electroless plating, vacuum deposition, sputtering, etc.
It may be a composite foil provided with an ultrathin copper layer having a thickness of about 0 μm.

【0021】銅箔の少なくとも一方の面に、予め、電気
化学的あるいは機械的手段を用いて粗面形成が施されて
いる銅箔を用いることが望ましい。プリント回路用銅箔
は後記する樹脂基材等と加熱加圧して銅張積層板に成型
されるが、粗面形成した銅箔を用いることによって銅箔
と樹脂基板間の接着強度が向上する。
It is desirable to use a copper foil having a rough surface formed on at least one surface of the copper foil in advance by using an electrochemical or mechanical means. The copper foil for a printed circuit is molded into a copper clad laminate by heating and pressurizing it with a resin base material described later. By using a copper foil having a rough surface, the adhesive strength between the copper foil and the resin substrate is improved.

【0022】一方、銅箔の厚さに関しては特に限定する
ものではないが、通常3〜70μmである。用途によっ
ては70μmを超える箔厚のものまで使用可能であり、
適宜選択することができる。
On the other hand, although the thickness of the copper foil is not particularly limited, it is usually 3 to 70 μm. Depending on the application, it is possible to use foils with a thickness of more than 70 μm.
It can be appropriately selected.

【0023】本発明のプリント回路用銅箔は、前記銅箔
の表面の少なくとも一方の面にニッケル、モリブデン及
びコバルトからなる三元合金被覆層(以下Ni-Mo-Co層と
略記する)を有する。このNi-Mo-Co層は、予め銅箔面を
粗面形成した状態を損なわせしめない程度、言い換えれ
ば粗面形成によってもたらされる投錨効果から生じる樹
脂基材との接着強度を十分発揮させることができる厚み
を有する薄層とすることが好ましい。好ましい厚みは、
0.001〜0.03μmである。Ni-Mo-Co層は耐化学
薬品性に優れ、例えば塩酸やシアン化カリウム水溶液中
へ浸漬した場合でも接着強度の低下、即ち劣化率を小さ
く抑えることができる。また、耐熱性にも優れ、例えば
高温で長時間保持したとしても、その接着強度の劣化を
防止することのできる成分でもある。特にニッケルは耐
マイグレーション性向上に優れた効果を発揮する成分で
ある。
The copper foil for a printed circuit according to the present invention has a ternary alloy coating layer made of nickel, molybdenum and cobalt (hereinafter abbreviated as Ni-Mo-Co layer) on at least one surface of the copper foil. . This Ni-Mo-Co layer does not impair the state where the copper foil surface is roughened in advance, in other words, it is possible to sufficiently exert the adhesive strength with the resin base material generated from the anchoring effect brought about by the roughened surface formation. It is preferable to use a thin layer having a thickness that allows it. The preferred thickness is
It is 0.001 to 0.03 μm. The Ni-Mo-Co layer has excellent chemical resistance and can reduce the decrease in adhesive strength, that is, the deterioration rate even when immersed in an aqueous solution of hydrochloric acid or potassium cyanide. It also has excellent heat resistance and is a component that can prevent the deterioration of its adhesive strength even if it is held at high temperature for a long time. In particular, nickel is a component that exhibits an excellent effect of improving migration resistance.

【0024】このNi-Mo-Co層中の各金属含有量の好まし
い範囲を示すと、 ニッケル 30〜1200μg/dm2 モリブデン 30〜1000μg/dm2 及び コバルト 30〜1000μg/dm2 で構成
される。
The preferred range of the content of each metal in the Ni-Mo-Co layer is as follows: nickel 30 to 1200 μg / dm 2 molybdenum 30 to 1000 μg / dm 2 and cobalt 30 to 1000 μg / dm 2 .

【0025】ここで、各金属成分がもたらす作用につい
て説明する。Ni-Mo-Co層は三元合金層であることから、
この層のもたらす効果は各金属成分の相乗的効果である
ことが明らかであり、各金属成分の量及びその影響を一
概に限定して説明することはできないが、各種試作実験
によれば、概ね、次のように考えられる。
Here, the function of each metal component will be described. Since the Ni-Mo-Co layer is a ternary alloy layer,
It is clear that the effect brought by this layer is a synergistic effect of each metal component, and the amount of each metal component and its influence cannot be unequivocally limited, but according to various trial experiments, , Which is considered as follows.

【0026】ニッケルはNi-Mo-Co層におけるその金属含
有量が30μg/dm2未満の場合は、主にマイグレー
ションを防止する効果が減衰し、絶縁性能が低下するこ
とがある。一方、1200μg/dm2を超える場合
は、ニッケル以外の成分の量にも関連するが、エッチン
グ時に所定時間内に汎用エッチング液に溶けないという
不都合を生じることがある。
When the metal content of nickel in the Ni-Mo-Co layer is less than 30 μg / dm 2 , the effect of mainly preventing migration is attenuated and the insulation performance may be deteriorated. On the other hand, when it exceeds 1200 μg / dm 2 , it may be related to the amount of components other than nickel, but may cause a disadvantage that it is not dissolved in a general-purpose etching solution within a predetermined time during etching.

【0027】モリブデンはその金属含有量が30μg/
dm2未満の場合は、長時間加熱後の接着強度の劣化率
が大きくなることがあり、また1000μg/dm2
超える場合は、耐アルカリ性例えばシアン化カリウム水
溶液浸漬後の接着強度の劣化率が大きくなり、実用上支
障となることがある。
Molybdenum has a metal content of 30 μg /
When it is less than dm 2, the deterioration rate of the adhesive strength after heating for a long time may be large, and when it exceeds 1000 μg / dm 2 , the deterioration rate of the adhesive strength after dipping in alkali resistance, for example, potassium cyanide aqueous solution becomes large. , It may hinder practical use.

【0028】コバルトはその金属含有量が30μg/d
2未満の場合は特に長時間加熱処理後の接着強度の劣
化率が大きくなることがあり、1000μg/dm2
超える場合は、長時間加熱処理後や化学薬品処理後の接
着強度の劣化を増大させることがあり、また経済的な面
から言えば製造原価が上昇する。
Cobalt has a metal content of 30 μg / d
If it is less than m 2, the deterioration rate of the adhesive strength after a long-time heat treatment may be large, and if it exceeds 1000 μg / dm 2 , deterioration of the adhesive strength after a long-time heat treatment or a chemical treatment may occur. It may increase the production cost from the economical point of view.

【0029】この三成分の金属含有量を上記範囲に保持
することにより、従来の二元合金層などでは達成し得な
い接着強度の向上やマイグレーション防止などの効果に
特に優れたNi-Mo-Co層が得られる。特に好ましいNi-Mo-
Co層の金属含有量の範囲を示すと ニッケル 60〜1000μg/dm2 モリブデン 60〜600μg/dm2 及び コバルト 60〜600μg/dm2 である。
By keeping the metal contents of the three components within the above ranges, Ni-Mo-Co which is particularly excellent in the effect of improving the adhesive strength and preventing migration, which cannot be achieved by the conventional binary alloy layer and the like. A layer is obtained. Particularly preferred Ni-Mo-
The ranges of the metal content of the Co layer are nickel 60 to 1000 μg / dm 2 molybdenum 60 to 600 μg / dm 2 and cobalt 60 to 600 μg / dm 2 .

【0030】これら3種の金属を上記好ましい範囲又は
特に好ましい範囲で含有するNi-Mo-Co層は、ESCA分
析装置により分析してみると、最表層部には各金属の酸
化物、水酸化物が認められるが、大半を占めるその下層
部はニッケル、モリブデン及びコバルトからなる合金組
織の状態であることが確認されている。そして、厚さは
おおよそ0.001〜0.03μm程度であることも判
明している。また、この層の外観的色相は銅箔の粗面形
成状態や後記する本発明の銅箔を得る製造方法の浴組成
や電解条件の選択によって変動する各金属含有量により
異なるものの、赤褐色〜茶色〜褐色〜灰褐色として観察
される。
The Ni-Mo-Co layer containing these three kinds of metals in the above preferable range or particularly preferable range was analyzed by an ESCA analyzer, and the oxide and hydroxide of each metal were found in the outermost layer. Although some are found, it has been confirmed that the lower layer, which occupies most of them, has an alloy structure composed of nickel, molybdenum and cobalt. It is also known that the thickness is about 0.001 to 0.03 μm. Further, the appearance hue of this layer varies depending on the metal content which varies depending on the selection of the bath composition and the electrolysis conditions of the production method for obtaining the copper foil of the present invention described below and the rough surface forming state of the copper foil, but it is reddish brown to brown. ~ Observed as brown to off-brown.

【0031】また、本発明は更に、前記Ni-Mo-Co層上に
クロメート処理層を有するプリント回路銅箔、及びクロ
メート処理層上に更にシランカップリング剤処理層を有
するプリント回路用銅箔を提供するものである。
The present invention further provides a printed circuit copper foil having a chromate treatment layer on the Ni-Mo-Co layer and a copper foil for a printed circuit having a silane coupling agent treatment layer on the chromate treatment layer. It is provided.

【0032】これら本発明のプリント回路用銅箔につい
て説明すると、Ni-Mo-Co層上にクロメート処理層を具備
した場合、防錆性と接着強度とを同時に高められる効果
と、アルカリ液や酸液に浸漬した後の耐化学薬品性の接
着強度の劣化率を小さくさせる効果が併せて得られる。
更にシランカップリング剤処理層をクロメート処理層上
に具備すれば、接着強度特性を飛躍的に高められ、プリ
ント回路用銅箔の品質上の信頼性が著しく向上するとい
う効果を生じる。
These copper foils for printed circuits according to the present invention will be described. When a chromate-treated layer is provided on the Ni-Mo-Co layer, the effect of simultaneously improving the rust-preventing property and the adhesive strength, and the alkaline solution or acid. The effect of reducing the deterioration rate of the adhesive strength of the chemical resistance after being immersed in the liquid is also obtained.
Further, when the silane coupling agent-treated layer is provided on the chromate-treated layer, the adhesive strength characteristics can be dramatically improved, and the quality reliability of the copper foil for printed circuit can be significantly improved.

