JP2000226606A - PRODUCTION OF SPINDLELIKE ALLOY MAGNETIC GRAIN POWDER ESSENTIALLY CONSISTING OF Fe AND Co FOR MAGNETIC RECORDING - Google Patents

PRODUCTION OF SPINDLELIKE ALLOY MAGNETIC GRAIN POWDER ESSENTIALLY CONSISTING OF Fe AND Co FOR MAGNETIC RECORDING

Info

Publication number
JP2000226606A
JP2000226606A JP11343394A JP34339499A JP2000226606A JP 2000226606 A JP2000226606 A JP 2000226606A JP 11343394 A JP11343394 A JP 11343394A JP 34339499 A JP34339499 A JP 34339499A JP 2000226606 A JP2000226606 A JP 2000226606A
Authority
JP
Japan
Prior art keywords
spindle
particles
magnetic
shaped
particle powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11343394A
Other languages
Japanese (ja)
Inventor
Kenji Okinaka
健二 沖中
Masaaki Maekawa
昌章 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP11343394A priority Critical patent/JP2000226606A/en
Publication of JP2000226606A publication Critical patent/JP2000226606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing spindlelike alloy magnetic grain powder essentially consisting of Fe and Co for magnetic recording which has high coercive force and high saturation magnetization value in spite of the small size of crystallites advantageously from the industrial and economical phases. SOLUTION: Spindlelike goethite grains of 0.05 to 0.15 μm major axis size contg. cobalt of 20 to 45 atomic % expressed in terms of Co to the whole Fe or spindlelike hematite grains obtd. by subjecting the goethite grains to dehydration under heating are used as a starting raw material, this starting raw material is charged into a fixed layer reducing device to form a fixed layer of <=30 cm layer height, thereafter, its temp. is raised to the temp. range of 400 to 700 deg.C in an inert gas atmosphere, next, it is changed over to a reducing gas atmosphere, and, after that, the starting raw material is reduced in the temp. range of 400 to 700 deg.C by reducing gas in which gas superficial velocity is 40 to 150 cm/s.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、小さい結晶子サイ
ズ、殊に160Å以下であるにもかかわらず、高い保磁
力、殊に167.1kA/m(2100Oe)以上と大
きな飽和磁化値、殊に135Am/kg(135em
u/g)以上とを有する磁気記録用Fe及びCoを主成
分とする紡錘状合金磁性粒子粉末を、工業的、経済的に
有利に製造する方法に関するものである。
The present invention relates to a high coercive force, in particular a high saturation magnetization of 167.1 kA / m (2100 Oe) or more, in particular a small crystallite size, in particular of less than 160 °, in particular 135 Am 2 / kg (135 em
The present invention relates to a method for producing a spindle-shaped alloy magnetic particle powder mainly composed of Fe and Co for magnetic recording, which has at least u / g) or more, in an industrially and economically advantageous manner.

【0002】[0002]

【従来の技術】近年、オーディオ用、ビデオ用、コンピ
ュータ用の磁気記録再生用機器の小型軽量化、長時間記
録化、記録の高密度化、若しくは記憶容量の増大化が著
しく進行しており、磁気記録媒体である磁気テープ、磁
気ディスクに対する高性能化、高密度記録化の要求が益
々高まってきている。
2. Description of the Related Art In recent years, devices for magnetic recording / reproducing for audio, video, and computers have been significantly reduced in size and weight, long-time recording, high-density recording, or an increase in storage capacity. Demands for higher performance and higher density recording of magnetic tapes and magnetic disks as magnetic recording media are increasing more and more.

【0003】即ち、磁気記録媒体の高画像画質、高出力
特性、殊に周波数特性の向上及び保存特性、耐久性の向
上が要求され、その為には、磁気記録媒体に起因するノ
イズの低下、高い保磁力Hcと保磁力分布SFD、耐候
性ΔBmが優れていることが要求されている。
That is, high image quality and high output characteristics of magnetic recording media, particularly, improvement of frequency characteristics, storage characteristics, and durability are required. For that purpose, reduction of noise due to the magnetic recording media, It is required that the coercive force Hc, the coercive force distribution SFD, and the weather resistance ΔBm be excellent.

【0004】磁気記録媒体のこれらの諸特性は磁気記録
媒体に使用される磁性粒子粉末と密接な関係を有してお
り、近年においては、従来の酸化鉄磁性粒子粉末に比較
して高い保磁力と大きな飽和磁化値σsを有する鉄を主
成分とする金属磁性粒子粉末が注目され、デジタルオー
ディオテープ(DAT)、8mmビデオテープ、Hi−
8テープ、さらにハイビジョン用のW−VHSテープ、
デジタル記録方式のDVCテープ等に使用され、コンピ
ューター用ではZip,スーパーディスク等のリムーバ
ブルディスクに使用され、最近では大容量のHi−FD
で採用され、現在その事業化段階にある。
[0004] These characteristics of the magnetic recording medium are closely related to the magnetic particle powder used in the magnetic recording medium, and in recent years, the coercive force is higher than that of the conventional iron oxide magnetic particle powder. And magnetic metal particles containing iron as a main component and having a large saturation magnetization σs are attracting attention, such as digital audio tape (DAT), 8 mm video tape, Hi-
8 tapes, and W-VHS tapes for HDTV,
Used for digital recording type DVC tapes and the like. For computers, it is used for removable disks such as Zip and Super Disk. Recently, large capacity Hi-FD is used.
And is currently in the commercialization stage.

【0005】そこで、これらの鉄を主成分とする金属磁
性粒子粉末についても更に特性改善が強く望まれてい
る。
[0005] Therefore, it is strongly desired to further improve the characteristics of the magnetic metal particles containing iron as a main component.

【0006】即ち、より高い保磁力、優れた保磁力分布
SFD、優れた耐候性ΔBmを有する磁気記録媒体を得
るためには、鉄を主成分とする金属磁性粒子粉末がより
高い保磁力とより大きい飽和磁化値を有するとともに、
粒子サイズの分布ができるだけ狭く、分散性が優れ、且
つ、酸化安定性Δσsに優れていることが強く要求され
ている。
That is, in order to obtain a magnetic recording medium having a higher coercive force, an excellent coercive force distribution SFD, and an excellent weather resistance ΔBm, the magnetic metal particles containing iron as a main component require a higher coercive force. It has a large saturation magnetization and
It is strongly required that the distribution of the particle size be as narrow as possible, the dispersibility be excellent, and the oxidation stability Δσs be excellent.

【0007】また、特開平7−126704号公報に、
「……磁気記録媒体に起因するノイズレベルを低下させ
る為には、金属磁性粒子のX線粒径をできるだけ小さく
することも有効な手段であり……」と記載されている通
り、ノイズの少ない磁気記録媒体を得るためには、鉄を
主成分とする金属磁性粒子粉末がより小さい結晶子サイ
ズD110を有することが強く要求されている。
Further, Japanese Patent Application Laid-Open No. 7-126704 discloses that
As described in "... It is also effective to reduce the X-ray particle size of the metal magnetic particles as much as possible in order to reduce the noise level caused by the magnetic recording medium ..." to obtain a magnetic recording medium, the magnetic metal particles containing iron as a main component has a smaller crystallite size D 110 is strongly demanded.

【0008】しかしながら、結晶子サイズが小さく、高
い保磁力と大きな飽和磁化値とを共に満たす金属磁性粒
子粉末を得ることは、その製造法に起因して非常に困難
である。
However, it is very difficult to obtain metal magnetic particles having a small crystallite size and satisfying both a high coercive force and a large saturation magnetization value due to the production method.

【0009】以下、この事実について詳述する。Hereinafter, this fact will be described in detail.

