JPH06136402A - Method and device for producing magnetic metal powder - Google Patents

Method and device for producing magnetic metal powder

Info

Publication number
JPH06136402A
JPH06136402A JP4313946A JP31394692A JPH06136402A JP H06136402 A JPH06136402 A JP H06136402A JP 4313946 A JP4313946 A JP 4313946A JP 31394692 A JP31394692 A JP 31394692A JP H06136402 A JPH06136402 A JP H06136402A
Authority
JP
Japan
Prior art keywords
gas
stabilized
belt
oxygen
containing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4313946A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nakamura
浩之 中村
Yoshinori Hama
良典 浜
Shingo Ikeshita
慎吾 池下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP4313946A priority Critical patent/JPH06136402A/en
Priority to EP93114510A priority patent/EP0589296B1/en
Priority to DE69315935T priority patent/DE69315935T2/en
Priority to US08/118,659 priority patent/US5470374A/en
Publication of JPH06136402A publication Critical patent/JPH06136402A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/09Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To highly efficiently mass-produce a magnetic metal powder without the magnetic characteristic being deteriorated and having a uniform oxide film by continuously supplying a granulated magnetic metal powder consisting essentially of iron on a traveling belt, oxidizing and stabilizing the granulated material in the vapor phase. CONSTITUTION:A magnetic metal powder consisting essentially of iron is granulated to about 1-20mm diameter, oxidized and stabilized in the vapor phase. The granular material to be stabilized is continuously supplied on a gas- permeable belt 3 in a gas-circulated reaction furnace 1 from a raw material storage tank 14. The material is substantially let stand on the belt 3, passed through the furnace and heated to about 40-150 deg.C by a heater 4. An oxygen- contg. gas introduced from an inlet 6 is supplied vertically upwardly through a dispersion plate 2. The linear velocity of the gas is controlled to >=5cm/sec, preferably 15-100cm/sec. A stable magnetic metal powder without the magnetic characteristic being deteriorated and having a uniform oxide film is continuously obtained in this way on an industrial scale.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属磁性粉末の連続製造
方法および製造装置に関する。更に詳しくは磁気記録に
有用な金属磁性粉末の連続製造方法および製造装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous method and apparatus for producing metallic magnetic powder. More specifically, the present invention relates to a continuous production method and production apparatus for metal magnetic powder useful for magnetic recording.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
各種の記録方式の発展は著しいものがあるが、中でも磁
気記録再生装置の小型軽量化の進歩は顕著である。これ
につれて磁気テープ・磁気ディスク等の磁気記録媒体に
対する高性能化の要求が大きくなってきている。磁気記
録に対するこのような要求を満足するためには高い保磁
力と高い飽和磁化を有する磁性粉末が必要である。従
来、磁気記録用の磁性粉末として一般には針状のマグネ
タイトやマグヘマイト又はこれらの磁性酸化鉄粉末をコ
バルトで変性したいわゆるコバルト含有酸化鉄が用いら
れているが、より高出力の媒体を得るためにはより高い
保磁力・飽和磁化を持つ強磁性金属粉末いわゆるメタル
磁性粉が用いられ始めている。
2. Description of the Related Art In recent years,
Although various recording systems have been developed remarkably, the progress in reduction in size and weight of magnetic recording / reproducing devices is remarkable. Along with this, there is an increasing demand for higher performance of magnetic recording media such as magnetic tapes and magnetic disks. In order to satisfy such requirements for magnetic recording, magnetic powder having high coercive force and high saturation magnetization is required. Conventionally, as magnetic powder for magnetic recording, generally needle-shaped magnetite or maghemite or so-called cobalt-containing iron oxide obtained by modifying these magnetic iron oxide powders with cobalt is used, but in order to obtain a medium with higher output. Has started to use ferromagnetic metal powders with higher coercive force and saturation magnetization, so-called metal magnetic powders.

【0003】このような金属磁性粉末の製造法として
は、一般的に針状の含水酸化鉄または酸化鉄を主体とし
て含む鉄化合物の粉末を水素等の還元性ガス雰囲気中で
加熱して金属鉄にまで還元する方法が用いられている。
しかしながら、この金属磁性粉末は化学的に不安定であ
り空気中では酸化を受け、時間の経過とともに磁気特性
が低下するという欠点を有する。この欠点を解決するた
め、金属磁性粉末の表面に酸化被膜を形成し、安定化し
ようとの試みがなされ種々の方法が提案されている。
As a method for producing such metal magnetic powder, generally, iron-like iron compound powder mainly containing acicular hydrous iron oxide or iron oxide is heated in a reducing gas atmosphere such as hydrogen to produce metallic iron. The method of reducing to is used.
However, this magnetic metal powder is chemically unstable and is oxidized in the air, and has a drawback that its magnetic properties deteriorate with the passage of time. In order to solve this drawback, attempts have been made to form an oxide film on the surface of the magnetic metal powder to stabilize it, and various methods have been proposed.

【0004】従来の安定化処理の方法としては、溶剤中
に安定化しようとする金属磁性粉末を懸濁し酸化性ガス
を吹き込む方法、いわゆる液相酸化(例えば、特開昭60
-128202 号公報)が知られているが、溶剤中の酸化では
溶剤が酸化され、これが塗膜に悪影響を与えたり、溶剤
取扱い上の安全性確保等の問題がある。また気相中で酸
素分圧を調節したガスを用いて酸化被膜を形成する方
法、いわゆる気相酸化(例えば、特公昭59-14081号公
報)が知られており、現在ではこの気相酸化が一般的と
なっている。
As a conventional stabilization treatment method, a method of suspending a magnetic metal powder to be stabilized in a solvent and blowing an oxidizing gas, so-called liquid phase oxidation (see, for example, JP-A-60
-128202 publication) is known, but the oxidation in the solvent causes the solvent to be oxidized, which has a problem in that the coating film is adversely affected and the safety in handling the solvent is ensured. Also known is a method of forming an oxide film using a gas whose oxygen partial pressure is adjusted in the gas phase, so-called gas-phase oxidation (for example, Japanese Patent Publication No. 59-14081), and this gas-phase oxidation is now known. It is commonplace.

【0005】このような気相酸化に用いられる反応装置
としては、気体と固体の接触が良好な流動床が用いられ
ることが多い(例えば、特公昭59-14081号公報、特開昭
59-110701 号公報、特開平2-192103号公報)。しかしな
がら、流動床を用いる気相酸化方法では、粉末粒子同士
の接触あるいは衝突により粉末の凝集が促進されて磁気
特性が低下したり、また微粉が発生してこれが反応器外
に飛び出してしまう問題がある。
As a reactor used for such gas phase oxidation, a fluidized bed in which gas and solid are in good contact is often used (for example, Japanese Patent Publication No. 59-14081).
59-110701, JP-A-2-192103). However, in the gas-phase oxidation method using a fluidized bed, there is a problem that the agglomeration of the powder particles is promoted by the contact or collision of the powder particles and the magnetic properties are deteriorated, or fine powder is generated and the particles fly out of the reactor. is there.