【0033】このクロメート処理層はクロム酸化物、ク
ロム水酸化物からなっており、クロムを金属として測定
した金属含有量の好ましい範囲は10〜90μg/dm
2、特に好ましくは30〜60μg/dm2の範囲であ
る。
This chromate-treated layer is composed of chromium oxide and chromium hydroxide, and the preferable range of the metal content measured with chromium as the metal is 10 to 90 μg / dm.
2 , particularly preferably in the range of 30 to 60 μg / dm 2 .

【0034】また、シランカップリング剤処理層は、後
記するシランカップリング剤を所定量の水等で希釈した
濃度、好ましくは、0.001〜5%(重量)の水溶液
を塗布乾燥させたものであり、特に好ましくは前記接着
特性の向上と経済性を考慮すると0.01〜3%(重
量)の水溶液から塗布乾燥させたシランカップリング剤
処理層である。
The silane coupling agent-treated layer is obtained by coating and drying an aqueous solution of a silane coupling agent, which will be described later, diluted with a predetermined amount of water or the like, preferably 0.001 to 5% (weight). In view of the improvement of the adhesive property and the economical efficiency, a silane coupling agent-treated layer coated and dried from an aqueous solution of 0.01 to 3% (by weight) is particularly preferable.

【0035】次に本発明のプリント回路用銅箔の製造方
法について述べると、その特徴とするところは、ニッケ
ルイオン、モリブデン酸イオン及びコバルトイオンが共
存するメッキ浴中に銅箔を浸漬し、陰極処理を施して少
なくとも一方の銅箔面にニッケル、モリブデン、及びコ
バルトからなる三元合金被覆層を形成することにある。
Next, the method for producing a copper foil for a printed circuit according to the present invention will be described. The feature is that the copper foil is immersed in a plating bath in which nickel ions, molybdate ions and cobalt ions coexist, and the cathode is used. The treatment is to form a ternary alloy coating layer made of nickel, molybdenum, and cobalt on at least one copper foil surface.

【0036】また、本発明は、前記被覆層上に六価クロ
ムイオンを含む水溶液中で陰極処理を施してクロメート
処理層を形成するプリント回路用銅箔の製造方法、更に
は、該クロメート処理層上に更にシランカップリング剤
処理層を形成するプリント回路用銅箔の製造方法をも提
供するものである。
The present invention also provides a method for producing a copper foil for a printed circuit, which comprises subjecting the coating layer to a cathodic treatment in an aqueous solution containing hexavalent chromium ions to form a chromate-treated layer, and further the chromate-treated layer. The present invention also provides a method for producing a copper foil for a printed circuit, which further has a silane coupling agent treatment layer formed thereon.

【0037】以下に本発明のプリント回路用銅箔の製造
方法について詳述する。先に記載した銅箔材料を用い、
必要に応じて予め粗面形成をする。例えば、電解銅箔を
用いてこれを硫酸銅メッキ浴、ピロリン酸銅メッキ浴、
スルファミン酸銅メッキ浴、クエン酸銅メッキ浴などに
浸漬し、銅箔の少なくとも一方の面に陰極処理を施し、
銅箔面に必要に応じた樹枝状〜粒状の銅粒子を電着形成
させて得られる、いわゆる粗面化銅箔を用意する。そし
てこの銅箔粗面上にNi-Mo-Co層を形成する。
The method for producing a copper foil for a printed circuit according to the present invention will be described in detail below. Using the copper foil material described above,
If necessary, a rough surface is formed in advance. For example, using electrolytic copper foil, copper sulfate plating bath, copper pyrophosphate plating bath,
Immersed in copper sulfamate plating bath, copper citrate plating bath, etc., and subject at least one surface of the copper foil to cathodic treatment,
A so-called roughened copper foil, which is obtained by electrodeposition-forming dendritic to granular copper particles as needed on the copper foil surface, is prepared. Then, a Ni-Mo-Co layer is formed on the rough surface of the copper foil.

【0038】本発明のプリント回路用銅箔を製造するに
あたっては、Ni-Mo-Co層の形成には電気メッキ法、化学
メッキ法、蒸着法、スパッタリング法、メタリコン法な
どを用いることができる。しかし、これらの中では電気
メッキ法によって陰極電解処理によって実施する本発明
の方法が、量産性、経済性の点で実用上有利である。
In producing the copper foil for a printed circuit of the present invention, an electroplating method, a chemical plating method, a vapor deposition method, a sputtering method, a metallikon method or the like can be used for forming the Ni—Mo—Co layer. However, among these, the method of the present invention, which is carried out by cathodic electrolysis by electroplating, is practically advantageous in terms of mass productivity and economical efficiency.

【0039】本発明の製造方法は、この電気メッキ法を
用いて電着形成することにより実施される。このためま
ずメッキ浴を建浴する。
The manufacturing method of the present invention is carried out by electrodeposition using this electroplating method. Therefore, the plating bath is first constructed.

【0040】メッキ浴としては、洒石酸、グリコール
酸、乳酸、クエン酸、リンゴ酸などの脂肪族オキシ酸浴
やグルコン酸浴、スルファミン酸浴、ピロリン酸浴など
を挙げることができる。この中では、浴管理、環境問
題、廃水処理などを考慮するとクエン酸浴を適用するこ
とが望ましい。
Examples of the plating bath include an aliphatic oxyacid bath such as garnetic acid, glycolic acid, lactic acid, citric acid and malic acid, a gluconic acid bath, a sulfamic acid bath and a pyrophosphoric acid bath. Among them, citric acid bath is preferably applied considering bath management, environmental problems, wastewater treatment and the like.

【0041】クエン酸浴を用いる場合について説明する
と、クエン酸やクエン酸のナトリウム塩、カリウム塩、
アンモニウム塩などの中から少なくとも一種を選択し、
所定量の水に溶解して使用する。使用量は10〜100
g/l、好ましくは10〜50g/lの範囲が電着形
成、経済性の点から望ましい。
Explaining the case of using a citric acid bath, citric acid and sodium salts, potassium salts of citric acid,
Select at least one of ammonium salts,
It is used by dissolving it in a prescribed amount of water. The amount used is 10-100
The range of g / l, preferably 10 to 50 g / l is desirable from the viewpoint of electrodeposition formation and economy.

【0042】これに共存させる金属イオン源は前述した
通りニッケルイオン、モリブデン酸イオン及びコバルト
イオンの3種類である、各金属イオン供給源として使用
可能な薬剤を例示すると、ニッケルイオン源としては硫
酸ニッケル、塩化ニッケル、炭酸ニッケル、酢酸ニッケ
ル、蟻酸ニッケルなどが挙げられる。
As described above, the metal ion sources coexisting with these are the three types of nickel ions, molybdate ions and cobalt ions. Examples of chemical agents that can be used as the respective metal ion source are nickel sulfate. , Nickel chloride, nickel carbonate, nickel acetate, nickel formate and the like.

【0043】モリブデン酸イオン源としてはモリブデン
酸ナトリウム、モリブデン酸カリウム、モリブデン酸ア
ンモニウムなどが使用できる。
As the molybdate ion source, sodium molybdate, potassium molybdate, ammonium molybdate, etc. can be used.

【0044】コバルトイオン源としては硫酸コバルト、
酢酸コバルト、スルファミン酸コバルト、塩化コバル
ト、硫酸二アンモニウムコバルト、グルコン酸コバルト
などが使用できる。
As a cobalt ion source, cobalt sulfate,
Cobalt acetate, cobalt sulfamate, cobalt chloride, diammonium cobalt sulfate, cobalt gluconate and the like can be used.

【0045】これらの各イオン源薬剤を所定量の水に溶
解し、Ni-Mo-Co層を電着させるためのメッキ浴として用
いる。
Each of these ion source chemicals is dissolved in a predetermined amount of water and used as a plating bath for electrodepositing the Ni-Mo-Co layer.

【0046】このメッキ浴に銅箔を浸漬し、陰極電解処
理を施してNi-Mo-Co層を形成するがメッキ浴組成、電解
条件などの好ましい一例を示せば次の通りである。
( )内は特に好ましい範囲を示す。
A copper foil is dipped in this plating bath and subjected to cathodic electrolysis to form a Ni-Mo-Co layer. Preferred examples of the plating bath composition, electrolysis conditions, etc. are as follows.
The range in () indicates a particularly preferable range.

【0047】 硫酸ニッケル・6水和物 1〜100g/l(5〜50g/l) モリブデン酸ナトリウム・2水和物0.5〜20g/l(1〜10g/l) 硫酸コバルト・7水和物 0.5〜100g/l(1〜50g/l) クエン酸三ナトリウム・2水和物10〜100g/l(20〜50g/l) 浴温度 10〜80℃(20〜40℃) pH 3〜7(4〜6.5) 陰極電流密度 1〜20A/dm2(2〜10A/dm2) 電解時間 1〜60秒(1〜10秒) 陽極 白金系不溶性陽極 陰極 電解銅箔又は圧延銅箔Nickel Sulfate Hexahydrate 1-100 g / l (5-50 g / l) Sodium Molybdate Dihydrate 0.5-20 g / l (1-10 g / l) Cobalt Sulfate Heptahydrate Material 0.5 to 100 g / l (1 to 50 g / l) Trisodium citrate dihydrate 10 to 100 g / l (20 to 50 g / l) Bath temperature 10 to 80 ° C (20 to 40 ° C) pH 3 ~ 7 (4 to 6.5) Cathode current density 1 to 20 A / dm 2 ( 2 to 10 A / dm 2 ) Electrolysis time 1 to 60 seconds (1 to 10 seconds) Anode platinum-based insoluble anode Cathode Electrolytic copper foil or rolled copper Foil

【0048】Ni-Mo-Co層の各金属含有量の範囲は前記し
た通りであり、その範囲内に保つことが重要である。そ
こでNi-Mo-Co層の金属含有量を適正に保つための増減調
節は通常、メッキ浴中の各金属イオン量(各薬剤の濃
度)や陰極電流密度、電圧、電解時間、pH、浴温、攪
拌などを適宜変動させて行う。このためNi-Mo-Co層中の
各金属含有量やメッキ浴中の金属成分の定量は定期的に
実施し、必要に応じて、メッキ浴中の金属成分の補充や
電解条件の適宜な選択を行うことが本発明の銅箔を量産
する上で望ましい。
The range of each metal content of the Ni-Mo-Co layer is as described above, and it is important to keep it within the range. Therefore, the increase / decrease adjustment to keep the metal content of the Ni-Mo-Co layer appropriate is usually done by the amount of each metal ion in the plating bath (concentration of each chemical), cathode current density, voltage, electrolysis time, pH, bath temperature. , Stirring and the like are appropriately changed. For this reason, the quantitative determination of each metal content in the Ni-Mo-Co layer and the metal component in the plating bath should be carried out regularly, and if necessary, the supplement of the metal component in the plating bath and the appropriate selection of electrolysis conditions should be selected. It is desirable to carry out the above in order to mass produce the copper foil of the present invention.