【0010】即ち、一般に、鉄を主成分とする金属磁性
粒子粉末は、第一鉄塩水溶液とアルカリ水溶液とを反応
して得られる鉄含有沈殿物を含む水溶液を空気等の酸素
含有ガスを通気して酸化反応を行い得られる紡錘状ゲー
タイト粒子粉末、該ゲータイト粒子粉末を加熱脱水して
得られる紡錘状ヘマタイト粒子粉末、又は、これら粒子
粉末に鉄以外の異種元素を含有させた紡錘状粒子粉末を
出発原料として用い、該出発原料を還元性ガス雰囲気下
で加熱還元することにより得られている。
That is, generally, iron-based metal magnetic particle powder is passed through an aqueous solution containing an iron-containing precipitate obtained by reacting an aqueous ferrous salt solution and an aqueous alkaline solution with an oxygen-containing gas such as air. Spindle-like goethite particle powder obtained by performing an oxidation reaction by heating, spindle-like hematite particle powder obtained by heating and dehydrating the goethite particle powder, or spindle-like particle powder containing a heterogeneous element other than iron in these particle powders Is used as a starting material, and the starting material is reduced by heating under a reducing gas atmosphere.

【0011】先ず、金属磁性粒子粉末の保磁力と飽和磁
化値との関係について言えば、前記加熱還元工程におけ
る雰囲気や温度等の条件は非常に過酷であるため、紡錘
状金属磁性粒子粉末は粒子及び粒子相互間で焼結を生起
しやすい。特に、金属磁性粒子粉末の長所である大きな
飽和磁化値を得るためには、加熱還元温度をできるだけ
高くして十分に還元を進めておくことが必要であるが、
加熱還元温度を高くした場合には、逆に出発原料は形状
破壊を生起しやすくなり、結果として保磁力の低下につ
ながる。
First, regarding the relationship between the coercive force and the saturation magnetization value of the metal magnetic particle powder, since the conditions such as atmosphere and temperature in the heating and reducing step are very severe, the spindle-shaped metal magnetic particle powder And sintering is likely to occur between particles. In particular, in order to obtain a large saturation magnetization value, which is an advantage of metal magnetic particle powder, it is necessary to increase the heating reduction temperature as much as possible and sufficiently promote reduction.
On the other hand, when the heating and reducing temperature is increased, the starting material is liable to cause shape breakage, resulting in a decrease in coercive force.

【0012】次に、結晶子サイズと保磁力との関係につ
いて言えば、特開平4−61302号公報に「……結晶
子サイズが小さくなる程保磁力は小さくなる傾向にある
為、……磁性粒子粉末の保磁力を出来るだけ高く維持し
ながら、小さい結晶子サイズを有する磁性粒子が強く要
求されている。」と記載されている通り、紡錘状金属磁
性粒子粉末の場合は、結晶子サイズと保磁力は逆の相関
があり、前述した通り、金属磁性粒子粉末の結晶子サイ
ズをより小さくすることと高い保磁力とを共に有するこ
とは非常に困難である。
Next, regarding the relationship between the crystallite size and the coercive force, Japanese Unexamined Patent Publication No. Hei 4-61302 states that "... the coercive force tends to decrease as the crystallite size decreases. There is a strong demand for magnetic particles having a small crystallite size while maintaining the coercive force of the particle powder as high as possible. " The coercive force has an inverse correlation, and as described above, it is very difficult to reduce both the crystallite size of the metal magnetic particle powder and have a high coercive force.

【0013】更に、加熱還元工程に際して用いられる加
熱還元装置としては、出発原料を粉末状で流動させなが
ら加熱還元する流動層還元装置や出発原料を造粒して顆
粒状とし固定層を形成して加熱還元する固定層還元装置
等が知られている。
Further, as a heating reduction device used in the heating reduction step, a fluidized bed reduction device for heating and reducing the starting material while flowing it in a powder form, or a starting material is granulated into granules to form a fixed bed. 2. Description of the Related Art A fixed-bed reduction device for performing heat reduction is known.

【0014】そして、金属磁性粒子粉末の需要増加に伴
う量産化技術の需要が高まる中、水素等の還元性ガスの
流量を多量にしても粒子の飛散が無く量産化が可能であ
る固定層還元装置が、工業的、経済的に有利である。
[0014] As the demand for mass-production technology increases along with the increase in the demand for metal magnetic particle powder, even if the flow rate of a reducing gas such as hydrogen is increased, there is no scattering of particles and mass production is possible. The device is industrially and economically advantageous.

【0015】しかし、固定層還元装置を用いて水素ガス
雰囲気下で加熱還元を行う場合、固定層下部で起こる急
激な還元により水蒸気分圧が増大し、層下部に対して層
上部での粒子の形状破壊や短軸成長が多量に起こり、層
下部と層上部での粒子の特性に違いが生じやすい。
However, when heat reduction is performed in a hydrogen gas atmosphere using a fixed bed reduction apparatus, the partial pressure of water vapor increases due to rapid reduction occurring in the lower part of the fixed bed, and the particles in the upper part of the bed are reduced with respect to the lower part of the bed. A large amount of shape destruction and short-axis growth occur, and the characteristics of the particles at the lower layer and the upper layer tend to be different.

【0016】近年、高い保磁力を有する金属磁性粒子粉
末を得るために粒子サイズは益々微粒子化しており、そ
の出発原料も微粒子化している。出発原料が0.15μ
m以下の微粒子になると、加熱還元工程における粒子形
状の破壊がより顕著となる傾向にある。形状破壊された
金属磁性粒子粉末は、形状異方性の低下によって高い保
磁力を得ることができず、粒子サイズの分布は低下す
る。また、磁気記録媒体の製造に当っても、ビヒクル中
での結合剤との混練、分散過程における粒子間力の増
大、あるいは磁気的凝集力の増大によって、分散性が低
下し、磁性塗膜とした時の角型比が低下し、優れたSF
Dを有する磁気記録媒体を得ることはできない。
In recent years, in order to obtain metal magnetic particles having a high coercive force, the particle size has been increasingly reduced, and the starting materials thereof have also been reduced. 0.15μ starting material
When the particle size is less than m, the destruction of the particle shape in the heat reduction step tends to be more remarkable. The shape-destructed metal magnetic particle powder cannot obtain a high coercive force due to a decrease in shape anisotropy, and the particle size distribution decreases. In addition, even in the production of a magnetic recording medium, dispersibility decreases due to kneading with a binder in a vehicle, an increase in interparticle force in a dispersion process, or an increase in magnetic cohesion, and the magnetic coating film The squareness ratio at the time of the
A magnetic recording medium having D cannot be obtained.

【0017】そこで、粒子形状の破壊が可及的に防止す
ることができ、固定層還元装置における層下部と層上部
における金属磁性粒子粉末の特性が均質となる加熱還元
方法が強く要求される。
Therefore, there is a strong demand for a heating and reducing method which can prevent the destruction of the particle shape as much as possible and in which the characteristics of the metal magnetic particle powder in the lower part and the upper part of the layer in the fixed bed reducing apparatus are uniform.

【0018】ところで、微粒子、殊に長軸径が0.12
μm以下の鉄を主成分とする金属磁性粒子粉末は、加熱
還元工程後、空気中に取り出した時に、空気中の酸素に
より酸化反応が急激に進行して大幅な磁気特性の低下、
殊に、飽和磁化値の低下を起こし、目的とする大きな飽
和磁化値を有する金属磁性粒子粉末を得ることができ
ず、更に、磁性塗膜とした時の耐候性ΔBmに劣るもの
である。
By the way, the fine particles, especially the major axis diameter is 0.12
When the metal magnetic particle powder containing iron of less than μm as a main component is taken out into the air after the heat-reduction step, the oxidation reaction proceeds rapidly due to oxygen in the air, resulting in a significant decrease in magnetic properties.
In particular, the saturation magnetization value is lowered, so that it is impossible to obtain a metal magnetic particle powder having a desired large saturation magnetization value, and furthermore, the magnetic coating film is inferior in weather resistance ΔBm.