【0006】これに対して安定化しようとする金属磁性
粉末を静置した状態、即ち固定床で気相酸化できれば上
記問題は解決できるが、この安定化方法では次のような
問題がある。即ち、金属磁性粉末の飽和磁化(σs)は
気相酸化により低下し、その低下量は気相酸化温度によ
り一義的に決定されるが、固定床で気相酸化を行うと酸
化反応により発生する反応熱が部分的に蓄積し、その部
分のみ高温となり必要以上に飽和磁化が低下したり、ま
た逆にガスの偏流により酸化されない部分が生じること
がある。その結果、得られる金属磁性粉末は飽和磁化に
非常にばらつきのあるものとなる。また場合によって
は、大気中に取り出したときに、未酸化の部分が急激な
酸化反応により発熱あるいは発火し、本来有する保磁力
と飽和磁化を大幅に損なう恐れがある。さらに、この様
な反応熱の部分的蓄積やガス偏流は固定床において層高
を高くするほど生じ易い。このため、(固定床層高/塔
径)を小さくすれば、均一な酸化膜を有する金属磁性粉
末を得ることができるが、その様な固定床バッチ気相酸
化方式では、生産効率が非常に悪く工業的生産方法とし
て適していない。
On the other hand, if the metallic magnetic powder to be stabilized can be gas-phase-oxidized in a stationary state, that is, in a fixed bed, the above problem can be solved, but this stabilizing method has the following problems. That is, the saturation magnetization (σs) of the magnetic metal powder is decreased by the gas phase oxidation, and the amount of decrease is uniquely determined by the gas phase oxidation temperature, but when the gas phase oxidation is performed in the fixed bed, it is generated by the oxidation reaction. Reaction heat may partially accumulate, and only that portion may become high in temperature to lower saturation magnetization more than necessary, or conversely, there may occur a portion that is not oxidized due to gas drift. As a result, the obtained magnetic metal powder has very different saturation magnetization. In some cases, when taken out into the atmosphere, a non-oxidized portion may generate heat or ignite due to a rapid oxidation reaction, and the original coercive force and saturation magnetization may be significantly impaired. Further, such partial accumulation of reaction heat and gas drift are likely to occur as the bed height increases in the fixed bed. Therefore, if (fixed bed layer height / tower diameter) is made small, a metal magnetic powder having a uniform oxide film can be obtained, but such a fixed bed batch gas phase oxidation method has a very high production efficiency. Badly not suitable as an industrial production method.

【0007】本発明はこのような問題を解決するために
なされたものであり、気相酸化による安定化処理に伴
う、磁気特性の低下や磁気特性、特に飽和磁化のばらつ
きがない均一な酸化被膜を有する金属磁性粉末を工業的
規模で高効率で連続的に量産するための製造方法および
製造装置を提供することを目的とする。
The present invention has been made in order to solve such a problem, and is a uniform oxide film having no deterioration in magnetic characteristics or variations in magnetic characteristics, particularly saturation magnetization, accompanying a stabilization treatment by vapor phase oxidation. An object of the present invention is to provide a manufacturing method and a manufacturing apparatus for continuously mass-producing the metal magnetic powder having the above-mentioned properties with high efficiency on an industrial scale.

【0008】[0008]

【課題を解決するための手段】本発明者らは、前記の課
題について検討を行った結果、気相酸化による安定化処
理をガス流通可能なベルトを有するガス流通型反応炉を
用いて行うことにより、均一な酸化被膜を有し優れた磁
気特性を示す金属磁性粉末が得られること、およびこの
様な金属磁性粉末を工業的に有利に連続製造できること
を見出し、本発明を完成したものである。
Means for Solving the Problems As a result of studying the above-mentioned problems, the present inventors have found that the stabilization treatment by gas phase oxidation is carried out by using a gas flow reactor having a belt through which gas can flow. According to the present invention, it was found that a metal magnetic powder having a uniform oxide film and exhibiting excellent magnetic properties can be obtained, and that such a metal magnetic powder can be continuously produced industrially advantageously, and the present invention has been completed. .

【0009】すなわち、本発明の要旨は、(1)鉄を主
体として含む金属磁性粉末を酸素含有ガスを用いて気相
酸化して安定化処理する工程を有する金属磁性粉末の製
造方法において、造粒した被安定化処理物をガス流通型
反応炉内に設けられたガス流通可能なベルト上に連続的
に供給して載置し、該被安定化処理物を移送しながら、
酸素含有ガスにより気相酸化して安定化処理を連続的に
行うことを特徴とする金属磁性粉末の製造方法、(2)
酸素含有ガスをベルト面に対して垂直上向きにガス線速
度5cm/sec以上で供給する請求項1記載の製造方
法、並びに(3)酸素含有ガスの入口および排出口、並
びに被安定化処理物の供給口および安定化処理物の排出
口を有するガス流通型反応炉本体と、該反応炉本体内に
設けられたガス流通可能なベルトを有する被安定化処理
物移送用ベルトコンベアと、前記酸素含有ガスの入口よ
り導入された酸素含有ガスを被安定化処理物の載置され
た該ベルト面に均一に分散供給させるガス分散板と、前
記反応炉本体内を加熱するよう配設された加熱手段を備
えてなることを特徴とする金属磁性粉末の製造装置に関
する。
That is, the gist of the present invention is (1) a method for producing a metal magnetic powder, which comprises a step of subjecting a metal magnetic powder containing iron as a main component to a gas phase oxidation using an oxygen-containing gas for stabilization treatment. The stabilized material to be granulated is continuously supplied and placed on a gas flowable belt provided in a gas flow type reaction furnace, while the stabilized material is transferred,
(2) A method for producing a magnetic metal powder, characterized in that gas-phase oxidation with an oxygen-containing gas is performed to continuously perform stabilization treatment,
The manufacturing method according to claim 1, wherein the oxygen-containing gas is supplied vertically upward with respect to the belt surface at a gas linear velocity of 5 cm / sec or more, and (3) an oxygen-containing gas inlet and outlet, and a material to be stabilized. A gas flow type reaction furnace main body having a supply port and a discharge port of the stabilized processed product, a belt conveyor for transferring a stabilized processed product having a belt capable of gas flow provided in the reaction furnace main body, and the oxygen-containing material A gas dispersion plate for uniformly dispersing and supplying the oxygen-containing gas introduced from the gas inlet to the belt surface on which the object to be stabilized is placed, and heating means arranged to heat the inside of the reaction furnace body. And a metal magnetic powder manufacturing apparatus.

【0010】まず、本発明の金属磁性粉末の製造方法に
用いる製造装置について、概略説明図である図4を用い
て説明する。反応炉本体40は酸素含有ガスの入口44
および酸素含有ガスの排出口45、被安定化処理物の供
給口46および安定化処理物の排出口47を有する密閉
式横型容器である。該反応炉本体の周囲には加熱手段4
3が設けられている。加熱手段の方式としては被安定化
処理物を気相酸化温度まで加熱できるものであれば特に
限定されない。例えば、可燃性燃料の燃焼方式、電気炉
方式、ジャケット方式などを用いることができる。な
お、本発明においては、反応炉本体40内の気相酸化温
度を一定に保つ目的等で、通常保温材を用いるなどして
断熱を行なっている。
First, the manufacturing apparatus used in the method for manufacturing the metallic magnetic powder of the present invention will be described with reference to FIG. 4, which is a schematic explanatory view. The reactor body 40 has an oxygen-containing gas inlet 44
And a sealed horizontal container having an outlet port 45 for oxygen-containing gas, a supply port 46 for the material to be stabilized, and an outlet 47 for the stabilized material. A heating means 4 is provided around the reactor body.
3 is provided. The heating means is not particularly limited as long as it can heat the material to be stabilized to the gas phase oxidation temperature. For example, a combustible fuel combustion method, an electric furnace method, a jacket method, or the like can be used. In the present invention, for the purpose of keeping the gas-phase oxidation temperature in the reaction furnace body 40 constant, heat insulation is usually performed by using a heat insulating material.