【0049】本発明のNi-Mo-Co層を形成する製造方法を
実施するにあたっては、例えば、所定の厚さと幅を有す
るコイル状に巻き取られた銅箔を、必要に応じて配設さ
れる脱指槽、酸洗槽、水洗槽そして粗面化処理銅メッキ
槽、水洗槽に次いでNi-Mo-Co層を形成するメッキ槽、水
洗槽及び乾燥装置等を連結した構成からなる銅箔処理装
置内を定速走行させ、連続的にコイル状に巻き取って製
造することが好ましい。
In carrying out the manufacturing method for forming the Ni—Mo—Co layer of the present invention, for example, a coiled copper foil having a predetermined thickness and width is arranged as necessary. A copper foil comprising a de-fingering bath, a pickling bath, a water washing bath and a surface-roughened copper plating bath, a plating bath for forming a Ni-Mo-Co layer next to the washing bath, a washing bath, and a drying device. It is preferable that the processing is carried out at a constant speed in the processing apparatus and continuously wound into a coil to manufacture.

【0050】また、本発明の方法において、Ni-Mo-Co層
上ヘのクロメート処理層又はクロメート処理層及びシラ
ンカップリング剤処理層の形成は、いずれの場合もNi-M
o-Co層を形成した後に水洗を経て行われる。
Further, in the method of the present invention, the formation of the chromate-treated layer or the chromate-treated layer and the silane coupling agent-treated layer on the Ni-Mo-Co layer is Ni-M in any case.
After forming the o-Co layer, washing is performed with water.

【0051】詳しくはまず、クロメート処理層の形成は
六価クロムイオンを含む水溶液を用いて行われる。クロ
メート処理層の形成は浸漬処理のみでも可能であるが、
本発明の方法に従い、陰極処理によって実施することが
好ましい。このときのメッキ浴組成及び電解条件を例示
すると次の通りである。( )内は特に好ましい範囲を
示す。
Specifically, first, the formation of the chromate-treated layer is performed using an aqueous solution containing hexavalent chromium ions. The chromate layer can be formed only by dipping,
Preference is given to carrying out according to the method of the invention by cathodic treatment. The plating bath composition and electrolysis conditions at this time are exemplified as follows. The range in () indicates a particularly preferable range.

【0052】 重クロム酸ナトリウム 0.1〜50g/l(1〜5g/l) 又はクロム酸、クロム酸カリウム pH(硫酸又は苛性ソーダなどで調整) 1〜13(3〜12) 浴温 0〜60℃(10〜40℃) 陰極電流密度 0.1〜50A/dm2(0.2〜5A/dm2) 電解時間 0.1〜100秒(1〜10秒)Sodium dichromate 0.1 to 50 g / l (1 to 5 g / l) or chromic acid, potassium chromate pH (adjusted with sulfuric acid or caustic soda) 1 to 13 (3 to 12) bath temperature 0 to 60 ° C (10 to 40 ° C) Cathode current density 0.1 to 50 A / dm 2 (0.2 to 5 A / dm 2 ) Electrolysis time 0.1 to 100 seconds (1 to 10 seconds)

【0053】上記操作によりNi-Mo-Co層上にクロメート
処理層が形成され、これを乾燥することにより本発明の
銅箔が製造される。
By the above operation, a chromate-treated layer is formed on the Ni-Mo-Co layer, and this is dried to produce the copper foil of the present invention.

【0054】また、本発明の更に他の方法によれば、ク
ロメート処理層を形成した後、水洗し、次いで、該クロ
メート処理層上にシランカップリング剤処理層を形成す
る。シランカップリング剤処理層の形成に用いられるシ
ランカップリング剤としては、先に本出願人が提案した
特公昭60−15654号公報記載の例えば、3−アミ
ノプロピルトリエトキシシラン、3−グリシドキシプロ
ピルトリメトキシシラン、3−メルカプトプロピルトリ
メトキシシラン、N−(2−アミノエチル)−3−アミ
ノプロピルメチルジメトキシシランなどを挙げることが
できる。これらシランカップリング剤の少なくとも一種
を選択して水溶液として用いる。濃度としては通常0.
001〜5重量%、好ましくは0.01〜3重量%の濃
度で使用する。この水溶液をクロメート処理層にスプレ
ー処理、浸漬処理などにより塗布する。塗布した後は、
乾燥を施せばNi-Mo-Co層上にクロメート処理層、更にシ
ランカップリング剤処理層が順次形成された本発明の銅
箔が製造される。
According to still another method of the present invention, after forming the chromate-treated layer, it is washed with water, and then the silane coupling agent-treated layer is formed on the chromate-treated layer. Examples of the silane coupling agent used for forming the silane coupling agent-treated layer include those described in Japanese Patent Publication No. 60-15654 previously proposed by the present applicant, such as 3-aminopropyltriethoxysilane and 3-glycidoxy. Examples thereof include propyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane and the like. At least one of these silane coupling agents is selected and used as an aqueous solution. The concentration is usually 0.
It is used in a concentration of 001 to 5% by weight, preferably 0.01 to 3% by weight. This aqueous solution is applied to the chromate-treated layer by spraying, dipping or the like. After applying,
If it is dried, the copper foil of the present invention in which a chromate treatment layer and a silane coupling agent treatment layer are sequentially formed on the Ni-Mo-Co layer is manufactured.

【0055】これら、クロメート処理層の形成、更には
シランカップリング剤処理層の形成により、本発明の目
的である接着強度特性の向上をより一層高めることがで
きる。なお、クロメート処理層を形成するメッキ浴に必
要があれば亜鉛イオンやモリブデン酸イオンなどを0.
1〜10g/l共存させて上記電解条件で陰極処理を施
し、亜鉛やモリブデンを含むクロメート処理層を形成し
てもよい。
By forming the chromate-treated layer and the silane coupling agent-treated layer, the improvement of the adhesive strength characteristics, which is the object of the present invention, can be further enhanced. Incidentally, if necessary for the plating bath for forming the chromate treatment layer, zinc ions, molybdate ions, etc. are added to the plating bath.
It is also possible to coexist 1 to 10 g / l and perform cathodic treatment under the above electrolysis conditions to form a chromate-treated layer containing zinc or molybdenum.

【0056】本発明の方法により得られる銅箔は各種の
銅張積層版の製造においてプリント回路用銅箔として樹
脂基材と積層されるが、適用可能な樹脂としてはエポキ
シ、フェノール、ポリイミド、不飽和ポリエステル、ケ
イ素などの熱硬性樹脂、ポリエチレン、飽和ポリエステ
ル、ポリエーテルサルフォンなどの熱可塑性樹脂、基材
としては、紙、ガラス、ガラス布、ガラス織布、ポリイ
ミド・ポリエステルフィルムなど、あるいはアルミニウ
ム、鉄などの金属板をベースとしたものなどが挙げられ
る。
The copper foil obtained by the method of the present invention is laminated with a resin substrate as a copper foil for a printed circuit in the production of various copper clad laminates. Applicable resins include epoxy, phenol, polyimide and Saturated polyester, thermosetting resin such as silicon, polyethylene, saturated polyester, thermoplastic resin such as polyether sulfone, as the substrate, paper, glass, glass cloth, glass woven cloth, polyimide / polyester film, etc., or aluminum, Examples include those based on a metal plate such as iron.

【0057】[0057]

【実施例】以下、本発明を実施例により詳しく説明す
る。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0058】実施例1 厚さ35μmの電解銅箔を硫酸銅メッキ浴に浸漬し、陰
極電解によって銅箔の片面に予め粒状銅を電着させ、粗
面を形成した。この銅箔を用いて表1にも示されている
ような下記組成のメッキ浴に クエン酸三ナトリウム(Na3657・2H2O) 30g/l 硫酸ニッケル(NiSO4・6H2O) 30g/l モリブデン酸ナトリウム(Na2MoO4・2H2O) 3g/l 硫酸コバルト(CoSO4・7H2O) 7g/l 銅箔を浸漬し、電解条件としてpH6.0、浴温度30
℃、電流密度2A/dm2、電解時間8秒で陰極電解
し、粗面上にNi-Mo-Co層を形成した。直ちに水洗した
後、重クロム酸ナトリウム(Na2Cr2O7・2H2O)3.5g/
l水溶液をpH5.7、温度26℃に調整し、この液に
得られた銅箔を浸漬し、電流密度0.5A/dm2、電
解時間5秒で陰極電解しNi-Mo-Co層上にクロメート処理
層を形成した。この銅箔を十分水洗した後、更に、クロ
メート処理層上に3−グリシドキシプロピルトリメトキ
シシラン0.15%(重量)水溶液(液温25℃)をス
プレーにより塗布し、直ちに乾燥温度100℃で5分間
乾燥させ、銅箔粗面側にNi-Mo-Co層、クロメート処理層
及びシランカップリング剤処理層を順次形成した本発明
の銅箔を製造した。
Example 1 An electrolytic copper foil having a thickness of 35 μm was immersed in a copper sulfate plating bath, and granular copper was electrodeposited on one surface of the copper foil in advance by cathodic electrolysis to form a rough surface. Using this copper foil, a plating bath having the following composition as shown in Table 1 was prepared. Trisodium citrate (Na 3 C 6 H 5 O 7 · 2H 2 O) 30 g / l Nickel sulfate (NiSO 4 · 6H) 2 O) 30 g / l Sodium molybdate (Na 2 MoO 4 · 2H 2 O) 3 g / l Cobalt sulfate (CoSO 4 · 7H 2 O) 7 g / l Copper foil was immersed, electrolysis conditions were pH 6.0, bath temperature Thirty
Cathodic electrolysis was carried out at a temperature of 2 ° C., a current density of 2 A / dm 2 , and an electrolysis time of 8 seconds to form a Ni—Mo—Co layer on the rough surface. Immediately after washing with water, sodium dichromate (Na 2 Cr 2 O 7 · 2H 2 O) 3.5 g /
The pH of the aqueous solution was adjusted to 5.7 and the temperature was 26 ° C., and the obtained copper foil was dipped in the solution and subjected to cathodic electrolysis at a current density of 0.5 A / dm 2 and an electrolysis time of 5 seconds on the Ni-Mo-Co layer A chromate-treated layer was formed on. After sufficiently washing this copper foil with water, a 0.15% (weight) aqueous solution of 3-glycidoxypropyltrimethoxysilane (liquid temperature 25 ° C.) was applied onto the chromate-treated layer by spraying, and the drying temperature was immediately 100 ° C. For 5 minutes to produce a copper foil of the present invention in which a Ni-Mo-Co layer, a chromate treatment layer and a silane coupling agent treatment layer were sequentially formed on the rough surface side of the copper foil.