【0019】還元直後の飽和磁化値が大きな金属磁性粒
子粉末であると共に酸化安定性にも優れた金属磁性粒子
粉末を得るために、Coを20〜45原子%と多量に含
有させる方法が知られている。この方法によれば酸化安
定性が改善された金属磁性粒子粉末が得られるが、加熱
処理の際に過度の粒子成長が起こりやすく、形状破壊を
誘起するため、得られた金属磁性粒子粉末は形状異方性
が低下していることにより、高い保磁力を得ることはで
きず、サイズ分布が低下し分散性が低下する。
In order to obtain metal magnetic particle powder having a large saturation magnetization immediately after reduction and excellent oxidation stability, a method of containing Co in a large amount of 20 to 45 atomic% is known. ing. According to this method, metal magnetic particles having improved oxidation stability can be obtained, but excessive particle growth is likely to occur during heat treatment and shape destruction is induced. Due to the reduced anisotropy, a high coercive force cannot be obtained, and the size distribution is reduced and the dispersibility is reduced.

【0020】従来、固定層還元装置を用いて金属磁性粒
子粉末の特性が均質で高い保磁力を有する鉄を主成分と
する金属磁性粒子粉末を得るための方法として、水素ガ
スのガス空塔速度を特定の範囲にして加熱還元する方法
(特開昭54−62915号公報)、ガス流通反応炉内
に設けられたガス流通可能なベルト上に連続的に被還元
物を移送し、水素ガスを垂直方向に流しながら加熱還元
を行う方法(特開平6−93312号公報)等が知られ
ている。
Conventionally, as a method for obtaining metal magnetic particle powder containing iron as a main component and having a high coercive force and uniform characteristics of the metal magnetic particle powder using a fixed bed reduction apparatus, a gas superficial velocity of hydrogen gas has been used. (JP-A-54-62915), a method of continuously transferring an object to be reduced on a gas-flowable belt provided in a gas-flow reactor, and removing hydrogen gas. A method of performing heat reduction while flowing in a vertical direction (JP-A-6-93312) is known.

【0021】[0021]

【発明が解決しようとする課題】小さい結晶子サイズ、
殊に160Å以下であるにもかかわらず、高い保磁力、
殊に167.1kA/m(2100Oe)以上と大きな
飽和磁化値、殊に135Am/kg(135emu/
g)以上とを共に有するFe及びCoを主成分とする紡
錘状合金磁性粒子粉末を固定層を形成した還元装置を用
いて工業的、経済的に有利に製造することは、現在最も
要求されているところであるが、前記諸特性を十分満足
する紡錘状合金磁性粒子粉末は未だ提供されていない。
SUMMARY OF THE INVENTION Small crystallite size,
High coercive force, especially below 160 °,
In particular, a saturation magnetization value as large as 167.1 kA / m (2100 Oe) or more, especially 135 Am 2 / kg (135 emu /
g) It is the most demanded at present that the spindle-shaped alloy magnetic particles mainly composed of Fe and Co having both of the above are industrially and economically advantageously produced using a reduction apparatus having a fixed layer. However, spindle-shaped alloy magnetic particles that sufficiently satisfy the above-mentioned properties have not been provided yet.

【0022】即ち、前出特開昭54−62915号公報
に記載の方法では、Co含有量が少なく、ガス空塔速度
が小さいため、得られる金属磁性粒子粉末は保磁力が9
5.5kA/m(1200Oe)程度と小さく、また、
後出比較例に示すように、保磁力が極端に低く、結晶子
サイズも非常に大きいなものとなるため、十分といえる
ものではない。
That is, in the method described in the above-mentioned Japanese Patent Application Laid-Open No. 54-62915, since the Co content is low and the gas superficial velocity is low, the obtained magnetic metal particles have a coercive force of 9%.
It is as small as about 5.5 kA / m (1200 Oe).
As shown in a comparative example described later, the coercive force is extremely low and the crystallite size is very large, so that it is not sufficient.

【0023】また、前出特開平6−93312号公報に
記載の方法では、Coを含有しておらず、また、後出比
較例に示す通り、昇温時の雰囲気を還元性ガスとした場
合は、得られる金属磁性粒子粉末の保磁力は127.3
kA/m(1600Oe)程度であり、また、本発明の
後出実施例と比較して同一結晶子サイズでは保磁力が低
く、飽和磁化値も低く、十分とは言い難いものである。
In the method described in the above-mentioned Japanese Patent Application Laid-Open No. 6-93312, no Co is contained, and as shown in a comparative example, a reducing gas is used as the atmosphere at the time of temperature rise. Means that the coercive force of the obtained metal magnetic particle powder is 127.3.
It is about kA / m (1600 Oe), and the coercive force is low and the saturation magnetization value is low at the same crystallite size as in later examples of the present invention.

【0024】そこで、本発明は、固定層を形成した還元
装置を用いて、小さい結晶子サイズ、殊に160Å以下
であるにもかかわらず、高い保磁力、殊に167.1k
A/m(2100Oe)以上と大きな飽和磁化値、殊に
135Am/kg(135emu/g)以上とを共に
満たすFe及びCoを主成分とする紡錘状合金磁性粒子
粉末を得ることを技術的課題とする。
Thus, the present invention uses a reduction device with a fixed layer formed thereon to achieve a high coercive force, especially 167.1 k, despite having a small crystallite size, especially less than 160 °.
It is a technical object of the present invention to obtain a spindle-shaped alloy magnetic particle powder containing Fe and Co as a main component which satisfies both a large saturation magnetization value of at least A / m (2100 Oe) and at least 135 Am 2 / kg (135 emu / g). And

【0025】[0025]

【課題を解決するための手段】前記技術的課題は、次の
通りの本発明によって達成できる。
The above technical objects can be achieved by the present invention as described below.

【0026】即ち、本発明は、全Feに対してCo換算
で20〜45原子%のコバルトを含有する平均長軸径が
0.05〜0.15μmの紡錘状ゲータイト粒子粉末又
は該ゲータイト粒子粉末を加熱脱水して得られる紡錘状
へマタイト粒子粉末を出発原料とし、該出発原料を固定
層還元装置内に投入して層高が30cm以下である固定
層を形成した後、不活性ガス雰囲気下で400〜700
℃の温度範囲まで昇温し、次いで還元性ガス雰囲気に切
り替えた後、400〜700℃の温度範囲において、ガ
ス空塔速度が40〜150cm/sの還元性ガスによっ
て当該出発原料を還元してFe及びCoを主成分とする
紡錘状合金磁性粒子粉末とすることを特徴とする磁気記
録用Fe及びCoを主成分とする紡錘状合金磁性粒子粉
末の製造法である。
That is, the present invention relates to a spindle-shaped goethite particle powder containing 20 to 45 atomic% of cobalt in terms of Co with respect to all Fe and having an average major axis diameter of 0.05 to 0.15 μm or the goethite particle powder. Is used as a starting material, and the starting material is charged into a fixed bed reduction device to form a fixed bed having a bed height of 30 cm or less. At 400-700
After the temperature was raised to a temperature range of 400 ° C. and the atmosphere was switched to a reducing gas atmosphere, the starting material was reduced by a reducing gas having a superficial gas velocity of 40 to 150 cm / s in a temperature range of 400 to 700 ° C. A method for producing spindle-shaped alloy magnetic particle powder mainly containing Fe and Co for magnetic recording, wherein the spindle-shaped alloy magnetic particle powder mainly containing Fe and Co is used.

【0027】次に、本発明実施にあたっての諸条件につ
いて述べる。
Next, conditions for implementing the present invention will be described.