【0011】反応炉本体内には被安定化処理物を移送す
るためにベルトコンベア41を設けている。ベルトの形
状としては、造粒した被安定化処理物を保持できる目開
きであり、酸素含有ガスが該ベルト面の空孔中を流通し
た時の圧力損失が小さくなる開口率を有する通風性のエ
ンドレスベルト等であれば特に限定されない。例えばメ
ッシュベルト、多孔板ベルト等が挙げられる。なお、本
発明ではガス流通可能なベルトに被安定化処理物が保持
されるように、またガス流通により被安定化処理物がベ
ルト上で流動化状態となり被安定化処理物同士が接触す
ることを防ぎ、さらに被安定化処理物が飛散することを
防止するため、安定化処理される金属磁性粉末である被
安定化処理物は造粒物(以下、「造粒被安定化処理物」
と略す場合がある)にして用いるのが好ましい。また、
移送のための駆動装置も特に限定されることなく、例え
ば回転数可変モーター等が好適である。
A belt conveyor 41 is provided in the reactor body for transferring the material to be stabilized. The shape of the belt is a mesh that can hold the granulated material to be stabilized, and has a ventilation ratio that has an opening ratio that reduces the pressure loss when the oxygen-containing gas flows through the pores of the belt surface. There is no particular limitation as long as it is an endless belt or the like. For example, a mesh belt, a perforated plate belt, etc. may be mentioned. In the present invention, the object to be stabilized is held in a belt through which gas can flow, and the object to be stabilized is brought into a fluidized state on the belt due to the gas flow and the objects to be stabilized come into contact with each other. In order to prevent the stabilization target material from scattering and to prevent the stabilization target material from scattering, the stabilization target material, which is a metal magnetic powder to be stabilized, is a granulated material (hereinafter, "granulation stabilization target material").
May be abbreviated). Also,
The driving device for transfer is not particularly limited, and for example, a rotation speed variable motor or the like is suitable.

【0012】反応炉本体内には、酸素含有ガスの入口4
4より導入された酸素含有ガスを造粒被安定化処理物の
載った上記ベルト面に均一に分散供給するために、ガス
分散板42を設けている。ガス分散板としては多孔板、
焼結金属板、金網型、キャップ型等種々の形状のものが
採用できる。また、ガス分散板は造粒被安定化処理物を
載置したベルトの上側、またはベルトのリターン面の下
側に設置してもよいが、好ましくは、ガスシールが容易
であることから図4に示すように造粒被安定化処理物を
積載した面とリターン面の間に設置する。その際、ベル
トの有効気相酸化反応長さ(被安定化処理物が載置され
たベルト面の長さ)に合わせて1個の分散板を設置して
もよいし、数個の分散板をベルトの走行方向に連続して
設置しても良い。ガス分散板42への酸素含有ガスの供
給は、ガス分散板、ベルト及び造粒被安定化処理物層等
をガスが流通する際の圧力損失以上の吐出圧力を有する
ブロアー等で好適に行われる。
An oxygen-containing gas inlet 4 is provided in the reactor body.
A gas dispersion plate 42 is provided in order to uniformly disperse and supply the oxygen-containing gas introduced from No. 4 to the belt surface on which the granulated material to be stabilized is placed. Perforated plate as the gas dispersion plate,
Various shapes such as a sintered metal plate, a wire mesh type, and a cap type can be adopted. Further, the gas dispersion plate may be installed on the upper side of the belt on which the material to be stabilized for granulation is placed, or on the lower side of the return surface of the belt. As shown in, it is installed between the surface on which the granulated material to be stabilized is loaded and the return surface. At that time, one dispersion plate may be installed according to the effective gas phase oxidation reaction length of the belt (the length of the belt surface on which the material to be stabilized is placed), or several dispersion plates may be installed. May be continuously installed in the running direction of the belt. The oxygen-containing gas is preferably supplied to the gas dispersion plate 42 by a blower or the like having a discharge pressure equal to or higher than the pressure loss when the gas flows through the gas dispersion plate, the belt, the granulated material layer to be stabilized, and the like. .

【0013】本発明の製造装置には、ガス分散板より噴
出した酸素含有ガスがベルトの側面(端部)を通過する
ことなくベルト面を効果的に流通するように、適切なガ
スシール構造を設けるのが好ましい。この構造としては
ガス分散板およびベルトの側面にシール壁を設けた構
造、ガス分散板およびベルト側面と反応炉本体の側壁を
密着させた構造等が挙げられる。
The manufacturing apparatus of the present invention is provided with an appropriate gas seal structure so that the oxygen-containing gas ejected from the gas dispersion plate can effectively flow through the belt surface without passing through the side surface (end portion) of the belt. It is preferably provided. Examples of this structure include a structure in which a seal wall is provided on the side surface of the gas dispersion plate and the belt, and a structure in which the side surface of the gas dispersion plate and the belt are in close contact with the side wall of the reactor body.

【0014】次に、本発明の金属磁性粉末の製造方法に
ついて説明する。本発明の製造方法は、鉄を主体として
含む金属磁性粉末を酸素含有ガスを用いて気相酸化して
安定化処理する工程を有する金属磁性粉末の製造方法に
おいて、造粒した被安定化処理物をガス流通型反応炉内
に設けられたガス流通可能なベルト上に連続的に供給し
て載置し、該被安定化処理物を移送しながら、酸素含有
ガスにより気相酸化して安定化処理を連続的に行うこと
を特徴とするものである。本発明の製造方法は、前記の
製造装置を用いて好適に行うことができる。
Next, a method for producing the metallic magnetic powder of the present invention will be described. The production method of the present invention is a method for producing a metal magnetic powder, which comprises a step of subjecting a metal magnetic powder containing iron as a main component to a gas phase oxidation using an oxygen-containing gas to perform a stabilization treatment, in which an object to be stabilized is granulated. Is continuously supplied and placed on a belt in which a gas can flow, which is provided in a gas flow type reaction furnace, and the substance to be stabilized is transferred and stabilized by gas phase oxidation with an oxygen-containing gas. It is characterized in that the processing is continuously performed. The manufacturing method of the present invention can be suitably performed using the manufacturing apparatus described above.