【0059】この銅箔を試験片として銅箔面に形成した
被着成分の金属含有量をICP分析装置により定量分析
したところ、表1に示されているように ニッケル 500μg/dm2 モリブデン 260μg/dm2 コバルト 290μg/dm2
あった。
Quantitative analysis of the metal content of the adhered component formed on the copper foil surface using this copper foil as a test piece was carried out by an ICP analyzer, and as shown in Table 1, nickel 500 μg / dm 2 molybdenum 260 μg / dm 2 cobalt was 290 μg / dm 2 .

【0060】また、クロム金属含有量は40μg/dm
2であった。次にこの銅箔をFR−4グレードのエポキ
シ樹脂含浸ガラス基材と温度168℃、圧力38kg/
cm2で積層し、銅張積層板を作製した。
The chromium metal content is 40 μg / dm
Was 2 . Next, this copper foil was combined with FR-4 grade epoxy resin-impregnated glass base material, temperature 168 ° C., pressure 38 kg /
cm 2 was laminated to produce a copper clad laminate.

【0061】この銅張積層板を下記の試験に供し、その
結果を一括して表1に示した。 1.接着強度試験(引きはがし幅1mm、JIS C
6481に準拠) 常態−−−−積層後の接着強度[a(kgf/c
m)] 塩酸浸漬後の劣化率−−−−6N塩酸水溶液(温度2
5℃)に浸漬時間1時間保持した後の接着強度[b(k
gf/cm)]を測定し、劣化率(%)={(a−b)
/a}×100で示した。 シアン化カリウム浸漬後の劣化率−−−−10%シア
ン化カリウム水溶液(温度70℃)に浸漬時間0.5時
間保持した後の接着強度[c(kgf/cm)]を測定
し、劣化率(%)={(a−c)/a}×100で示し
た。 加熱処理後の劣化率 温度177℃の桓温槽中に240時間保持した後の接着
強度[d(kgf/cm)]を測定し、劣化率(%)=
{(a−d)/a}×100で示した。 煮沸処理後の劣化率 沸騰水中に2時間保持した後の接着強度[e(kgf/
cm)]を測定し、劣化率(%)={(a−e)/a}
×100で示した。
The copper-clad laminate was subjected to the following tests, and the results are shown together in Table 1. 1. Adhesive strength test (Peeling width 1mm, JIS C
6481) Normal state ----- Adhesive strength after lamination [a (kgf / c
m)] Deterioration rate after immersion in hydrochloric acid ---- 6N hydrochloric acid aqueous solution (temperature 2
Adhesive strength [b (k
gf / cm)], and the deterioration rate (%) = {(ab))
/ A} × 100. Deterioration rate after immersion in potassium cyanide -------- Adhesive strength [c (kgf / cm)] after being immersed in a 10% aqueous solution of potassium cyanide (temperature 70 ° C) for 0.5 hour was measured, and deterioration rate (%) = It is shown by {(a−c) / a} × 100. Deterioration rate after heat treatment Adhesive strength [d (kgf / cm)] after being kept in a water bath at a temperature of 177 ° C for 240 hours was measured, and the deterioration rate (%)
It is shown by {(ad) / a} × 100. Deterioration rate after boiling treatment Adhesive strength after being held in boiling water for 2 hours [e (kgf /
cm)], and the deterioration rate (%) = {(a−e) / a}
It was shown by × 100.

【0062】2.銅箔除去面の加熱変色性試験 銅張積層板をエッチング液(塩化第二銅)に浸漬し、銅
箔を除去した後水洗し、温度160℃の恒温槽中に2時
間保持した後の銅箔除去面の変色の有無を観察した。
○良好 ×変色あり 3.耐マイグレーション性試験 図1に示す装置を用いて粗面上に形成した各処理層が外
側になるように二つ折りにした銅箔試験片1を陽極と
し、鉄板2を陰極とし、陽極と陰極の間隙を2mmに調
整した後、両面から硝子板3ではさみ、間隙に蒸留水4
を満たして両極間に一定電圧(20V)を印加し、電流
が上昇するまでの時間(秒)を測定した。電流の上昇す
る時間が早い程マイグレーションの進行が早く、絶縁性
能低下が著しいことを示す。
2. Heat discoloration test of copper foil removal surface Copper clad laminate was immersed in an etching solution (cupric chloride) to remove the copper foil, washed with water, and then held in a thermostatic chamber at a temperature of 160 ° C. for 2 hours. The presence or absence of discoloration on the foil-removed surface was observed.
○ Good × discoloration 3. Migration resistance test Using the apparatus shown in FIG. 1, a copper foil test piece 1 folded in two so that each treatment layer formed on the rough surface is on the outside was used as an anode, and an iron plate 2 was used as a cathode. After adjusting the gap to 2 mm, sandwich the glass plate 3 from both sides and put distilled water 4 in the gap.
Then, a constant voltage (20 V) was applied between both electrodes, and the time (second) until the current increased was measured. It is shown that the earlier the current rises, the faster the migration progresses, and that the insulation performance deteriorates significantly.

【0063】実施例2 実施例1と同様の銅箔を用いて、実施例1と同様に表面
粗化を行い、表1に示すメッキ浴組成と電解条件により
Ni-Mo-Co層を形成した後、実施例1と同様の水洗及び乾
燥を施した。得られた銅箔を試験片とし、実施例1と同
様に金属含有量測定及び特性試験を実施し、その結果を
表1に示した。
Example 2 Using the same copper foil as in Example 1, surface roughening was performed in the same manner as in Example 1, and the plating bath composition and electrolytic conditions shown in Table 1 were used.
After the Ni-Mo-Co layer was formed, it was washed with water and dried as in Example 1. Using the obtained copper foil as a test piece, metal content measurement and characteristic test were carried out in the same manner as in Example 1, and the results are shown in Table 1.

【0064】実施例3 実施例1と同様の銅箔を用いて、実施例1と同様に表面
粗化を行い、表1に示すメッキ浴組成と電解条件により
Ni-Mo-Co層を形成し、水洗した後、実施例1と同様のク
ロメート処理層を形成し、水洗、乾燥を施した。得られ
た銅箔を試験片とし、実施例1と同様に金属含有量測定
及び特性試験を実施し、その結果を表1に示した。
Example 3 Using the same copper foil as in Example 1, surface roughening was performed in the same manner as in Example 1, and the plating bath composition and electrolysis conditions shown in Table 1 were used.
After forming a Ni-Mo-Co layer and washing with water, a chromate-treated layer similar to that in Example 1 was formed, washed with water and dried. Using the obtained copper foil as a test piece, metal content measurement and characteristic test were carried out in the same manner as in Example 1, and the results are shown in Table 1.

【0065】実施例4 実施例1と同様の銅箔を用いて、実施例1と同様に表面
粗化を行い、表1に示すメッキ浴組成と電解条件により
Ni-Mo-Co層を形成した後、実施例1と同様の水洗及び乾
燥を施した。得られた銅箔を試験片として、実施例1と
同様に金属含有量測定及び特性試験を実施し、その結果
を表1に示した。
Example 4 Using the same copper foil as in Example 1, surface roughening was performed in the same manner as in Example 1, and the plating bath composition and electrolytic conditions shown in Table 1 were used.
After the Ni-Mo-Co layer was formed, it was washed with water and dried as in Example 1. Using the obtained copper foil as a test piece, metal content measurement and characteristic test were carried out in the same manner as in Example 1, and the results are shown in Table 1.

【0066】実施例5 実施例1と同様の銅箔を用いて、実施例1と同様に表面
粗化を行い、表1に示すメッキ浴組成と電解条件により
Ni-Mo-Co層を形成し、水洗した後、実施例1と同様にク
ロメート処理層を形成し水洗した。以後は、シランカッ
プリング剤処理層を形成するために3−メルカプトプロ
ピルトリメトキシシラン0.08%(重量)水溶液を用
いたこと以外は実施例1と同様の操作を行った。得られ
た銅箔を試験片として、実施例1と同様に金属含有量測
定及び特性試験を実施し、その結果を表1に示した。
Example 5 Using the same copper foil as in Example 1, surface roughening was performed in the same manner as in Example 1, and the plating bath composition and electrolytic conditions shown in Table 1 were used.
After forming a Ni-Mo-Co layer and washing with water, a chromate-treated layer was formed and washed with water in the same manner as in Example 1. Thereafter, the same operation as in Example 1 was performed except that a 0.08% (weight) aqueous solution of 3-mercaptopropyltrimethoxysilane was used to form the silane coupling agent-treated layer. Using the obtained copper foil as a test piece, metal content measurement and characteristic test were carried out in the same manner as in Example 1, and the results are shown in Table 1.