【0028】本発明における出発原料には、全Feに対
してCo換算で20〜45原子%のコバルトを含有し、
平均長軸径が0.05〜0.15μmである紡錘状ゲー
タイト粒子粉末又は該ゲータイト粒子粉末を加熱脱水処
理して得られた全Feに対してCo換算で20〜45原
子%のコバルトを含有し、平均長軸径が0.05〜0.
13μmである紡錘状へマタイト粒子粉末を用いる。
The starting material in the present invention contains 20 to 45 atomic% of cobalt in terms of Co with respect to all Fe,
Spindle-shaped goethite particles having an average major axis diameter of 0.05 to 0.15 μm or contain 20 to 45 atomic% of cobalt in terms of Co with respect to all Fe obtained by heating and dehydrating the goethite particles. And the average major axis diameter is 0.05-0.
Spindle-shaped hematite particle powder having a size of 13 μm is used.

【0029】本発明における出発原料は、紡錘状の粒子
粉末である。紡錘状粒子粉末は、樹枝状粒子が混在せ
ず、サイズ分布に優れるものである。
The starting material in the present invention is spindle-shaped particle powder. The spindle-shaped particle powder does not contain dendritic particles and has an excellent size distribution.

【0030】本発明における出発原料のコバルトの含有
量が全Feに対して20原子%未満の場合には、得られ
たFe及びCoを主成分とする紡錘状合金磁性粒子粉末
は酸化安定性を十分に改良することができず、また、大
きな飽和磁化値が得られ難い。45原子%を超える場合
は、還元速度の制御が非常に難しくなり、加熱還元時に
粒子及び粒子相互間で形状破壊や焼結を生じ、高い保磁
力が得られ難くなる。
When the content of cobalt as a starting material in the present invention is less than 20 atomic% based on the total Fe, the obtained spindle-shaped alloy magnetic particles containing Fe and Co as main components have oxidation stability. It cannot be sufficiently improved, and it is difficult to obtain a large saturation magnetization value. If the content exceeds 45 atomic%, it becomes extremely difficult to control the reduction rate, and shape destruction and sintering occur between the particles during heat reduction, making it difficult to obtain a high coercive force.

【0031】本発明における出発原料の平均長軸径が
0.05μm未満の場合には、得られる紡錘状合金磁性
粒子が超常磁性となるため大きな飽和磁化値が得られ
ず、同時に高い保磁力も得られ難くなる。逆に0.15
μmを超える場合には、目的とする高い保磁力が得られ
ない。
When the average major axis diameter of the starting material in the present invention is less than 0.05 μm, the obtained spindle-shaped alloy magnetic particles become superparamagnetic, so that a large saturation magnetization cannot be obtained, and at the same time, a high coercive force cannot be obtained. It is difficult to obtain. 0.15
If it exceeds μm, the desired high coercive force cannot be obtained.

【0032】本発明における紡錘状ゲータイト粒子粉末
は、焼結防止効果や還元速度の制御を考慮すると、平均
短軸径が0.010〜0.023μm、全Feに対して
Al換算で5〜15原子%のアルミニウムを含有し、軸
比(平均長軸径/平均短軸径)が4〜8、BET比表面
積値が100〜250m/gであることが好ましい。
The spindle-shaped goethite particles according to the present invention have an average minor axis diameter of 0.010 to 0.023 μm in consideration of the effect of preventing sintering and controlling the reduction rate. It is preferable that the alloy contains atomic% of aluminum, has an axial ratio (average major axis diameter / average minor axis diameter) of 4 to 8, and a BET specific surface area of 100 to 250 m 2 / g.

【0033】本発明における紡錘状ゲータイト粒子粉末
は、粒子表面をCo元素の化合物、Al元素の化合物及
び焼結防止剤で被覆してもよい。
The spindle-shaped goethite particles in the present invention may be coated on the particle surface with a compound of Co element, a compound of Al element and a sintering inhibitor.

【0034】焼結防止剤としては、希土類元素の化合物
を用いることができ、スカンジウム、イットリウム、ラ
ンタン、セリウム、プラセオジウム、ネオジウム、サマ
リウム等の1種又は2種以上が好ましい。特に、イット
リウム、ネオジウムが好適である。
As the sintering inhibitor, compounds of rare earth elements can be used, and one or more of scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, samarium and the like are preferable. Particularly, yttrium and neodymium are preferable.

【0035】なお、焼結防止効果の向上のため、あるい
は、必要によりその他の元素としてSi、B、Ca、M
g、Ba、Sr等から選ばれる元素の化合物の1種又は
2種以上を使用してもよい。これらの化合物は、焼結防
止効果を有するだけでなく、還元速度を制御する働きも
有するので、必要に応じて組み合わせて使用すればよ
い。
In order to improve the effect of preventing sintering, or if necessary, other elements such as Si, B, Ca, M
One, two or more compounds of elements selected from g, Ba, Sr and the like may be used. These compounds not only have the effect of preventing sintering but also have the function of controlling the reduction rate, and thus may be used in combination as necessary.

【0036】本発明における紡錘状へマタイト粒子粉末
は、焼結防止効果や還元速度の制御を考慮すると、平均
短軸径が0.010〜0.022μmであって、全Fe
に対してAl換算で5〜15原子%のアルミニウムと希
土類元素換算で5〜15原子%の希土類元素を含有し、
軸比(平均長軸径/平均短軸径)が4〜8、BET比表
面積値が50〜120m/gであることが好ましい。
The spindle-shaped hematite particles according to the present invention have an average minor axis diameter of 0.010 to 0.022 μm and a total Fe content in consideration of the effect of preventing sintering and controlling the reduction rate.
Contains 5 to 15 atomic% of aluminum in terms of Al and 5 to 15 atomic% of rare earth in terms of rare earth element,
It is preferable that the axial ratio (average major axis diameter / average minor axis diameter) is 4 to 8, and the BET specific surface area value is 50 to 120 m 2 / g.

【0037】また、紡錘状ヘマタイト粒子粉末は、紡錘
状ゲータイト粒子粉末を酸化性雰囲気下で150〜35
0℃の温度範囲で加熱脱水し、更に、同雰囲気下で45
0℃を超えて700℃未満の温度範囲で加熱処理して得
ることが好ましい。
The spindle-shaped hematite particles can be prepared by subjecting the spindle-shaped goethite particles to 150-35 under an oxidizing atmosphere.
Dehydrate by heating in the temperature range of 0 ° C.
It is preferable to obtain by performing heat treatment in a temperature range of more than 0 ° C and less than 700 ° C.

【0038】また、紡錘状ゲータイト粒子粉末の生成反
応に由来して含有されているNaSOなどの不純物
塩を除去するために加熱処理後の紡錘状ヘマタイト粒子
粉末を洗浄してもよい。この場合において、被覆された
焼結防止剤が溶出しない条件で洗浄を行うことにより、
不要な不純物の除去を行うことが好ましい。
Further, the spindle-shaped hematite particles after the heat treatment may be washed in order to remove impurity salts such as Na 2 SO 4 contained from the reaction for producing the spindle-shaped goethite particles. In this case, by washing under the condition that the coated sintering inhibitor does not elute,
It is preferable to remove unnecessary impurities.

【0039】本発明において固定還元装置へ投入するに
当っては、前記出発粒子粉末を常法により造粒して平均
径1〜5mmの顆粒状物にして用いることが好ましい。
In the present invention, when the starting particles are charged into a fixed reduction apparatus, it is preferable that the starting particle powder is granulated by a conventional method and used as granules having an average diameter of 1 to 5 mm.

【0040】本発明における固定層を用いた還元装置と
しては、静置式還元装置(バッチ式)もしくはベルト上
に固定層を形成して該ベルトを移送させながら還元する
移動式還元装置(連続式)が好ましい。
The reduction device using a fixed bed in the present invention may be a stationary reduction device (batch type) or a mobile reduction device (a continuous type) in which a fixed layer is formed on a belt and reduced while transferring the belt. Is preferred.