【0015】図4によりこれを説明すると、酸素含有ガ
スは酸素含有ガスの入口44より導入され、ガス分散板
42よりガス流通可能なベルトコンベア41面に分散供
給されベルトコンベア41面の空孔中を通過して排出口
45から排出される。このように酸素含有ガスをベルト
コンベアを介して流通させつつ、加熱手段43により反
応炉本体40内部を所定の気相酸化温度で加熱する。ま
た、酸素含有ガスの入口44より導入される酸素含有ガ
スは外部の熱交換器(図示せず)等により、加熱しても
よい。一方、造粒した被安定化処理物をベルトコンベア
41上に連続的に被安定化処理物の供給口46より供給
して載置し、ベルトコンベアにより該被安定化処理物を
図中に示す矢印A方向に移送しながら、被安定化処理物
層内に酸素含有ガスを流通させて気相酸化による安定化
処理を連続的に行う。得られた安定化処理物は、安定化
処理物の排出口47より回収する。
Explaining this with reference to FIG. 4, the oxygen-containing gas is introduced from the oxygen-containing gas inlet 44 and dispersedly supplied from the gas dispersion plate 42 to the surface of the belt conveyor 41 through which the gas can flow, in the holes on the surface of the belt conveyor 41. And is discharged from the discharge port 45. While the oxygen-containing gas is thus circulated through the belt conveyor, the heating means 43 heats the inside of the reaction furnace body 40 at a predetermined vapor phase oxidation temperature. The oxygen-containing gas introduced from the oxygen-containing gas inlet 44 may be heated by an external heat exchanger (not shown) or the like. On the other hand, the granulated object to be stabilized is continuously supplied on the belt conveyor 41 from the supply port 46 of the object to be stabilized and placed, and the object to be stabilized is shown in the figure by the belt conveyor. While transferring in the direction of arrow A, an oxygen-containing gas is circulated in the material layer to be stabilized to continuously perform stabilization treatment by gas phase oxidation. The obtained stabilized product is collected from the discharge port 47 of the stabilized product.

【0016】本発明に用いられる被安定化処理物は、特
に限定されないが通常含水酸化鉄または酸化鉄を主体と
して含む鉄化合物粉末を出発原料として加熱還元により
製造されたものである。含水酸化鉄としては、例えばα
−FeOOH、β−FeOOH、γ−FeOOH等が挙
げられる。酸化鉄としては、例えばα−Fe2 3 、γ
−Fe2 3 、Fe3 4 等が挙げられる。これらの含
水酸化鉄または酸化鉄には、コバルト、亜鉛、銅、クロ
ム、ニッケル、珪素、アルミニウム、錫、チタン等の元
素を添加しても良い。また、これらの含水酸化鉄または
酸化鉄を主体として含む鉄化合物粉末の形状は、針状で
あれば特に限定されることはなく、具体的には短冊状、
スピンドル状、紡錘状、米粒状等を含むものである。こ
れらのうち、特に長さ0.3μm以下、軸比5以上の針
状晶の微粒子を用いる場合に、本発明の効果がさらに有
効となる。
The substance to be stabilized to be used in the present invention is not particularly limited, but it is usually produced by heating and reducing an iron compound powder mainly containing hydrous iron oxide or iron oxide as a starting material. Examples of hydrous iron oxide include α
-FeOOH, β-FeOOH, γ-FeOOH and the like can be mentioned. Examples of iron oxide include α-Fe 2 O 3 and γ
-Fe 2 O 3, Fe 3 O 4 and the like. Elements such as cobalt, zinc, copper, chromium, nickel, silicon, aluminum, tin and titanium may be added to these hydrous iron oxides or iron oxides. The shape of the iron compound powder mainly containing iron oxide hydroxide or iron oxide is not particularly limited as long as it is needle-like, and specifically, a strip shape,
It includes a spindle shape, a spindle shape, a rice grain shape and the like. Among these, the effect of the present invention becomes more effective particularly when fine particles of needle crystals having a length of 0.3 μm or less and an axial ratio of 5 or more are used.

【0017】本発明では、これらを加熱還元して製造さ
れた被安定化処理物(被安定化金属磁性粉末)を酸素を
含有するガスを用いて気相酸化させることにより、被安
定化処理物の粒子表面に酸化物からなる酸化被膜を形成
させて安定化処理を行う。なお、加熱還元の方法として
は、特に限定されることなく、通常公知の方法が用いら
れる。
In the present invention, the substance to be stabilized (the metal magnetic powder to be stabilized) produced by heating and reducing them is subjected to gas phase oxidation using a gas containing oxygen to obtain the substance to be stabilized. A stabilizing treatment is performed by forming an oxide film made of an oxide on the surface of the particles. The heating reduction method is not particularly limited, and a commonly known method is used.

【0018】本発明では前記の理由等により、このよう
な被安定化処理物は造粒した状態、即ち造粒被安定化処
理物として用いる。このとき、造粒被安定化処理物の形
状は特に限定されないが、重量平均粒子径1mm以上2
0mm以下に造粒したものを用いることが好ましい。1
mm未満の造粒被安定化処理物では上記酸素含有ガスを
好ましいガス流速で造粒被安定化処理物と接触させた場
合、造粒被安定化処理物が流動化状態となり易く、造粒
被安定化処理物がベルトコンベア上より飛び出したり、
造粒物同志の衝突により磁気特性が低下する恐れがあ
る。20mmを越えるものでは、造粒被安定化処理物内
での酸素含有ガスの拡散が不良となり生成する酸化被膜
が不均一なものとなってしまう。被安定化処理物の造粒
方法としては、公知の方法が用いられ、例えば撹拌転動
造粒、流動造粒、押し出し造粒、破砕造粒等が挙げられ
る。
In the present invention, for the reasons described above, such an object to be stabilized is used in a granulated state, that is, as an object to be granulated and stabilized. At this time, the shape of the granulated material to be stabilized is not particularly limited, but the weight average particle diameter is 1 mm or more 2
It is preferable to use granules having a size of 0 mm or less. 1
For the granulated material to be stabilized having a diameter of less than mm, when the oxygen-containing gas is brought into contact with the granulated material to be stabilized at a preferable gas flow rate, the granulated material to be stabilized tends to be in a fluidized state, Stabilized products jump out from the belt conveyor,
The magnetic properties may deteriorate due to the collision of granules. If it exceeds 20 mm, the diffusion of the oxygen-containing gas in the granulated material to be stabilized becomes poor and the resulting oxide film becomes non-uniform. As a method for granulating the material to be stabilized, a known method is used, and examples thereof include stirring rolling granulation, fluidized granulation, extrusion granulation and crush granulation.

【0019】本発明で使用する酸素含有ガスとしては、
酸素または空気と不活性ガスとの混合ガスを用いること
ができる。不活性ガスは金属磁性粉末と実質的に接触処
理条件下で反応することのないガスであり、具体的には
2 、He、Ne、Ar、CO2 等の単独または混合物
が挙げられる。混合ガス中の酸素濃度は100ppm 以上
2500ppm 以下が好ましく、150ppm 以上2000
ppm 以下がより好ましい。混合ガス中の酸素濃度が10
0ppm 未満では安定化処理に長時間を要し工業的に好ま
しくない。2500ppm を超えると酸化反応が急激に起
こり、反応温度が上昇し、一定反応温度を保持すること
が困難となり好ましくない。
The oxygen-containing gas used in the present invention includes
A mixed gas of oxygen or air and an inert gas can be used. The inert gas is a gas which does not substantially react with the magnetic metal powder under the contact treatment condition, and specific examples thereof include N 2 , He, Ne, Ar and CO 2 alone or in a mixture. The oxygen concentration in the mixed gas is preferably 100 ppm or more and 2500 ppm or less, and 150 ppm or more and 2000
ppm or less is more preferable. Oxygen concentration in mixed gas is 10
If it is less than 0 ppm, it takes a long time for the stabilization treatment, which is not industrially preferable. If it exceeds 2500 ppm, the oxidation reaction rapidly occurs, the reaction temperature rises, and it becomes difficult to maintain a constant reaction temperature, which is not preferable.