【0067】実施例6 実施例1と同様の銅箔を用いて、実施例1と同様に表面
粗化を行い、表1に示すメッキ浴組成と電解条件により
Ni-Mo-Co層を形成し、水洗した後、実施例1と同様にク
ロメート処理層を形成し、水洗した。以後は、シランカ
ップリング剤処理層を形成するためにN−(2−アミノ
エチル)−3−アミノプロピルメチルジメトキシシラン
0.3%(重量)を用いたこと以外は実施例1と同様の
操作を行った。得られた銅箔を試験片として、実施例1
と同様に金属含有量測定及び特性試験を実施し、その結
果を表1に示した。
Example 6 Using the same copper foil as in Example 1, surface roughening was performed in the same manner as in Example 1, and the plating bath composition and electrolytic conditions shown in Table 1 were used.
After forming a Ni-Mo-Co layer and washing with water, a chromate-treated layer was formed in the same manner as in Example 1 and washed with water. Thereafter, the same operation as in Example 1 except that 0.3% (weight) of N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane was used to form the silane coupling agent-treated layer. I went. Example 1 using the obtained copper foil as a test piece
The metal content measurement and the characteristic test were carried out in the same manner as in, and the results are shown in Table 1.

【0068】実施例7 実施例1と同様の銅箔を用いて、実施例1と同様に表面
粗化を行い、表1に示すメッキ浴組成と電解条件により
Ni-Mo-Co層を形成し、水洗した後、実施例1と同様にク
ロメート処理層を形成し、水洗した。以後は、シランカ
ップリング剤処理層を形成するためにN−(2−アミノ
エチル)−3−アミノプロピルメチルジメトキシシラン
0.5%(重量)水溶液を用いたこと以外は実施例1と
同様の操作を行った。得られた銅箔を試験片として、実
施例1と同様に金属含有量測定及び特性試験を実施し、
その結果を表1に示した。
Example 7 Using the same copper foil as in Example 1, surface roughening was performed in the same manner as in Example 1, and the plating bath composition and electrolysis conditions shown in Table 1 were used.
After forming a Ni-Mo-Co layer and washing with water, a chromate-treated layer was formed in the same manner as in Example 1 and washed with water. Thereafter, the same procedure as in Example 1 was carried out except that a 0.5% (weight) aqueous solution of N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane was used to form the silane coupling agent-treated layer. The operation was performed. Using the obtained copper foil as a test piece, a metal content measurement and a characteristic test were carried out in the same manner as in Example 1,
The results are shown in Table 1.

【0069】実施例8 実施例1と同様の銅箔を用いて、実施例1と同様に表面
粗化を行い、表1に示すメッキ浴組成と電解条件により
Ni-Mo-Co層を形成し、水洗した後、実施例1と同様にク
ロメート処理層を形成し、水洗、乾燥を施した。得られ
た銅箔を試験片として、実施例1と同様に金属含有量測
定及び特性試験を実施し、その結果を表1に示した。
Example 8 Using the same copper foil as in Example 1, surface roughening was performed in the same manner as in Example 1, and the plating bath composition and electrolytic conditions shown in Table 1 were used.
After forming a Ni-Mo-Co layer and washing with water, a chromate-treated layer was formed in the same manner as in Example 1, followed by washing with water and drying. Using the obtained copper foil as a test piece, metal content measurement and characteristic test were carried out in the same manner as in Example 1, and the results are shown in Table 1.

【0070】実施例9 実施例1と同様の銅箔を用いて、実施例1と同様に表面
粗化を行い、表1に示すメッキ浴組成と電解条件により
Ni-Mo-Co層を形成した後、実施例1と同様の水洗及び乾
燥を施した。得られた銅箔を試験片として、実施例1と
同様に金属含有量測定及び特性試験を実施し、その結果
を表1に示した。
Example 9 Using the same copper foil as in Example 1, surface roughening was performed in the same manner as in Example 1, and the plating bath composition and electrolytic conditions shown in Table 1 were used.
After the Ni-Mo-Co layer was formed, it was washed with water and dried as in Example 1. Using the obtained copper foil as a test piece, metal content measurement and characteristic test were carried out in the same manner as in Example 1, and the results are shown in Table 1.

【0071】実施例10 実施例1と同様の銅箔を用いて、実施例1と同様に表面
粗化を行い、表1に示すメッキ浴組成と電解条件により
Ni-Mo-Co層を形成し、水洗した後、実施例1と同様にク
ロメート処理層を形成し、水洗した。以後は、シランカ
ップリング剤処理層を形成するために3−グリシドキシ
プロピルトリメトキシシラン0.15%(重量)水溶液
を用いたこと以外は実施例1と同様の操作を行った。得
られた銅箔を試験片として、実施例1と同様に金属含有
量測定及び特性試験を実施し、その結果を表1に示し
た。
Example 10 Using the same copper foil as in Example 1, surface roughening was performed in the same manner as in Example 1, and the plating bath composition and electrolysis conditions shown in Table 1 were used.
After forming a Ni-Mo-Co layer and washing with water, a chromate-treated layer was formed in the same manner as in Example 1 and washed with water. After that, the same operation as in Example 1 was performed except that a 0.15% (weight) aqueous solution of 3-glycidoxypropyltrimethoxysilane was used to form the silane coupling agent-treated layer. Using the obtained copper foil as a test piece, metal content measurement and characteristic test were carried out in the same manner as in Example 1, and the results are shown in Table 1.

【0072】実施例11 実施例1と同様の銅箔を用いて、実施例1と同様に表面
粗化を行い、表1に示すメッキ浴組成と電解条件により
Ni-Mo-Co層を形成し、水洗した後、実施例1と同様にク
ロメート処理層を形成し、水洗した。以後は、シランカ
ップリング剤処理層を形成するために3−アミノプロピ
ルトリエトキシシラン0.1%(重量)水溶液を用いた
こと以外は実施例1と同様の操作を行った。得られた銅
箔を試験片として、実施例1と同様に金属含有量測定及
び特性試験を実施し、その結果を表1に示した。
Example 11 Using the same copper foil as in Example 1, surface roughening was performed in the same manner as in Example 1, and the plating bath composition and electrolytic conditions shown in Table 1 were used.
After forming a Ni-Mo-Co layer and washing with water, a chromate-treated layer was formed in the same manner as in Example 1 and washed with water. After that, the same operation as in Example 1 was performed except that a 0.1% (weight) aqueous solution of 3-aminopropyltriethoxysilane was used to form the silane coupling agent-treated layer. Using the obtained copper foil as a test piece, metal content measurement and characteristic test were carried out in the same manner as in Example 1, and the results are shown in Table 1.

【0073】実施例12 実施例1と同様の銅箔を用いて、実施例1と同様に表面
粗化を行い、表1に示すメッキ浴組成と電解条件により
Ni-Mo-Co層を形成し、水洗した後、実施例1と同様にク
ロメート処理層を形成し、水洗した。以後は、シランカ
ップリング剤処理層を形成するために3−グリシドキシ
プロピルトリメトキシシラン0.3%(重量)水溶液を
用いたこと以外は実施例1と同様の操作を行った。得ら
れた銅箔を試験片として、実施例1と同様に金属含有量
測定及び特性試験を実施し、その結果を表1に示した。
Example 12 Using the same copper foil as in Example 1, surface roughening was performed in the same manner as in Example 1, and the plating bath composition and electrolysis conditions shown in Table 1 were used.
After forming a Ni-Mo-Co layer and washing with water, a chromate-treated layer was formed in the same manner as in Example 1 and washed with water. After that, the same operation as in Example 1 was performed except that a 0.3% (weight) aqueous solution of 3-glycidoxypropyltrimethoxysilane was used to form the silane coupling agent-treated layer. Using the obtained copper foil as a test piece, metal content measurement and characteristic test were carried out in the same manner as in Example 1, and the results are shown in Table 1.

【0074】比較例1 実施例1と同様の銅箔を用いて実施例1と同様に表面粗
化を行い、銅箔粗面にメッキ浴組成 シアン化ナトリウム 50g/l 水酸化ナトリウム 60g/l シアン化銅 90g/l シアン化亜鉛 5g/l 電解条件 電流密度 5A/dm2 pH 12 温度 80℃ 電解時間 10秒 で陰極電解を施して銅・亜鉛合金層(合金比約銅70、
亜鉛30)を形成し水洗した後、実施例1と同様にクロ
メート処理層を形成し、水洗、乾燥を行った。得られた
銅箔を試験片として、実施例1と同様に金属含有量(亜
鉛のみ)及び特性試験を実施し、その結果を表2に示し
た。
Comparative Example 1 Using the same copper foil as in Example 1, surface roughening was performed in the same manner as in Example 1, and the rough surface of the copper foil was plated bath composition: sodium cyanide 50 g / l sodium hydroxide 60 g / l cyan Copper oxide 90 g / l Zinc cyanide 5 g / l Electrolysis conditions Current density 5 A / dm 2 pH 12 Temperature 80 ° C. Electrolysis time is 10 seconds and cathodic electrolysis is performed to give a copper / zinc alloy layer (alloy ratio about copper 70,
After forming zinc 30) and washing with water, a chromate-treated layer was formed in the same manner as in Example 1, followed by washing with water and drying. Using the obtained copper foil as a test piece, a metal content (zinc only) and characteristic test were conducted in the same manner as in Example 1, and the results are shown in Table 2.