【0041】本発明における出発原料の層高は、30c
m以下である。30cmを超える場合には、多量にCo
を含有するため還元促進作用が顕著であるのと同時に、
固定層の層下部の急激な還元による水蒸気分圧の増大に
よって、固定層上部の保磁力が低下する等の問題が起こ
り、全体として特性が劣化する。工業的な生産性を考慮
すると、3〜30cmが好ましい。なお、バッチ式(特
開昭54−62915号公報、特開平4−224609
号公報等)、連続式(特開平6−93312号公報等)
では生産性が異なるため、バッチ式の固定層還元装置で
は8cmを超え、30cm以下が好ましい。
In the present invention, the starting material has a layer height of 30 c
m or less. If it exceeds 30 cm, a large amount of Co
At the same time as the effect of promoting reduction is remarkable,
An increase in the partial pressure of water vapor due to rapid reduction of the lower part of the fixed layer causes problems such as a decrease in the coercive force of the upper part of the fixed layer, and the characteristics are deteriorated as a whole. In consideration of industrial productivity, 3 to 30 cm is preferable. Incidentally, a batch method (Japanese Patent Application Laid-Open No. 54-62915, Japanese Patent Application Laid-Open No.
Publication), continuous type (JP-A-6-93312, etc.)
Therefore, in a batch-type fixed-bed reducing device, the thickness is preferably more than 8 cm and not more than 30 cm.

【0042】本発明に係る製造法において、400〜7
00℃の還元温度まで昇温する期間の雰囲気は不活性ガ
ス雰囲気である。不活性ガス雰囲気としては、窒素ガ
ス、ヘリウムガス、アルゴンガス等が好ましく、殊に窒
素ガスが好適である。不活性ガス以外の雰囲気では、温
度が経時的に変化する昇温時に還元が起こり、金属磁性
粒子生成時の還元温度が一定にできないため、均一な粒
子成長が起こりにくいため高い保磁力が得られない。
In the production method according to the present invention, 400 to 7
The atmosphere during which the temperature is raised to the reduction temperature of 00 ° C. is an inert gas atmosphere. As the inert gas atmosphere, nitrogen gas, helium gas, argon gas and the like are preferable, and nitrogen gas is particularly preferable. In an atmosphere other than an inert gas, reduction occurs when the temperature rises over time, and the reduction temperature during the formation of metal magnetic particles cannot be constant, so uniform particle growth is unlikely to occur and a high coercive force is obtained. Absent.

【0043】なお、昇温速度は特に規定しないが、2〜
100℃/minが好ましい。
Although the heating rate is not particularly specified,
100 ° C./min is preferred.

【0044】なお、昇温時の不活性ガスのガス空塔速度
は特に規定しないが、出発原料の顆粒状物が飛散した
り、破壊されたりしない速度にすればよく、本発明の場
合、10〜50cm/sが好ましい。
In addition, the gas superficial velocity of the inert gas at the time of raising the temperature is not particularly limited, but may be a velocity at which the starting material granular material is not scattered or destroyed. ~ 50 cm / s is preferred.

【0045】なお、昇温時の不活性ガス雰囲気から加熱
還元工程の還元性ガス雰囲気への切り替えは、還元装置
の種類によって異なり、工業的には、バッチ式の場合で
は還元装置内の圧力を制御しながら段階的に行う方法が
好ましく、連続式の場合では昇温ゾーンと還元ゾーンと
を区分する方法が好ましい。いずれの場合も短時間で切
り替えを行う方が好ましく、少なくとも10分以内に行
うことが好ましい。
The switching from the inert gas atmosphere at the time of temperature increase to the reducing gas atmosphere in the heating and reducing step differs depending on the type of the reducing apparatus. In the case of a batch system, the pressure in the reducing apparatus is industrially increased. A method in which the temperature is controlled stepwise while controlling is preferable, and in the case of a continuous system, a method in which a heating zone and a reduction zone are divided is preferable. In any case, it is preferable to perform the switching in a short time, and it is preferable to perform the switching within at least 10 minutes.

【0046】本発明における加熱還元工程における雰囲
気は、還元性ガスであり、還元性ガスとしては水素が好
適である。
The atmosphere in the heating and reducing step in the present invention is a reducing gas, and hydrogen is preferably used as the reducing gas.

【0047】本発明における加熱還元工程の加熱還元温
度は400〜700℃である。還元温度は、出発原料の
被覆処理に用いた化合物の種類、量に応じて上記温度範
囲から適宜選択することが好ましい。加熱還元温度が4
00℃未満の場合には、還元の進行が非常に遅く工業的
でなく、得られた紡錘状合金磁性粉末の飽和磁化値も低
いものとなる。700℃を超える場合には、還元反応が
急激に進行して粒子の形状破壊や粒子及び粒子相互間の
焼結を引き起こしてしまい、保磁力が低下する。
The heat reduction temperature in the heat reduction step in the present invention is 400 to 700 ° C. It is preferable that the reduction temperature is appropriately selected from the above temperature range according to the type and amount of the compound used for the coating treatment of the starting material. Heat reduction temperature is 4
When the temperature is lower than 00 ° C., the progress of the reduction is very slow and not industrial, and the saturation magnetization value of the obtained spindle-shaped alloy magnetic powder becomes low. If the temperature exceeds 700 ° C., the reduction reaction proceeds rapidly, causing shape destruction of the particles and sintering between the particles and between the particles, and the coercive force decreases.

【0048】本発明における加熱還元工程の還元性ガス
のガス空塔速度は、40〜150cm/sである。ガス
空塔速度が40cm/s未満の場合、出発原料の還元で
発生した水蒸気が系外に運ばれる速度が非常に遅くなる
ため、層上部の保磁力、SFDが低下し、全体として高
い保磁力が得られない。150cm/sを超える場合、
目的とする紡錘状合金磁性粒子粉末は得られるが、還元
温度が高温を要したり、造粒物が飛散し破壊されるなど
の問題が起こり易く好ましくない。
The gas superficial velocity of the reducing gas in the heat reduction step in the present invention is 40 to 150 cm / s. If the gas superficial velocity is less than 40 cm / s, the speed at which the steam generated by the reduction of the starting material is carried out of the system becomes very slow, so that the coercive force and SFD at the upper part of the layer are reduced, and the overall coercive force is high. Can not be obtained. If it exceeds 150 cm / s,
Although the desired spindle-shaped alloy magnetic particle powder can be obtained, it is not preferable because problems such as a high reduction temperature being required, or a granulated material being scattered and broken are likely to occur.

【0049】本発明における加熱還元工程後のFe及び
Coを主成分とする紡錘状合金磁性粒子粉末は、周知の
方法、例えば、トルエン等の有機溶剤中に浸漬する方
法、還元後のFe及びCoを主成分とする紡錘状合金磁
性粒子粉末の雰囲気を一旦不活性ガスに置換した後に、
不活性ガス中の酸素含有量を徐々に増加させながら最終
的に空気とする方法及び酸素と水蒸気を混合したガスを
使用して徐酸化する方法等により粒子表面に酸化被膜を
形成することにより安定化して、空気中に取り出すこと
ができる。
The spindle-shaped alloy magnetic particles containing Fe and Co as the main components after the heat-reduction step in the present invention can be obtained by a known method, for example, a method of dipping in an organic solvent such as toluene, a method of reducing Fe and Co after reduction. After once replacing the atmosphere of the spindle-shaped alloy magnetic particles powder containing as a main component with an inert gas,
Stable by forming an oxide film on the particle surface by a method of finally producing air while gradually increasing the oxygen content in the inert gas, or a method of gradually oxidizing using a mixed gas of oxygen and water vapor And can be taken out into the air.

【0050】次に、本発明におけるFe及びCoを主成
分とする紡錘状合金磁性粒子粉末について述べる。
Next, the spindle-shaped alloy magnetic particles containing Fe and Co as main components in the present invention will be described.