【0020】好ましいガス流速は造粒被安定化処理物の
粒径により異なるが、ベルト面に対して垂直上向きのガ
ス線速度で5cm/sec以上が好ましく、10cm/
sec以上がより好ましく、15cm/sec以上10
0cm/sec以下が特に好ましい。なお、ガス線速度
は気相酸化温度における速度である。ガス線速度が5c
m/sec未満であると、ガス気流による反応熱の除去
効果が小さくなるため、反応温度を一定に保つことが困
難となり反応熱が部分的に蓄積され、その部分のみ高温
となり必要以上に飽和磁化が低下することがある。また
ガスの偏流も発生し易くなるため、酸化されない部分が
生じることもある。その結果、飽和磁化に非常にばらつ
きのある金属磁性粉末が得られてしまい、場合によって
は大気中に取り出したときに、未酸化の部分が急激な酸
化反応により発熱あるいは発火し、本来有する保磁力と
飽和磁化を大幅に損なう恐れがあり好ましくない。
The preferred gas flow rate varies depending on the particle size of the granulated material to be stabilized, but it is preferably 5 cm / sec or more, and 10 cm / sec in the gas linear velocity vertically upward with respect to the belt surface.
sec or more is more preferable, 15 cm / sec or more 10
0 cm / sec or less is particularly preferable. The gas linear velocity is the velocity at the gas phase oxidation temperature. Gas linear velocity is 5c
If it is less than m / sec, the effect of removing the reaction heat by the gas flow becomes small, so that it becomes difficult to keep the reaction temperature constant, and the reaction heat is partially accumulated, and only that part becomes high temperature, and the saturation magnetization becomes higher than necessary. May decrease. In addition, since a nonuniform flow of gas is likely to occur, a portion that is not oxidized may occur. As a result, a magnetic metal powder with extremely different saturation magnetization is obtained, and in some cases, when taken out into the atmosphere, the unoxidized part generates heat or ignites due to a rapid oxidation reaction, and the coercive force originally possessed. And the saturation magnetization may be significantly impaired, which is not preferable.

【0021】造粒被安定化処理物のベルト上での層厚み
は通常30cm以下、好ましくは25cm以下である。
層厚みが30cmを越えると、前記の様に酸素含有ガス
のガス線速度を5cm/sec以上としても、反応熱の
部分的蓄積やガスの偏流により酸化被膜の形成が不均一
となる恐れがあるためである。
The layer thickness of the granulated material to be stabilized on the belt is usually 30 cm or less, preferably 25 cm or less.
When the layer thickness exceeds 30 cm, even if the gas linear velocity of the oxygen-containing gas is 5 cm / sec or more as described above, the formation of an oxide film may be non-uniform due to partial accumulation of reaction heat or gas drift. This is because.

【0022】気相酸化反応温度は40℃以上150℃以
下が好ましく、50℃以上130℃以下がより好まし
い。特に好ましくは50℃以上100℃以下である。反
応温度が40℃未満では、表面酸化が充分に行われず、
大気中に取り出したときに発火してしまう。150℃を
超えると必要以上に表面酸化が進み高い飽和磁化が得ら
れず好ましくない。また、気相酸化による安定化後の金
属磁性粉末の飽和磁化は反応温度により一義的に決定さ
れるため、所望の飽和磁化に応じて上記範囲内の略一定
反応温度に保つ必要がある。なお、略一定反応温度とは
所定の温度±5℃をいう。±5℃を越えて反応温度が変
動すると、所望の飽和磁化を有する金属磁性粉末が得ら
れない。
The gas phase oxidation reaction temperature is preferably 40 ° C. or higher and 150 ° C. or lower, more preferably 50 ° C. or higher and 130 ° C. or lower. It is particularly preferably 50 ° C. or higher and 100 ° C. or lower. If the reaction temperature is lower than 40 ° C, surface oxidation is not sufficiently performed,
It ignites when taken out into the atmosphere. If the temperature exceeds 150 ° C., the surface is oxidized more than necessary and high saturation magnetization cannot be obtained, which is not preferable. Further, since the saturation magnetization of the metal magnetic powder after being stabilized by vapor phase oxidation is uniquely determined by the reaction temperature, it is necessary to maintain the reaction temperature at a substantially constant reaction temperature within the above range depending on the desired saturation magnetization. The substantially constant reaction temperature means a predetermined temperature ± 5 ° C. If the reaction temperature fluctuates beyond ± 5 ° C, a metal magnetic powder having a desired saturation magnetization cannot be obtained.

【0023】反応炉本体内の滞留時間、即ち造粒被安定
化処理物が該反応炉本体内のベルト上に供給されてから
安定化処理物の排出口より出るまでの時間(気相酸化反
応時間)は、上記の諸条件にもよるが、通常1〜20時
間、好ましくは1.5〜18時間である。1時間より短
時間であると気相酸化による安定化処理が不十分であ
り、20時間より長時間であると金属磁性粉末の品質面
では問題ないが生産効率が低く好ましくない。本発明で
はこのように一定の滞留時間を設けて気相酸化を行うも
のであり、実質的に静置状態で気相酸化を行うことが可
能であるため、粒子同士の衝突や微粉の発生がなく、ま
た、被安定化処理物と酸素含有ガスの接触が良好であ
り、均一な酸化被膜を有し優れた磁気特性を有する金属
磁性粉末を製造することができる。このような滞留時間
は、通常、駆動用モーターの制御等によりベルトの走行
速度を変化させることにより調整することができる。
Residence time in the reaction furnace main body, that is, the time from when the granulated material to be stabilized is supplied onto the belt in the reaction furnace body until it exits from the discharge port of the stabilized material (gas phase oxidation reaction The time) is usually 1 to 20 hours, preferably 1.5 to 18 hours, although it depends on the above conditions. If the time is shorter than 1 hour, the stabilization treatment by vapor phase oxidation is insufficient, and if the time is longer than 20 hours, there is no problem in terms of the quality of the metal magnetic powder, but the production efficiency is low, which is not preferable. In the present invention, the gas phase oxidation is carried out by thus providing a certain residence time, and since the gas phase oxidation can be carried out in a substantially stationary state, the particles collide with each other and the generation of fine powder occurs. In addition, it is possible to produce a metallic magnetic powder which has good contact between the substance to be stabilized and the oxygen-containing gas, has a uniform oxide film, and has excellent magnetic properties. Such a residence time can be usually adjusted by changing the traveling speed of the belt by controlling the driving motor or the like.

【0024】以上のような本発明の製造方法により、均
一な酸化被膜を有し優れた磁気特性を示す金属磁性粉末
を工業的規模で高効率で連続的に量産することができ
る。
By the manufacturing method of the present invention as described above, it is possible to continuously mass-produce metal magnetic powder having a uniform oxide film and exhibiting excellent magnetic characteristics on an industrial scale with high efficiency.