【0075】比較例2 実施例1と同様の銅箔を用いて実施例1と同様に表面粗
化を行い、銅箔粗面にメッキ浴組成 シアン化ナトリウム 50g/l 水酸化ナトリウム 60g/l シアン化銅 90g/l シアン化亜鉛 5g/l 電解条件 電流密度 5A/dm2 pH 12 温度 80℃ 電解時間 10秒 で陰極電解を施して銅・亜鉛合金層を形成し水洗した
後、実施例1と同様にクロメート処理層及びシランカッ
プリング剤処理層を順次形成し、乾燥を行った。得られ
た銅箔を試験片として、実施例1と同様に金属含有量
(亜鉛のみ)及び特性試験を実施し、その結果を表2に
示した。
Comparative Example 2 Using the same copper foil as in Example 1, surface roughening was performed in the same manner as in Example 1, and the rough surface of the copper foil was plated bath composition: sodium cyanide 50 g / l sodium hydroxide 60 g / l cyan Copper oxide 90 g / l Zinc cyanide 5 g / l Electrolysis conditions Current density 5 A / dm 2 pH 12 Temperature 80 ° C. Electrolysis time 10 seconds After cathodic electrolysis to form a copper-zinc alloy layer and washing with water, Similarly, a chromate treatment layer and a silane coupling agent treatment layer were sequentially formed and dried. Using the obtained copper foil as a test piece, a metal content (zinc only) and characteristic test were conducted in the same manner as in Example 1, and the results are shown in Table 2.

【0076】比較例3 実施例1と同様の銅箔を用いて実施例1と同様に表面粗
化を行い、銅箔粗面にメッキ浴組成 NiSO4・6H2O 50g/l Na2MoO4・2H2O 5g/l Na3657・2H2O 30g/l 電解条件 pH 5.0 温度 30℃ 電流密度 2.0A/dm2 電解時間 4秒 で陰極電解を施し、ニッケル−モリブデン層を形成し、
水洗した後、実施例1と同様にクロメート処理層を形成
し、水洗、乾燥を行った。得られた銅箔を試験片として
実施例1と同様に金属含有量及び特性試験を実施し、そ
の結果を表2に示した。
Comparative Example 3 Using the same copper foil as in Example 1, the surface was roughened in the same manner as in Example 1, and the rough surface of the copper foil had a plating bath composition of NiSO 4 .6H 2 O 50 g / l Na 2 MoO 4. 2H 2 O 5 g / l Na 3 C 6 H 5 O 7 2H 2 O 30 g / l Electrolysis conditions pH 5.0 Temperature 30 ° C. Current density 2.0 A / dm 2 Cathodic electrolysis with electrolysis time 4 seconds, nickel. Forming a molybdenum layer,
After washing with water, a chromate-treated layer was formed in the same manner as in Example 1, followed by washing with water and drying. Using the obtained copper foil as a test piece, a metal content and characteristic test was carried out in the same manner as in Example 1, and the results are shown in Table 2.

【0077】比較例4 実施例1と同様の銅箔を用いて実施例1と同様に表面粗
化を行い、銅箔粗面にメッキ浴組成 NiSO4・6H2O 50g/l Na2MoO4・2H2O 7g/l Na3657・2H2O 30g/l 電解条件 pH 5.0 温度 30℃ 電流密度 2.0A/dm2 電解時間 4秒 で陰極電解を施して、ニッケル−モリブデン層を形成
し、水洗した後、実施例1と同様にクロメート処理層及
びシランカップリング剤処理層を順次形成し、乾燥を行
った。得られた銅箔を試験片として、実施例1と同様に
金属含有量及び特性試験を実施し、その結果を表2に示
した。
Comparative Example 4 Using the same copper foil as in Example 1, surface roughening was performed in the same manner as in Example 1, and the rough surface of the copper foil was plated bath composition NiSO 4 .6H 2 O 50 g / l Na 2 MoO 4 2H 2 O 7 g / l Na 3 C 6 H 5 O 7 2H 2 O 30 g / l Electrolysis conditions pH 5.0 Temperature 30 ° C. Current density 2.0 A / dm 2 Cathodic electrolysis with electrolysis time 4 seconds, After forming a nickel-molybdenum layer and washing with water, a chromate treatment layer and a silane coupling agent treatment layer were sequentially formed in the same manner as in Example 1 and dried. Using the obtained copper foil as a test piece, a metal content and characteristic test was carried out in the same manner as in Example 1, and the results are shown in Table 2.

【0078】比較例5 実施例1と同様の銅箔を用いて実施例1と同様に表面粗
化を行い、銅箔粗面にメッキ浴組成 NiSO4・6H2O 60g/l Na2MoO4・2H2O 10g/l Na3657・2H2O 30g/l 電解条件 pH 5.0 温度 30℃ 電流密度 2.0A/dm2 電解時間 8秒 で陰極電解を施して銅・亜鉛合金層を形成し水洗した
後、実施例1と同様にクロメート処理層及びシランカッ
プリング剤処理層を順次形成し、乾燥を行った。得られ
た銅箔を試験片として、実施例1と同様に金属含有量及
び特性試験を実施し、その結果を表2に示した。
Comparative Example 5 Using the same copper foil as in Example 1, surface roughening was performed in the same manner as in Example 1, and the rough surface of the copper foil had a plating bath composition of NiSO 4 .6H 2 O 60 g / l Na 2 MoO 4. 2H 2 O 10 g / l Na 3 C 6 H 5 O 7 2H 2 O 30 g / l Electrolysis conditions pH 5.0 Temperature 30 ° C. Current density 2.0 A / dm 2 Cathodic electrolysis with electrolysis time of 8 seconds and copper After the zinc alloy layer was formed and washed with water, a chromate treatment layer and a silane coupling agent treatment layer were sequentially formed in the same manner as in Example 1 and dried. Using the obtained copper foil as a test piece, a metal content and characteristic test was carried out in the same manner as in Example 1, and the results are shown in Table 2.

【0079】比較例6 実施例1と同様の銅箔を用いて実施例1と同様に表面粗
化を行い、銅箔粗面にメッキ浴組成 CoSO4・7H2O 30g/l Na2MoO4・2H2O 1g/l Na3657・2H2O 30g/l 電解条件 pH 5 温度 30℃ 電流密度 2A/dm2 電解時間 4秒 で陰極電解を施し、コバルト−モリブデン層を形成し、
水洗した後、実施例1と同様にクロメート処理層を形成
し、水洗、乾燥を行った。得られた銅箔を試験片とし
て、実施例1と同様に金属含有量及び特性試験を実施
し、その結果を表2に示した。
Comparative Example 6 Using the same copper foil as in Example 1, surface roughening was performed in the same manner as in Example 1, and the rough surface of the copper foil was plated bath composition CoSO 4 .7H 2 O 30 g / l Na 2 MoO 4・ 2H 2 O 1 g / l Na 3 C 6 H 5 O 7・ 2H 2 O 30 g / l Electrolysis conditions pH 5 Temperature 30 ° C. Current density 2 A / dm 2 Cathodic electrolysis with electrolysis time 4 seconds to form a cobalt-molybdenum layer. Formed,
After washing with water, a chromate-treated layer was formed in the same manner as in Example 1, followed by washing with water and drying. Using the obtained copper foil as a test piece, a metal content and characteristic test was carried out in the same manner as in Example 1, and the results are shown in Table 2.

【0080】比較例7 実施例1と同様の銅箔を用いて実施例1と同様に表面粗
化を行い、銅箔粗面にメッキ浴組成 CoSO4・7H2O 40g/l Na2MoO4・2H2O 3g/l Na3657・2H2O 30g/l 電解条件 pH 5 温度 30℃ 電流密度 2A/dm2 電解時間 6秒 で陰極電解を施し、コバルト−モリブデン層を形成し、
水洗した後、実施例1と同様にクロメート処理層及びシ
ランカップリング剤処理層を順次形成し、乾燥を行っ
た。得られた銅箔を試験片として、実施例1と同様に金
属含有量及び特性試験を実施し、その結果を表2に示し
た。
Comparative Example 7 Using the same copper foil as in Example 1, the surface was roughened in the same manner as in Example 1, and the rough surface of the copper foil had a plating bath composition of CoSO 4 .7H 2 O 40 g / l Na 2 MoO 4.・ 2H 2 O 3 g / l Na 3 C 6 H 5 O 7・ 2H 2 O 30 g / l Electrolysis conditions pH 5 Temperature 30 ° C. Current density 2 A / dm 2 Cathodic electrolysis with electrolysis time 6 seconds, cobalt-molybdenum layer Formed,
After washing with water, a chromate treatment layer and a silane coupling agent treatment layer were sequentially formed and dried as in Example 1. Using the obtained copper foil as a test piece, a metal content and characteristic test was carried out in the same manner as in Example 1, and the results are shown in Table 2.

【0081】比較例8 実施例1と同様の銅箔を用いて実施例1と同様に表面粗
化を行い、銅箔粗面にメッキ浴組成 CoSO4・7H2O 7g/l Na2MoO4・2H2O 10g/l Na3657・2H2O 30g/l 電解条件 pH 5 温度 30℃ 電流密度 2A/dm2 電解時間 8秒 で陰極電解を施し、コバルト−モリブデン層を形成し、
水洗した後、実施例1と同様にクロメート処理層及びシ
ランカップリング剤処理層を順次形成し、乾燥を行っ
た。得られた銅箔を試験片として、実施例1と同様に金
属含有量及び特性試験を実施し、その結果を表2に示し
た。
Comparative Example 8 Using the same copper foil as in Example 1, surface roughening was performed in the same manner as in Example 1, and the rough surface of the copper foil was plated bath composition CoSO 4 .7H 2 O 7 g / l Na 2 MoO 4 2H 2 O 10 g / l Na 3 C 6 H 5 O 7 2H 2 O 30 g / l Electrolysis conditions pH 5 Temperature 30 ° C. Current density 2 A / dm 2 Cathodic electrolysis with electrolysis time 8 seconds, cobalt-molybdenum layer Formed,
After washing with water, a chromate treatment layer and a silane coupling agent treatment layer were sequentially formed and dried as in Example 1. Using the obtained copper foil as a test piece, a metal content and characteristic test was carried out in the same manner as in Example 1, and the results are shown in Table 2.