【0051】本発明におけるFe及びCoを主成分とす
る紡錘状合金磁性粒子粉末は、Coを全Feに対して2
0〜45原子%、好ましくは20〜40原子%、さらに
好ましくは20〜35原子%含有する。平均長軸径が
0.05〜0.12μmであり、結晶子サイズD110
は135〜160Åである。
The spindle-shaped alloy magnetic particles containing Fe and Co as main components in the present invention contain Co in an amount of 2 to all Fe.
0 to 45 at%, preferably 20 to 40 at%, more preferably 20 to 35 at%. The average major axis diameter is 0.05 to 0.12 μm, and the crystallite size D 110
Is 135 to 160 °.

【0052】本発明におけるFe及びCoを主成分とす
る紡錘状合金磁性粒子粉末は、保磁力が167.1〜1
98.9kA/m(2100〜2500Oe)であり、
より好ましくは175.1〜198.9kA/m(22
00〜2500Oe)である。また、飽和磁化値が13
5〜160Am/kg(135〜160emu/g)
である。
The spindle-shaped alloy magnetic particles containing Fe and Co as main components in the present invention have a coercive force of 167.1 to 1
98.9 kA / m (2100 to 2500 Oe),
More preferably, 175.1 to 198.9 kA / m (22
00 to 2500 Oe). When the saturation magnetization value is 13
5~160Am 2 / kg (135~160emu / g )
It is.

【0053】[0053]

【発明の実施の形態】本発明の代表的な実施の形態は次
の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical embodiment of the present invention is as follows.

【0054】本発明における紡錘状ゲータイト粒子粉
末、紡錘状へマタイト粒子粉末及びFe及びCoを主成
分とする紡錘状合金磁性粒子粉末の平均長軸径、平均短
軸径及び軸比は、いずれも電子顕微鏡写真から測定した
数値の平均値で示した。
The average major axis diameter, average minor axis diameter and axial ratio of the spindle-shaped goethite particle powder, the spindle-shaped hematite particle powder, and the spindle-shaped alloy magnetic particle powder containing Fe and Co as main components in the present invention are all The average value of the numerical values measured from the electron micrograph was shown.

【0055】本発明における紡錘状ゲータイト粒子粉
末、紡錘状へマタイト粒子粉末及びFe及びCoを主成
分とする紡錘状合金磁性粒子粉末のCo量、Al量、希
土類元素量及びその他の金属元素の含有量は、「誘導結
合プラズマ発光分光分析装置SPS4000」(セイコ
ー電子工業(株)製)を使用して、測定した。
Content of Co, Al, Rare Earth Element and Other Metal Elements of Spindle-Shaped Goethite Particle Powder, Spindle-Shaped Hematite Particle Powder, and Spindle-Shaped Alloy Magnetic Particle Powder Mainly Containing Fe and Co in the Present Invention The amount was measured using "Inductively Coupled Plasma Emission Spectrometer SPS4000" (manufactured by Seiko Instruments Inc.).

【0056】粒子粉末の比表面積は、「モノソーブMS
−11」(カンタクロム(株)製)を使用して、BET
法により測定した値で示した。
The specific surface area of the particle powder is “Monosorb MS”.
-11 "(Cantachrome Co., Ltd.)
It was shown by the value measured by the method.

【0057】結晶子サイズD110(紡錘状合金磁性粒
子のX線結晶粒径)は、「X線回折装置」(Rigak
u製)(測定条件:ターゲットCu、管電圧40kV、
管電流40mA)を使用して、X線回折法で測定される
結晶粒子の大きさを、紡錘状合金磁性粒子の(110)
結晶面のそれぞれに垂直な方向における結晶粒子の厚さ
を表したものであり、各結晶面についての回折ピーク曲
線から、下記のシェラーの式を用いて計算した値で示し
たものである。
The crystallite size D 110 (the X-ray crystal particle size of the spindle-shaped alloy magnetic particles) was measured using an “X-ray diffractometer” (Rigak
u) (Measurement conditions: target Cu, tube voltage 40 kV,
Using a tube current of 40 mA), the size of the crystal particles measured by the X-ray diffraction method was determined using the (110)
It represents the thickness of a crystal grain in a direction perpendicular to each of the crystal planes, and is represented by a value calculated from the diffraction peak curve for each crystal plane using the following Scherrer equation.

【0058】D110=Kλ/βcosθD 110 = Kλ / βcosθ

【0059】但し、β=装置に起因する機械幅を補正し
た真の回折ピークの半値幅(ラジアン単位)。
Here, β = half value width (in radians) of a true diffraction peak corrected for the mechanical width caused by the apparatus.

【0060】K=シェラー定数(=0.9)、 λ=X線の波長(Cu Kα線 0.1542nm)、 θ=回折角((110)面の回折ピークに対応)K = Scherrer constant (= 0.9), λ = wavelength of X-ray (0.1542 nm of Cu Kα ray), θ = diffraction angle (corresponding to diffraction peak on (110) plane)

【0061】Fe及びCoを主成分とする紡錘状合金磁
性粒子粉末の磁気特性は、「振動試料磁力計VSM−3
S−15」(東英工業(株)製)を使用して、外部磁場
795.8kA/m(10kOe)で測定した。
The magnetic properties of the spindle-shaped alloy magnetic particles containing Fe and Co as main components are described in “Vibration sample magnetometer VSM-3.
S-15 "(manufactured by Toei Kogyo Co., Ltd.) with an external magnetic field of 795.8 kA / m (10 kOe).

【0062】磁性塗膜片の磁気特性は、下記の成分を1
00ccのポリビンに下記の割合で入れた後、ペイント
シェーカー(レッドデビル社製)で8時間混合分散を行
うことにより調製した磁性塗料を厚さ25μmのポリエ
チレンテレフタートフィルム上にアプリケータを用いて
50μmの厚さに塗布し、次いで、5kGaussの磁
場中で乾燥させることにより得た磁性塗膜片の磁気特性
を測定した。 3mmφスチールボール: 800重量部、 Fe及びCoを主成分とする紡錘状合金磁性粒子粉末: 100重量部、 スルホン酸ナトリウム基を有するポリウレタン樹脂:20重量部、 シクロヘキサノン: 83.3重量部、 メチルエチルケトン: 83.3重量部、 トルエン: 83.3重量部。
The magnetic properties of the magnetic coating film pieces were as follows:
A magnetic paint prepared by mixing and dispersing for 8 hours in a paint shaker (manufactured by Red Devil Co., Ltd.) in a 00 cc polybin at the following ratio was applied to a polyethylene terephthalate film having a thickness of 25 μm by using an applicator. And then dried in a magnetic field of 5 kGauss to measure the magnetic properties of the magnetic coating pieces obtained. 3 mmφ steel ball: 800 parts by weight, spindle-shaped alloy magnetic particles mainly composed of Fe and Co: 100 parts by weight, polyurethane resin having sodium sulfonate group: 20 parts by weight, cyclohexanone: 83.3 parts by weight, methyl ethyl ketone: 83.3 parts by weight, toluene: 83.3 parts by weight.

【0063】粉体の飽和磁化値の酸化安定性の評価であ
るΔσs及び磁性塗膜の飽和磁束密度Bmの耐候性の評
価であるΔBmは、温度60℃、相対湿度90%の恒温
槽に粉体又は磁性塗膜片を一週間静置する促進経時試験
の後に、粉体の飽和磁化値及び磁性塗膜の飽和磁束密度
をそれぞれ測定し、試験開始前に測定しておいたσs及
びBmと促進経時試験一週間後のσs’及びBm’との
差(絶対値)を試験開始前のσs及びBmでそれぞれ除
した値をΔσs、ΔBmとして算出した。Δσs、ΔB
mが0%に近いほど酸化安定性が優れていることを示
す。
Δσs, which is an evaluation of the oxidation stability of the saturation magnetization value of the powder, and ΔBm, which is an evaluation of the weather resistance of the saturation magnetic flux density Bm of the magnetic coating film, are obtained by placing the powder in a thermostat at a temperature of 60 ° C. and a relative humidity of 90%. After an accelerated aging test in which the body or the magnetic coating film piece is allowed to stand for one week, the saturation magnetization value of the powder and the saturation magnetic flux density of the magnetic coating film were measured, respectively, with σs and Bm measured before the start of the test. Values obtained by dividing the difference (absolute value) between σs ′ and Bm ′ one week after the accelerated aging test by σs and Bm before the start of the test, respectively, were calculated as Δσs and ΔBm. Δσs, ΔB
The closer m is to 0%, the better the oxidation stability.