【0025】[0025]

【実施例】以下、本発明を実施例により説明するが、本
発明はこれらの実施例によりなんら限定されるものでは
ない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0026】実施例1(製造装置例) 図1は本発明の製造装置の一例を縦断面図により示した
ものであり、図2,3はその製造装置の各部の断面図を
示したものである。反応炉本体1の大きさは巾390m
m、高さ620mm、長さ3900mmである。加熱手
段としては加熱用電気ヒーター4および保温材5を用い
た電気炉方式を採用している。
Embodiment 1 (Example of Manufacturing Apparatus) FIG. 1 is a longitudinal sectional view showing an example of the manufacturing apparatus of the present invention, and FIGS. 2 and 3 are sectional views showing respective parts of the manufacturing apparatus. is there. The size of the reactor body 1 is 390 m wide
m, height 620 mm, length 3900 mm. As a heating means, an electric furnace system using an electric heater 4 for heating and a heat insulating material 5 is adopted.

【0027】ベルト3は巾300mm、有効気相酸化反
応長さ3000mmのスチール製エンドレスメッシュベ
ルト(メッシュ口径0.15mm)である。このベルト
は造粒被安定化処理物がベルトの端部から脱落しないよ
うにするために図3に示すような断面形状となってい
る。そして、このベルトはベルト駆動ローラー11およ
び反応炉本体外に設けた駆動用モーター21により図中
の矢印A方向に一定の速度で走行する。ローラー駆動軸
12には酸素含有ガスをシールするために軸シール20
が設けてある。ガス分散板2は300×300mmの断
面を有する多孔板である。またこのガス分散板は造粒被
安定化処理物の載ったメッシュベルト面下側に8個の分
散板を連続して設置している。また、図2に示すように
ガス分散板より噴出した酸素含有ガスが、ベルトの側面
を通過せずベルト面を効果的に流通するようにガスシー
ル壁22を設けている。
The belt 3 is a steel endless mesh belt (mesh diameter 0.15 mm) having a width of 300 mm and an effective gas phase oxidation reaction length of 3000 mm. This belt has a sectional shape as shown in FIG. 3 in order to prevent the granulated material to be stabilized from falling off from the end portion of the belt. Then, this belt travels at a constant speed in the direction of arrow A in the figure by the belt drive roller 11 and the drive motor 21 provided outside the reactor main body. The roller drive shaft 12 has a shaft seal 20 for sealing an oxygen-containing gas.
Is provided. The gas dispersion plate 2 is a perforated plate having a cross section of 300 × 300 mm. This gas dispersion plate has eight dispersion plates continuously installed below the surface of the mesh belt on which the material to be granulated and stabilized is placed. Further, as shown in FIG. 2, the gas seal wall 22 is provided so that the oxygen-containing gas ejected from the gas distribution plate does not pass through the side surface of the belt but effectively flows through the belt surface.

【0028】反応炉本体の被安定化処理物の供給口8に
は原料貯槽14内の造粒被安定化処理物をメッシュベル
ト上に連続して供給するための原料フィーダー13を直
結している。原料フィーダーにはスクリューフィーダー
を使用した。また、厚み調整板10はメッシュベルト上
に供給された造粒被安定化処理物をメッシュベルト上で
一定の層厚みにするために設けてあり、層厚みを変化で
きる調整機構を有している。層厚みは、造粒被安定化処
理物の供給速度を原料フィーダー13の回転速度を制御
するとともに厚み調整板10の設定厚みを変えることに
より調整することができる。一定の層厚みになった造粒
被安定化処理物はベルトにより図中の矢印A方向に移動
して、酸素含有ガス入口6から反応炉本体内に導入され
ガス分散板より噴出する酸素含有ガスと接触し連続的に
気相酸化される。造粒被安定化処理物の滞留時間(造粒
被安定化処理物が該反応炉本体内のベルト上に供給され
てから安定化処理物の排出口9より出るまでの時間)、
すなわち気相酸化時間はベルトの走行速度により調整で
きるが、このベルト走行速度を適切に制御するために前
記駆動用モーター21は、モーターの回転数を可変に制
御できる機構を有している。所定の気相酸化時間を経て
得られた金属磁性粉末を回収するために安定化処理物の
排出口9には製品貯槽15が連結されている。また、酸
素含有ガスおよび安定化処理物が直接大気と接触するこ
とがないように原料貯槽14と製品貯槽15は窒素ガス
によりパージしている。
A raw material feeder 13 for continuously supplying the granulated material to be stabilized in the raw material storage tank 14 onto the mesh belt is directly connected to the supply port 8 of the material to be stabilized in the reactor body. . A screw feeder was used as the raw material feeder. Further, the thickness adjusting plate 10 is provided in order to make the granulated material to be stabilized supplied on the mesh belt a constant layer thickness on the mesh belt, and has an adjusting mechanism capable of changing the layer thickness. . The layer thickness can be adjusted by controlling the rotation speed of the raw material feeder 13 and changing the set thickness of the thickness adjusting plate 10 as to the supply speed of the granulated material to be stabilized. The granulated substance to be stabilized having a constant layer thickness moves in the direction of arrow A in the figure by the belt, and is introduced into the reactor main body from the oxygen-containing gas inlet 6 and ejected from the gas dispersion plate. And is continuously vapor-phase oxidized. Residence time of the granulated material to be stabilized (time from when the granulated material to be stabilized is supplied onto the belt in the reactor body until it exits from the discharge port 9 of the material to be stabilized),
That is, the gas-phase oxidation time can be adjusted by the traveling speed of the belt, but in order to appropriately control the traveling speed of the belt, the drive motor 21 has a mechanism capable of variably controlling the rotation speed of the motor. A product storage tank 15 is connected to the discharge port 9 of the stabilized material in order to recover the metal magnetic powder obtained after a predetermined vapor phase oxidation time. Further, the raw material storage tank 14 and the product storage tank 15 are purged with nitrogen gas so that the oxygen-containing gas and the stabilized product do not come into direct contact with the atmosphere.

【0029】実施例2(製造例) 安定化処理に使用した造粒被安定化処理物は、AlをF
eに対して4重量%含み、一次粒子の大きさが長軸長さ
0.22μm、軸比10である針状晶α−FeOOHを
押し出し造粒により重量平均粒子径3mmの造粒物と
し、その後加熱還元したものである。この安定化処理前
の被安定化処理物の磁気特性は、トルエン中に浸漬し続
いて大気中で風乾した後測定したところ、保磁力(H
c):1610[Oe]、飽和磁化(σs):142
[emu/g]、角形比(σr/σs):0.52
[−]であった。これを実施例1に示した製造装置によ
り500ppmの酸素を含有する空気/窒素混合ガスを
用いて70℃で気相酸化した。上記酸素含有ガスはメッ
シュベルト面に対して垂直上向きのガス線速度が35c
m/secとなるように流通した。
Example 2 (Production Example) The granulated material to be stabilized used in the stabilization treatment was Al
A needle-like crystal α-FeOOH having a major axis length of 0.22 μm and an axial ratio of 10 containing 4% by weight with respect to e is extruded into a granule having a weight average particle diameter of 3 mm, It is then heat-reduced. The magnetic properties of the material to be stabilized before the stabilization treatment were measured by immersing it in toluene and subsequently air-drying it in the air, and then measuring the coercive force (H
c): 1610 [Oe], saturation magnetization (σs): 142
[Emu / g], squareness ratio (σr / σs): 0.52
It was [-]. This was subjected to gas phase oxidation at 70 ° C. using an air / nitrogen mixed gas containing 500 ppm of oxygen by the manufacturing apparatus shown in Example 1. The oxygen-containing gas has a gas linear velocity of 35c vertically upward with respect to the mesh belt surface.
It was distributed so that it would be m / sec.