【0082】比較例9 実施例1と同様の銅箔を用いて実施例1と同様に表面粗
化を行い、次いで重クロム酸ナトリウム(Na2C r2O7・2H
2O)3.5g/l水溶液をメッキ浴とし、pH5.7、
液温26℃、電流密度0.5A/dm2、電解時間5秒
の条件で陰極電解を施し、銅箔粗面上にクロメート処理
層を形成した後、水洗、乾燥を行った。得られた銅箔を
試験片として実施例1と同様に金属含有量及び特性試験
を実施し、その結果を表2に示した。
Comparative Example 9 A copper foil similar to that of Example 1 was used, and the surface roughness was similar to that of Example 1.
And then sodium dichromate (Na2C r2O7・ 2H
2O) 3.5 g / l aqueous solution as a plating bath, pH 5.7,
Liquid temperature 26 ° C, current density 0.5A / dm2, Electrolysis time 5 seconds
Cathodic electrolysis under the conditions of, and chromate treatment on the rough surface of copper foil
After forming the layer, it was washed with water and dried. The obtained copper foil
As a test piece, metal content and characteristic test as in Example 1
Was carried out and the results are shown in Table 2.

【0083】比較例10 実施例1と同様の銅箔を用いて実施例1と同様に表面粗
化を行い、次いで銅箔粗面に重クロム酸ナトリウム(Na2
C r2O7・2H2O)3.5g/l水溶液をメッキ浴とし、pH
5.7、液温26℃、電流密度0.5A/dm2、電解
時間5秒の条件で陰極電解を施し、銅箔粗面上にクロメ
ート処理層を形成した。水洗した後、更に、3−グリシ
ドキシプロピルトリメトキシシラン0.15%(重量)
水溶液を液温25℃でシャワーにより塗布し、直ちに乾
燥温度100℃で5分間乾燥させ、銅箔面にクロメート
処理層及びシランカップリング剤処理層を形成した銅箔
を製造した。この銅箔を試験片として実施例1と同様に
金属含有量及び特性試験を実施し、その結果を表2に示
した。
Comparative Example 10 A copper foil similar to that of Example 1 was used and the surface roughness was similar to that of Example 1.
The surface of the copper foil, and then add sodium dichromate (Na2
C r2O7・ 2H2O) 3.5g / l aqueous solution as a plating bath, pH
5.7, Liquid temperature 26 ° C, Current density 0.5A / dm2,electrolytic
Perform cathodic electrolysis under the condition of time of 5 seconds and chrome on the rough surface of copper foil.
A coating layer was formed. After washing with water, 3-glyc
Doxypropyltrimethoxysilane 0.15% (weight)
Apply the aqueous solution with a shower at a liquid temperature of 25 ° C and dry immediately.
Chromate the copper foil surface by drying at a drying temperature of 100 ° C for 5 minutes
Copper foil with treatment layer and silane coupling agent treatment layer
Was manufactured. This copper foil was used as a test piece in the same manner as in Example 1.
A metal content and characteristic test was conducted, and the results are shown in Table 2.
did.

【0084】[0084]

【表1】 [Table 1]

【0085】[0085]

【表2】 A:積層後の接着強度 B:塩酸浸漬後の劣化率 C:シアン化カリウム浸漬後の劣化率 D:加熱処理後の劣化率 E:煮沸処理後の劣化率 F:耐マイグレーション性 G:銅箔除去面の加熱変色性 銅箔面にNi-Mo-Co層のみを形成した銅箔の例(実施例
2、4、9)、これにクロメート処理層を形成した銅箔
の例(実施例3、8)及びクロメート処理層上に、更
に、シランカップリング剤処理層を形成した銅箔の例
(実施例1、5、6、7、10、11、12)は本発明
の代表的な実施例である。このうち、実施例2、4、9
は他の実施例に比べると常態時の接着強度は若干の低下
が見られるものの実用上の水準を保持している。更に、
他の実施例と同様に、いずれも塩酸やシアン化カリウム
水溶液に浸漬した後の接着強度の劣化率は小さく抑えら
れている。また、電気特性の一つでもある耐マイグレー
ション性にも優れ、銅イオンのマイグレーション現象か
ら生じる絶縁性の低下を長時間に渡って防止しうること
がわかる。これら諸要求特性に優れていることから、本
発明のプリント回路用銅箔は高温や高湿の劣悪な環境下
での使用にも耐え、良好な品質信頼性を維持しうるもの
である。これらの特性向上には、上記ニッケル、モリブ
デン及びコバルトの各金属性質あるいはそれらの相乗的
作用によってもたらされる合金性質が関与しているもの
と考えられ、更にクロメート処理層やシランカップリン
グ剤処理層によってその効果を更に引き出しているもの
と考えられる。
[Table 2] A: Adhesive strength after lamination B: Degradation rate after dipping in hydrochloric acid C: Degradation rate after dipping in potassium cyanide D: Degradation rate after heat treatment E: Degradation rate after boiling treatment F: Migration resistance G: Copper foil removed surface Example of heat discoloration of copper foil having Ni-Mo-Co layer formed only on the copper foil surface (Examples 2, 4, 9), and example of copper foil having chromate treatment layer formed thereon (Examples 3, 8) ) And a chromate-treated layer on which a silane coupling agent-treated layer is further formed (Examples 1, 5, 6, 7, 10, 11, 12) are representative examples of the present invention. is there. Of these, Examples 2, 4, 9
Although the adhesive strength in the normal state is slightly lower than those of the other Examples, the value remains at a practical level. Furthermore,
Similar to the other examples, the deterioration rate of the adhesive strength after dipping in hydrochloric acid or an aqueous solution of potassium cyanide is suppressed to be small. Further, it is understood that the anti-migration property, which is also one of the electrical characteristics, is excellent, and the deterioration of the insulating property caused by the migration phenomenon of copper ions can be prevented for a long time. Due to these excellent required characteristics, the copper foil for a printed circuit according to the present invention can withstand use in a bad environment of high temperature and high humidity and maintain good quality reliability. It is considered that each of the above-mentioned metal properties of nickel, molybdenum and cobalt or alloy properties brought about by their synergistic action are involved in the improvement of these properties, and further by a chromate treatment layer or a silane coupling agent treatment layer. It is considered that the effect is further brought out.

【0086】これにひきかえ、二元合金層を形成する先
行技術からの銅箔の比較例1〜8では、表記する質の異
なる要求特性を同時に満足させることが困難であること
が示されている。すなわち、比較例1は煮沸後の劣化率
が大きく実用上支障のあることを示し、比較例2では、
耐マイグレーション性も低い。比較例3、4、5では、
シアン化カリウム水溶液浸漬後の劣化率が大きく、エッ
チング後の銅箔除去面加熱変色性に難点があり、また、
耐マイグレーション性においても成分量によっては改善
を加える必要性が認められる。比較例6、7、8はシア
ン化カリウム水溶液浸漬後の劣化率が大きく、耐マイグ
レーション性においては大いに改善が要求される。ま
た、本発明のNi-Mo-Co層からなる三元合金被覆層は、そ
の厚み(μg/dm2)が比較的薄い場合(実施例11
など)でも比較例1〜8に比べて接着強度や耐マイグレ
ーション性などの効果が高められることがわかる。一
方、比較例9、10はNi-Mo-Co層も従来の合金層も形成
しなかった例であるが、長時間加熱処理後の接着強度、
耐マイグレーション性、銅箔除去面の加熱変色性におい
て、本発明のプリント回路用銅箔に比べると著しく劣る
ことがわかる。
In contrast, in Comparative Examples 1 to 8 of the copper foil from the prior art forming the binary alloy layer, it has been shown that it is difficult to simultaneously satisfy the required characteristics of different qualities as described. . That is, Comparative Example 1 shows that the deterioration rate after boiling is large and hinders practical use, and Comparative Example 2 shows that
It also has low migration resistance. In Comparative Examples 3, 4, and 5,
The deterioration rate after immersion in an aqueous solution of potassium cyanide is large, and there is a problem with the heat discoloration of the copper foil removal surface after etching.
It is recognized that the migration resistance also needs to be improved depending on the component amounts. Comparative Examples 6, 7, and 8 have a large deterioration rate after immersion in an aqueous solution of potassium cyanide, and much improvement in migration resistance is required. Further, the ternary alloy coating layer comprising the Ni—Mo—Co layer of the present invention has a relatively small thickness (μg / dm 2 ) (Example 11).
It is understood that the effects such as the adhesive strength and the migration resistance are enhanced as compared with Comparative Examples 1 to 8. On the other hand, Comparative Examples 9 and 10 are examples in which neither the Ni-Mo-Co layer nor the conventional alloy layer was formed.
It can be seen that the migration resistance and the heat discoloration of the copper foil-removed surface are significantly inferior to the copper foil for printed circuit of the present invention.

【0087】[0087]

【発明の効果】以上詳述したとおり、本発明のプリント
回路用銅箔は、銅箔の表面にニッケル、モリブデン及び
コバルトからなる三元合金被覆層を有していることか
ら、この銅箔を樹脂基材と積層して銅張積層板にしたと
き、積層時はもとより熱や化学薬品などによる苛酷な条
件の中でも銅箔と樹脂基材との両間の接着強度を良好に
保持し、実用上極めて有用である。加えて、本発明のプ
リント回路用銅箔は耐マイグレーション性に優れ、プリ
ント回路の絶縁特性の向上に大きく寄与するものであ
る。
As described in detail above, the copper foil for a printed circuit according to the present invention has a ternary alloy coating layer made of nickel, molybdenum and cobalt on the surface of the copper foil. When laminated with a resin base material to form a copper clad laminate, it maintains good adhesive strength between the copper foil and the resin base material even during severe conditions due to heat and chemicals as well as during lamination Above all very useful. In addition, the copper foil for a printed circuit of the present invention is excellent in migration resistance and greatly contributes to the improvement of the insulating characteristics of the printed circuit.

【0088】また、上記三元合金被覆層上に更にクロメ
ート処理層、又はクロメート処理層及びシランカップリ
ング剤処理層を形成することにより、更に耐熱性及び耐
化学薬品性に優れた接着性が得られる。
By further forming a chromate-treated layer, or a chromate-treated layer and a silane coupling agent-treated layer on the above ternary alloy coating layer, adhesiveness further excellent in heat resistance and chemical resistance can be obtained. To be

【0089】従って、近年ますます多層化、高密度化、
ファイン化などの著しいプリント配線板において、本発
明の銅箔は耐熱性、耐化学薬品性、耐マイグレーション
性などのプリント回路用銅箔に必要とされる要求特性を
十分に満たし、各種のプリント配線板の内層用、外層用
銅箔として好適に使用し得るものである。
Therefore, in recent years, the number of layers has increased, the density has increased,
In marked printed wiring boards, the copper foil of the present invention sufficiently satisfies the required properties required for printed circuit copper foils such as heat resistance, chemical resistance, migration resistance, etc. It can be suitably used as a copper foil for the inner and outer layers of the plate.