【0064】<紡錘状ゲータイト粒子粉末の製造>炭酸
ナトリウム25molと、水酸化ナトリウム水溶液を2
0mol(混合アルカリに対し水酸化ナトリウムは規定
換算で28.6mol%に該当する。)を含む混合アル
カリ水溶液30lを気泡塔の中に投入し、窒素ガスをガ
ス空塔速度2.21cm/sで通気しながら47℃に調
整する。次いでFe2+として20molを含む硫酸第
一鉄水溶液20l(硫酸第一鉄に対し混合アルカリ水溶
液は規定換算で1.75当量に該当する。)を気泡塔中
に投入して20分間熟成した後、Co2+4.2mol
を含む硫酸コバルト水溶液4l(全Feに対しCo換算
で21原子%に該当する。)を添加し、さらに4時間4
0分間熟成した後、空気をガス空塔速度1.32cm/
sで通気してFe2+の酸化率40%まで酸化反応を行
ってゲータイト種晶粒子を生成させた。
<Production of Spindle-Shaped Goethite Particle Powder> 25 mol of sodium carbonate and an aqueous sodium hydroxide solution
30 l of a mixed alkali aqueous solution containing 0 mol (sodium hydroxide corresponds to 28.6 mol% in terms of a prescribed conversion with respect to the mixed alkali) is charged into the bubble column, and nitrogen gas is introduced at a gas superficial velocity of 2.21 cm / s. Adjust to 47 ° C with ventilation. Then, 20 l of an aqueous ferrous sulfate solution containing 20 mol as Fe 2+ (a mixed alkali aqueous solution with respect to ferrous sulfate corresponds to 1.75 equivalents in terms of a prescribed conversion) was charged into a bubble column and aged for 20 minutes. 4.2 mol of Co 2+
4 l of an aqueous solution of cobalt sulfate (corresponding to 21 atomic% in terms of Co with respect to the total Fe) is added for 4 hours.
After aging for 0 minutes, the air was released at a gas superficial velocity of 1.32 cm /
The gas was passed through s to carry out an oxidation reaction until the oxidation rate of Fe 2+ reached 40%, thereby producing goethite seed crystal particles.

【0065】次いで、空気の通気量をガス空塔速度3.
31cm/sに増加させた後、Al 3+2.4molを
含む硫酸アルミニウム水溶液1l(全Feに対しAl換
算で12原子%に該当する。)を3ml/sec以下の
速度で添加して酸化反応を行った後、フィルタープレス
で電気伝導度60μSまで水洗を行ってプレスケーキと
した。
Next, the air flow rate was determined by changing the gas superficial velocity to 3.
After increasing to 31 cm / s, Al 3+2.4 mol
1 liter of aqueous aluminum sulfate solution
This corresponds to 12 atomic% by calculation. ) Of 3 ml / sec or less
After adding at a high speed to perform the oxidation reaction, filter press
With water until the electric conductivity reaches 60μS and press cake
did.

【0066】前記ケーキの一部を常法により乾燥、粉砕
を行って得られた紡錘状ゲータイト粒子粉末は、平均長
軸径が0.131μm、平均短軸径が0.0175μ
m、軸比が7.5、σ(標準偏差)が0.0250μ
m、サイズ分布(標準偏差/長軸径)が0.191、B
ET比表面積が179.2m/g、粒子全体としてC
o含有量が全Feに対して21原子%、Al含有量が全
Feに対して12原子%であった。
A spindle-shaped goethite particle powder obtained by drying and pulverizing a part of the cake by a conventional method has an average major axis diameter of 0.131 μm and an average minor axis diameter of 0.0175 μm.
m, axial ratio 7.5, σ (standard deviation) 0.0250μ
m, size distribution (standard deviation / major axis diameter) 0.191, B
ET specific surface area is 179.2 m 2 / g, and C
The o content was 21 atomic% based on the total Fe, and the Al content was 12 atomic% based on the total Fe.

【0067】<紡錘状へマタイト粒子粉末の製造>次い
で、ここに得た紡錘状ゲータイト粒子粉末1000g
(Feとして7.8mol)を含有するプレスケーキを
40lの水中に十分分散させた後、243gの硝酸イッ
トリウム6水塩を含む硝酸イットリウム水溶液2l(紡
錘状ゲータイト粒子粉末中の全Feに対しYとして8原
子%に該当する。)と197gの硫酸コバルト7水塩を
含む硫酸コバルト溶液2lを添加し(紡錘状ゲータイト
粒子粉末中の全Feに対しCoとして9原子%に該当す
る。)、十分攪拌した。次いで攪拌しながら、濃度2
5.0重量%の炭酸ナトリウム水溶液を沈澱剤として添
加してpH9.5に調整し、その後、フィルタープレス
で濾過、水洗し、プレスケーキを得た。得られたプレス
ケーキを、押出し成型機を用いて孔径3mmの成型板で
押出し成型し、次いで120℃で乾燥し、YとCo化合
物が被覆された紡錘状ゲータイト粒子粉末の成型物を得
た。得られた紡錘状ゲータイト粒子粉末中のCoの含有
量は全Feに対して30原子%、Alの含有量は全Fe
に対して12原子%、Yの含有量は全Feに対して8原
子%であった。
<Production of Spindle-Shaped Hematite Particle Powder> Then, 1000 g of the spindle-shaped goethite particle powder obtained here was obtained.
After sufficiently dispersing the press cake containing (7.8 mol as Fe) in 40 l of water, 2 l of an yttrium nitrate aqueous solution containing 243 g of yttrium nitrate hexahydrate (as Y with respect to all Fe in the spindle-shaped goethite particles powder) 2 liters of a cobalt sulfate solution containing 197 g of cobalt sulfate heptahydrate (corresponding to 9 atomic% as Co with respect to all Fe in the spindle-shaped goethite particles), and sufficiently stirred. did. Then, with stirring, the concentration 2
A 5.0% by weight aqueous sodium carbonate solution was added as a precipitant to adjust the pH to 9.5, and then filtered and washed with a filter press to obtain a press cake. The obtained press cake was extruded using a molding plate having a hole diameter of 3 mm using an extruder, and then dried at 120 ° C. to obtain a molded product of spindle-shaped goethite particles coated with a Y and Co compound. The content of Co in the obtained spindle-shaped goethite particles was 30 atomic% with respect to all Fe, and the content of Al was
And the content of Y was 8 atomic% based on the total Fe.

【0068】前記Y、Co化合物が被覆された紡錘状ゲ
ータイト粒子粉末の成型物を空気中300℃で加熱脱水
し、その後、同雰囲気中600℃で加熱処理して紡錘状
ヘマタイト粒子粉末の成型物を得た。得られた紡錘状ヘ
マタイト粒子粉末成型物は、顆粒状で、平均径が2.6
mmであった。
The molded product of the spindle-shaped goethite particles coated with the Y and Co compounds is dehydrated by heating at 300 ° C. in the air, and then heat-treated at 600 ° C. in the same atmosphere to form the molded product of the spindle-shaped hematite particles. I got The obtained spindle-shaped hematite particle powder molded product is granular and has an average diameter of 2.6.
mm.