【0030】上記造粒被安定化処理物は原料貯槽14に
大気に触れさせることなく充填後、原料フィーダー13
により5.5kg/hrの速度で気相酸化温度まで加熱
した反応炉本体内に連続的に供給した。造粒被安定化処
理物のメッシュベルト上での層厚みは厚み調整板10に
より15cmとした。造粒被安定化処理物はベルトとと
もに矢印A方向に移動してメッシュベルトを流通する酸
素含有ガスと接触しながら連続的に気相酸化された。造
粒被安定化処理物の反応炉本体内滞留時間は、反応炉本
体外部に設けたベルト駆動用モーター21によりベルト
の走行速度を調整して8hrとした。
The above-described granulated material to be stabilized is filled in the raw material storage tank 14 without exposing it to the atmosphere, and then the raw material feeder 13 is used.
Was continuously fed at a rate of 5.5 kg / hr into the reactor body heated to the gas phase oxidation temperature. The layer thickness of the granulated material to be stabilized on the mesh belt was set to 15 cm by the thickness adjusting plate 10. The granulated material to be stabilized was continuously gas-phase oxidized while moving in the direction of arrow A together with the belt and in contact with the oxygen-containing gas flowing through the mesh belt. The residence time in the reaction furnace main body of the granulated material to be stabilized was set to 8 hours by adjusting the traveling speed of the belt by the belt driving motor 21 provided outside the reaction furnace main body.

【0031】以上の様な設定条件で製品貯槽内に6.1
kg/hrの金属磁性粉末を得ることができた。この金
属磁性粉末の一部を抜き出し試料振動型磁力計(VS
M)により磁気特性を測定し、および60℃、相対湿度
90%の酸化促進条件下に一週間放置後の飽和磁化の保
持率を測定した。その結果、保磁力(Hc):1575
[Oe]、飽和磁化(σs):129[emu/g]、
角形比(σr/σs):0.52[−]、飽和磁化保持
率:82[%]であり、優れた磁気特性を有するもので
あった。
Under the above set conditions, 6.1 is stored in the product storage tank.
It was possible to obtain a metal magnetic powder of kg / hr. A sample vibrating magnetometer (VS
The magnetic properties were measured by M), and the retention of the saturation magnetization after standing for one week under the oxidation-promoting conditions of 60 ° C. and 90% relative humidity was measured. As a result, coercive force (Hc): 1575
[Oe], saturation magnetization (σs): 129 [emu / g],
The squareness ratio ([sigma] r / [sigma] s) was 0.52 [-] and the saturation magnetization retention rate was 82 [%], indicating excellent magnetic properties.

【0032】実施例3(製造例) 造粒被安定化処理物として、SiをFeに対して3重量
%含み、一次粒子の大きさが長軸長さ0.25μm、軸
比10である針状晶α−Fe2 3 を押し出し造粒によ
り、重量平均粒子径3mmの造粒物とし、これを加熱還
元したものを用いた以外は実施例2と同様の条件で実施
した。なお安定化処理前の被安定化処理物の磁気特性
は、実施例2と同様の測定をしたところ、保磁力(H
c):1580[Oe]、飽和磁化(σs):148
[emu/g]、角形比(σr/σs):0.51
[−]であった。その結果、6.0kg/hrで安定化
処理された金属磁性粉末を得ることができた。この金属
磁性粉末の磁気特性は、保磁力(Hc):1550[O
e]、飽和磁化(σs):133[emu/g]、角形
比(σr/σs):0.51[−]、飽和磁化保持率:
82[%]であり、優れた磁気特性を有するものであっ
た。
Example 3 (Production Example) As a granulated material to be stabilized, a needle containing Si in an amount of 3% by weight and having a primary particle size having a major axis length of 0.25 μm and an axial ratio of 10. It was carried out under the same conditions as in Example 2 except that the crystalline α-Fe 2 O 3 was extruded to form a granulated product having a weight average particle diameter of 3 mm, and the granulated product was heated and reduced. The magnetic properties of the object to be stabilized before the stabilization treatment were measured in the same manner as in Example 2, and the coercive force (H
c): 1580 [Oe], saturation magnetization (σs): 148
[Emu / g], squareness ratio (σr / σs): 0.51
It was [-]. As a result, it was possible to obtain a metal magnetic powder which was stabilized at 6.0 kg / hr. The magnetic characteristics of this metal magnetic powder are as follows: Coercive force (Hc): 1550 [O
e], saturation magnetization (σs): 133 [emu / g], squareness ratio (σr / σs): 0.51 [−], saturation magnetization retention rate:
It was 82 [%] and had excellent magnetic properties.

【0033】[0033]

【発明の効果】本発明の製造方法および製造装置を用い
れば、被安定化処理物をベルト上で実質的に静置状態で
気相酸化できるため粒子同士の衝突や微粉の発生がな
く、また、被安定化処理物と酸素含有ガスの接触が良好
であり、均一な酸化被膜を有し優れた磁気特性を有する
金属磁性粉末を製造することができる。また、この様な
高品質金属磁性粉末を工業的に有利に連続して製造する
ことが可能となる。
EFFECT OF THE INVENTION By using the manufacturing method and the manufacturing apparatus of the present invention, the object to be stabilized can be gas-phase oxidized in a substantially stationary state on the belt, so that there is no collision between particles or generation of fine powder. It is possible to produce a metal magnetic powder that has good contact between the material to be stabilized and the oxygen-containing gas, has a uniform oxide film, and has excellent magnetic properties. Further, it becomes possible to continuously produce such a high-quality metal magnetic powder industrially advantageously.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の製造装置の一例を縦断面図によ
り示したものである。
FIG. 1 is a vertical sectional view showing an example of a manufacturing apparatus of the present invention.

【図2】図2は図1の製造装置のII−II線断面図であ
る。
FIG. 2 is a sectional view taken along line II-II of the manufacturing apparatus in FIG.

【図3】図3は図1の製造装置のI−I線断面図であ
る。
FIG. 3 is a cross-sectional view of the manufacturing apparatus of FIG. 1 taken along the line I-I.

【図4】図4は本発明の製造装置の概略説明図である。FIG. 4 is a schematic explanatory view of a manufacturing apparatus of the present invention.