【0090】また、本発明の銅箔を得る製造方法におい
て、浴組成及び電解条件などの基本的な製造条件は広範
な中から選択が可能であり、管理上極めて容易である利
点を備えており、工業的規模での量産性に優れその価値
は大きい。
In addition, in the method for producing the copper foil of the present invention, the basic production conditions such as bath composition and electrolysis conditions can be selected from a wide range, and it has the advantage of being extremely easy to manage. Its mass production is excellent on an industrial scale and its value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】耐マイグレーション性を調べるために用いた試
験装置の断面概略図である。
FIG. 1 is a schematic cross-sectional view of a test apparatus used for examining migration resistance.

【符号の説明】[Explanation of symbols]

1 銅箔試験片 2 鉄板 3 硝子板 4 蒸溜水 1 Copper foil test piece 2 Iron plate 3 Glass plate 4 Distilled water

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 銅箔の表面にニッケル、モリブデン及び
コバルトからなる三元合金被覆層を有するプリント回路
用銅箔。
1. A copper foil for a printed circuit, which has a ternary alloy coating layer made of nickel, molybdenum and cobalt on the surface of the copper foil.
【請求項2】 銅箔の表面にニッケル、モリブデン及び
コバルトからなる三元合金被覆層、該被覆層上にクロメ
ート処理層を有するプリント回路用銅箔。
2. A copper foil for a printed circuit having a ternary alloy coating layer made of nickel, molybdenum and cobalt on the surface of the copper foil, and a chromate treatment layer on the coating layer.
【請求項3】 銅箔の表面にニッケル、モリブデン及び
コバルトからなる三元合金被覆層、該被覆層上にクロメ
ート処理層及び該クロメート処理層上に更にシランカッ
プリング剤処理層を有するプリント回路用銅箔。
3. A printed circuit having a ternary alloy coating layer made of nickel, molybdenum and cobalt on the surface of a copper foil, a chromate treatment layer on the coating layer and a silane coupling agent treatment layer on the chromate treatment layer. Copper foil.
【請求項4】 ニッケルイオン、モリブデン酸イオン及
びコバルトイオンが共存するメッキ浴中に銅箔を浸漬
し、陰極処理を施し、銅箔面にニッケル、モリブデン及
びコバルトからなる三元合金被覆層を形成するプリント
回路用銅箔の製造方法。
4. A copper foil is immersed in a plating bath in which nickel ions, molybdate ions, and cobalt ions coexist and subjected to cathodic treatment to form a ternary alloy coating layer made of nickel, molybdenum, and cobalt on the copper foil surface. Method for producing copper foil for printed circuit.
【請求項5】 ニッケルイオン、モリブデン酸イオン及
びコバルトイオンが共存するメッキ浴中に銅箔を浸漬
し、陰極処理を施して銅箔面にニッケル、モリブデン及
びコバルトからなる三元合金被覆層を形成し、次いで、
六価クロムイオンを含む水溶液中で陰極処理を施して該
被覆層上にクロメート処理層を形成するプリント回路用
銅箔の製造方法。
5. A copper foil is immersed in a plating bath in which nickel ions, molybdate ions and cobalt ions coexist, and subjected to cathodic treatment to form a ternary alloy coating layer of nickel, molybdenum and cobalt on the copper foil surface. And then
A method for producing a copper foil for a printed circuit, comprising performing a cathodic treatment in an aqueous solution containing hexavalent chromium ions to form a chromate-treated layer on the coating layer.
【請求項6】 ニッケルイオン、モリブデン酸イオン及
びコバルトイオンが共存するメッキ浴中に銅箔を浸漬
し、陰極処理を施して銅箔面にニッケル、モリブデン及
びコバルトからなる三元合金被覆層を形成し、次いで、
六価クロムイオンを含む水溶液中で陰極処理を施して該
被覆層上にクロメート処理層を形成し、次いで、更に該
クロメート処理層上にシランカップリング剤水溶液を塗
布してシランカップリング剤処理層を形成するプリント
回路用銅箔の製造方法。
6. A copper foil is immersed in a plating bath in which nickel ions, molybdate ions and cobalt ions coexist, and subjected to cathodic treatment to form a ternary alloy coating layer of nickel, molybdenum and cobalt on the copper foil surface. And then
Cathode treatment is performed in an aqueous solution containing hexavalent chromium ions to form a chromate-treated layer on the coating layer, and then a silane coupling agent aqueous solution is further applied on the chromate-treated layer to form a silane coupling agent-treated layer. A method of manufacturing a copper foil for a printed circuit, which comprises:
JP19029392A 1992-06-25 1992-06-25 Copper foil for printed circuit and method of manufacturing the same Expired - Fee Related JP2631061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19029392A JP2631061B2 (en) 1992-06-25 1992-06-25 Copper foil for printed circuit and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19029392A JP2631061B2 (en) 1992-06-25 1992-06-25 Copper foil for printed circuit and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0613749A true JPH0613749A (en) 1994-01-21
JP2631061B2 JP2631061B2 (en) 1997-07-16

Family

ID=16255763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19029392A Expired - Fee Related JP2631061B2 (en) 1992-06-25 1992-06-25 Copper foil for printed circuit and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2631061B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030481A (en) * 2000-07-19 2002-01-31 Nippon Denkai Kk Copper or copper alloy foil and its production method
US6461745B2 (en) * 2000-04-25 2002-10-08 Nippon Denkai, Ltd. Copper foil for tape carrier and tab carrier tape and tab tape carrier using the copper foil
JP2005082856A (en) * 2003-09-08 2005-03-31 Osaka Prefecture Nickel-molybdenum alloy plating liquid, plating film thereof, and plated article
JP2007119902A (en) * 2005-09-27 2007-05-17 Hitachi Cable Ltd Nickel plating solution and its preparation method, nickel plating method, and printed wiring board copper foil
JP2007165674A (en) * 2005-12-15 2007-06-28 Fukuda Metal Foil & Powder Co Ltd Copper foil for flexible printed wiring board for cof
JP2009206514A (en) * 2008-02-28 2009-09-10 Ls Mtron Ltd Copper foil for printed circuit and surface treating method thereof, and plating apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461745B2 (en) * 2000-04-25 2002-10-08 Nippon Denkai, Ltd. Copper foil for tape carrier and tab carrier tape and tab tape carrier using the copper foil
KR100429439B1 (en) * 2000-04-25 2004-05-03 닛폰 덴카이 가부시키가이샤 Tab carrier tape and tab tape carrier using copper foil
JP2002030481A (en) * 2000-07-19 2002-01-31 Nippon Denkai Kk Copper or copper alloy foil and its production method
JP4524026B2 (en) * 2000-07-19 2010-08-11 日本電解株式会社 Copper or copper alloy foil and method for producing the same
JP2005082856A (en) * 2003-09-08 2005-03-31 Osaka Prefecture Nickel-molybdenum alloy plating liquid, plating film thereof, and plated article
JP2007119902A (en) * 2005-09-27 2007-05-17 Hitachi Cable Ltd Nickel plating solution and its preparation method, nickel plating method, and printed wiring board copper foil
US7842397B2 (en) 2005-09-27 2010-11-30 Hitachi Cable, Ltd. Nickel plating solution and its preparation method, nickel plating method and printed wiring board copper foil
JP2007165674A (en) * 2005-12-15 2007-06-28 Fukuda Metal Foil & Powder Co Ltd Copper foil for flexible printed wiring board for cof
JP4660819B2 (en) * 2005-12-15 2011-03-30 福田金属箔粉工業株式会社 Copper foil for flexible printed wiring boards for COF
JP2009206514A (en) * 2008-02-28 2009-09-10 Ls Mtron Ltd Copper foil for printed circuit and surface treating method thereof, and plating apparatus

Also Published As

Publication number Publication date
JP2631061B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
JP3347457B2 (en) Non-cyanide copper-zinc electroplating bath, surface treatment method of copper foil for printed wiring board using the same, and copper foil for printed wiring board
US9580829B2 (en) Copper foil for printed circuit
JP5481577B1 (en) Copper foil with carrier
TWI719567B (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
JP5373995B2 (en) Copper foil with carrier
US7108923B1 (en) Copper foil for printed circuit board with taking environmental conservation into consideration
US8530749B2 (en) Copper foil attached to the carrier foil, a method for preparing the same and printed circuit board using the same
US20100270063A1 (en) Ultrathin copper foil with carrier and printed circuit board using same
US7344785B2 (en) Copper foil for printed circuit board, method for fabricating same, and trivalent chromium conversion treatment solution used for fabricating same
JPS6113688A (en) Copper foil for printed circuit and method of producing same
JPH1018075A (en) Electrolytic copper foil
US20130189538A1 (en) Method of manufacturing copper foil for printed wiring board, and copper foil printed wiring board
KR100654737B1 (en) Method of manufacturing Surface-treated Copper Foil for PCB having fine-circuit pattern and Surface-treated Copper Foil thereof
TWI756039B (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
JP2631061B2 (en) Copper foil for printed circuit and method of manufacturing the same
CN111757607B (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
TWI756038B (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
JP2014177657A (en) Copper foil with carrier, production method of copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and production method of printed wiring board
JP5373993B1 (en) Copper foil with carrier
JP5481591B1 (en) Copper foil with carrier
JP3806677B2 (en) Copper foil for printed wiring boards
TW201942422A (en) Surface-treated copper foil, copper-cladded laminate, and manufacturing method for printed wiring board
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JPH08335776A (en) Method for treating copper foil in printed circuit
JP6827083B2 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20120425

LAPS Cancellation because of no payment of annual fees