【符号の説明】 1 反応炉本体 2 ガス分散板 3 ベルト 4 加熱用電気ヒーター 5 保温材 6 酸素含有ガスの入口 7 酸素含有ガスの排出口 8 被安定化処理物の供給口 9 安定化処理物の排出口 10 厚み調整板 11 ベルト駆動ローラー 12 ローラー駆動軸 13 原料フィーダー 14 原料貯槽 15 製品貯槽 16 窒素パージガス入口 17 窒素パージガス出口 18 窒素パージガス入口 19 窒素パージガス出口 20 軸シール 21 駆動用モーター 22 ガスシール壁 40 反応炉本体 41 ベルトコンベア 42 ガス分散板 43 加熱手段 44 酸素含有ガスの入口 45 酸素含有ガスの排出口 46 被安定化処理物の供給口 47 安定化処理物の排出口[Explanation of symbols] 1 reactor main body 2 gas dispersion plate 3 belt 4 electric heater for heating 5 heat insulating material 6 inlet for oxygen-containing gas 7 outlet for oxygen-containing gas 8 supply port for stabilized material 9 stabilized material Discharge port 10 Thickness adjusting plate 11 Belt drive roller 12 Roller drive shaft 13 Raw material feeder 14 Raw material storage tank 15 Product storage tank 16 Nitrogen purge gas inlet 17 Nitrogen purge gas outlet 18 Nitrogen purge gas inlet 19 Nitrogen purge gas outlet 20 Shaft seal 21 Drive motor 22 Gas seal Wall 40 Reactor body 41 Belt conveyor 42 Gas dispersion plate 43 Heating means 44 Oxygen-containing gas inlet 45 Oxygen-containing gas discharge port 46 Stabilized product supply port 47 Stabilized product discharge port

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鉄を主体として含む金属磁性粉末を酸素
含有ガスを用いて気相酸化して安定化処理する工程を有
する金属磁性粉末の製造方法において、造粒した被安定
化処理物をガス流通型反応炉内に設けられたガス流通可
能なベルト上に連続的に供給して載置し、該被安定化処
理物を移送しながら、酸素含有ガスにより気相酸化して
安定化処理を連続的に行うことを特徴とする金属磁性粉
末の製造方法。
1. A method for producing a metal magnetic powder, which comprises a step of subjecting a metal magnetic powder containing iron as a main component to a gas phase oxidation using an oxygen-containing gas to perform a stabilizing treatment, wherein a granulated substance to be stabilized is gasified. It is continuously supplied and placed on a belt in which a gas can flow, which is provided in a flow-type reaction furnace, and the stabilization treatment is carried out by carrying out gas phase oxidation with an oxygen-containing gas while transferring the substance to be stabilized. A method for producing a magnetic metal powder, which is characterized in that it is carried out continuously.
【請求項2】 酸素含有ガスをベルト面に対して垂直上
向きにガス線速度5cm/sec以上で供給する請求項
1記載の製造方法。
2. The manufacturing method according to claim 1, wherein the oxygen-containing gas is supplied vertically upward with respect to the belt surface at a gas linear velocity of 5 cm / sec or more.
【請求項3】 酸素含有ガスの入口および排出口、並び
に被安定化処理物の供給口および安定化処理物の排出口
を有するガス流通型反応炉本体と、該反応炉本体内に設
けられたガス流通可能なベルトを有する被安定化処理物
移送用ベルトコンベアと、前記酸素含有ガスの入口より
導入された酸素含有ガスを被安定化処理物の載置された
該ベルト面に均一に分散供給させるガス分散板と、前記
反応炉本体内を加熱するよう配設された加熱手段を備え
てなることを特徴とする金属磁性粉末の製造装置。
3. A gas flow type reaction furnace main body having an inlet and an outlet for an oxygen-containing gas, and a supply port and a discharge port for the stabilized material, and a gas flow type reaction furnace body provided in the reactor body. A belt conveyer for transporting an object to be stabilized having a belt through which a gas can flow, and an oxygen-containing gas introduced from the inlet of the oxygen-containing gas is uniformly dispersed and supplied to the belt surface on which the object to be stabilized is placed. An apparatus for producing magnetic metal powder, comprising: a gas dispersion plate for heating; and a heating means arranged to heat the inside of the reaction furnace body.
JP4313946A 1992-09-10 1992-10-28 Method and device for producing magnetic metal powder Pending JPH06136402A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4313946A JPH06136402A (en) 1992-10-28 1992-10-28 Method and device for producing magnetic metal powder
EP93114510A EP0589296B1 (en) 1992-09-10 1993-09-09 Method for production of magnetic metal particles and apparatus therefor
DE69315935T DE69315935T2 (en) 1992-09-10 1993-09-09 Method and device for producing magnetic metallic particles
US08/118,659 US5470374A (en) 1992-09-10 1993-09-10 Method for production of magnetic metal particles and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4313946A JPH06136402A (en) 1992-10-28 1992-10-28 Method and device for producing magnetic metal powder

Publications (1)

Publication Number Publication Date
JPH06136402A true JPH06136402A (en) 1994-05-17

Family

ID=18047408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4313946A Pending JPH06136402A (en) 1992-09-10 1992-10-28 Method and device for producing magnetic metal powder

Country Status (1)

Country Link
JP (1) JPH06136402A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103971924A (en) * 2014-05-07 2014-08-06 黟县越驰科技电子有限公司 Magnetic powder crystallizing furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103971924A (en) * 2014-05-07 2014-08-06 黟县越驰科技电子有限公司 Magnetic powder crystallizing furnace

Similar Documents

Publication Publication Date Title
US5116437A (en) Method for stabilization treatment of ferromagnetic metal powder
US4629500A (en) Use of novel rotary tubular kiln
US5470374A (en) Method for production of magnetic metal particles and apparatus therefor
JPH0693312A (en) Method and device for production magnetic metal powder
JPH06136402A (en) Method and device for producing magnetic metal powder
US4909865A (en) Process for producing a ferromagnetic metal powder having an oxidized coating
JPH0873907A (en) Production of magnetic metal powder and apparatus therefor
JPH10280013A (en) Production of metal magnetic powder and producing device therefor
US6391450B1 (en) Spindle-shaped goethite particles, spindle-shaped hematite particles, spindle-shaped magnetic iron-based alloy particles, and process for producing the same
JPH06172821A (en) Method and device for producing magnetic metal powder
JP3925640B2 (en) Spindle-like alloy magnetic particle powder for magnetic recording and production method thereof
JPH08157911A (en) Production of magnetic metallic powder and production apparatus therefor
JP2731603B2 (en) Stabilization method of metal magnetic powder
JPH06136401A (en) Production of magnetic metal powder
KR20030014085A (en) Spindle-shaped magnetic metal particles containing iron as main component and processes for producing the same
EP1253583B1 (en) Secondary agglomerates of magnetic metal particles for magnetic recording and process for producing the same
JP2000302445A (en) Fusiform goethite particle powder, fusiform hematite particle powder, and fusiform metallic magnetic particle powder consisting mainly of iron, and their production
JPS58161711A (en) Production of magnetic metallic powder
JP2002115002A (en) Spindle shaped metal magnetic particle essentially consisting of iron and its production method
JP3049765B2 (en) Surface treatment of magnetic powder
JP2000226606A (en) PRODUCTION OF SPINDLELIKE ALLOY MAGNETIC GRAIN POWDER ESSENTIALLY CONSISTING OF Fe AND Co FOR MAGNETIC RECORDING
JP3087804B2 (en) A granulated product for iron alloy magnetic particles for magnetic recording, a method for producing the same, and a method for producing iron alloy magnetic particles for magnetic recording using the granulated product.
JPH05163503A (en) Method for stabilizing magnetic metal powder
JPH0953105A (en) Production of ferrous powder for powder metallurgy and apparatus therefor
JPH02192103A (en) Manufacture of ferromagnetic metal powder having oxide film