【0069】得られた紡錘状ヘマタイト粒子粉末は、平
均長軸径が0.122μm、平均短軸径が0.0168
μm、軸比が7.3、σ(標準偏差)が0.0218μ
m、サイズ分布が0.179、BET比表面積が95.
7m/gであり、該粒子中のCoの含有量は全Feに
対して30原子%、Alの含有量は全Feに対して12
原子%、Yの含有量は全Feに対して8原子%であっ
た。
The obtained spindle-shaped hematite particles had an average major axis diameter of 0.122 μm and an average minor axis diameter of 0.0168.
μm, axial ratio 7.3, σ (standard deviation) 0.0218μ
m, size distribution 0.179, BET specific surface area 95.
7 m 2 / g, the content of Co in the particles was 30 atomic% based on the total Fe, and the content of Al was 12 atomic% based on the total Fe.
Atomic% and the content of Y were 8 atomic% with respect to all Fe.

【0070】<紡錘状合金磁性粒子粉末の製造>次い
で、ここに得た紡錘状ヘマタイト粒子粉末の顆粒状成型
物500g(平均径:2.6mm)を内径72mmのバッ
チ式固定層還元装置に入れ(層高27cmに該当す
る。)、600℃でガス空塔速度20cm/sの窒素ガ
スを通気しながら、600℃まで加熱昇温した後、水素
ガスに切り替えてガス空塔速度50cm/sの水素ガス
を通気しながら、600℃で排気ガス露点が−30℃に
達するまで加熱還元した。その後、再び窒素ガスに切り
替えて80℃まで冷却し、次いで水蒸気を窒素ガスに混
合し、さらに空気を混合して酸素分圧を徐々に増加させ
て、粒子表面に安定な酸化皮膜を形成し、紡錘状合金磁
性粒子粉末の成型物を得た。
<Manufacture of Spindle-Shaped Alloy Magnetic Particle Powder> Next, 500 g (average diameter: 2.6 mm) of the obtained granulated spindle-shaped hematite particle powder was put into a batch-type fixed bed reduction apparatus having an inner diameter of 72 mm. (This corresponds to a layer height of 27 cm.) While heating and raising the temperature to 600 ° C. while passing nitrogen gas at 600 ° C. and a gas superficial velocity of 20 cm / s, switching to hydrogen gas and a gas superficial velocity of 50 cm / s. The mixture was heated and reduced at 600 ° C. until the dew point of exhaust gas reached −30 ° C. while passing hydrogen gas. After that, switching to nitrogen gas again and cooling to 80 ° C., then mixing water vapor with nitrogen gas, further mixing air and gradually increasing the oxygen partial pressure to form a stable oxide film on the particle surface, A molded product of the spindle-shaped alloy magnetic particles was obtained.

【0071】得られた紡錘状合金磁性粒子粉末成型物の
中から、下層部(層高3cm以下の部分)、及び上層部
(層高25cm以上の部分)から成型物の一部約10g
を抜き出し、残りの成型物とは別に磁気特性及び結晶子
サイズを測定した。
From the obtained spindle-shaped alloy magnetic particle powder molded product, about 10 g of a part of the molded product from the lower portion (portion having a layer height of 3 cm or less) and the upper layer portion (portion having a layer height of 25 cm or more) was obtained.
, And magnetic properties and crystallite size were measured separately from the remaining molded products.

【0072】得られた紡錘状合金磁性粉末は、平均長軸
径が0.104μm、標準偏差が0.0165μm、サ
イズ分布(標準偏差/平均長軸径)が0.159、平均
短軸径が0.0153μm、平均軸比が6.8、BET
比表面積が52.4m/g、結晶子サイズD110
153Åの粒子からなり、紡錘状かつ粒度が均整で樹枝
状粒子がないものであった。また、該粒子中のCo含有
量は全Feに対して30原子%、Al含有量は全Feに
対して12原子%、Y含有量は8原子%であった。
The obtained spindle-shaped alloy magnetic powder has an average major axis diameter of 0.104 μm, a standard deviation of 0.0165 μm, a size distribution (standard deviation / average major axis diameter) of 0.159, and an average minor axis diameter of 0.159 μm. 0.0153 μm, average axis ratio 6.8, BET
The particles consisted of particles having a specific surface area of 52.4 m 2 / g and a crystallite size D 110 of 153 °, and had a spindle shape, a uniform particle size, and no dendritic particles. Further, the Co content in the particles was 30 atomic% based on the total Fe, the Al content was 12 atomic% based on the total Fe, and the Y content was 8 atomic%.

【0073】また、該紡錘状合金磁性粒子粉末の磁気特
性は、保磁力Hcが184.7kA/m(2321O
e)、飽和磁化値σsが146.8Am/kg(14
6.5emu/g)、角型比(σr/σs)が0.54
0、飽和磁化値の酸化安定性Δσsが絶対値として9.
3%(実測値−9.3%)であり、磁性塗膜特性は、保
磁力Hcが188.6kA/m(2370Oe)、角形
比(Br/Bm)が0.875、SFDが0.380、
酸化安定性ΔBmが絶対値として7.1%(実測値−
7.1%)であった。
The magnetic properties of the spindle-shaped alloy magnetic particles are as follows. The coercive force Hc is 184.7 kA / m (2321O).
e), the saturation magnetization value σs is 146.8 Am 2 / kg (14
6.5 emu / g) and squareness ratio (σr / σs) of 0.54
0, the oxidation stability Δσs of the saturation magnetization is 9.
3% (actual measurement value: -9.3%), and the magnetic coating film properties were as follows: coercive force Hc: 188.6 kA / m (2370 Oe), squareness ratio (Br / Bm): 0.875, SFD: 0.380 ,
The oxidation stability ΔBm is 7.1% as an absolute value (actual measurement value−
7.1%).

【0074】下層部分から抜き出した紡錘状合金磁性粒
子粉末は、保磁力Hcが185.8kA/m(2335
Oe)、飽和磁化値σsが145.9Am/kg(1
45.9emu/g)、角型比(σr/σs)が0.5
41、結晶子サイズD110が152Åであった。上層
部分から抜き出した紡錘状合金磁性粒子粉末は、保磁力
Hcが183.9kA/m(2311Oe)、飽和磁化
値σsが146.8Am/kg(146.8emu/
g)、角型比(σr/σs)が0.538、結晶子サイ
ズD110が155Åであった。
The spindle-shaped alloy magnetic particles extracted from the lower layer have a coercive force Hc of 185.8 kA / m (2335).
Oe), and the saturation magnetization value s is 145.9 Am 2 / kg (1
45.9 emu / g) and squareness ratio (σr / σs) of 0.5
41, the crystallite size D 110 was 152 °. Spindle-shaped alloy magnetic particles extracted from the upper portion, the coercive force Hc 183.9kA / m (2311Oe), a saturation magnetization value σs is 146.8Am 2 /kg(146.8emu/
g), squareness ratio (σr / σs) is 0.538, a crystallite size D 110 was 155A.

【0075】[0075]

【作用】本発明に係る製造法において、結晶子サイズが
小さく高保磁力を有し、また、結晶子サイズに対して飽
和磁化値が大きい紡錘状合金磁性粉末を得られる理由と
して本発明者は、固定層の層高を30cm以下とし、不
活性ガス雰囲気下で昇温することにより、還元初期に急
激に水蒸気分圧が増大し、形状破壊、あるいは短軸成長
を起さない程度にマグネタイト、あるいは、ウスタイト
の結晶子サイズを増大させると共に比表面積を低下さ
せ、その後の純鉄への還元速度を緩和させる効果がある
ため、粒子の成長制御が可能となり、粒子の形状破壊が
可及的に抑制され、結晶子サイズが小さくできるものと
考えている。
In the manufacturing method according to the present invention, the present inventor considers the reason why a spindle-shaped alloy magnetic powder having a small crystallite size, a high coercive force and a large saturation magnetization value with respect to the crystallite size can be obtained. By increasing the temperature of the fixed layer to 30 cm or less and raising the temperature in an inert gas atmosphere, the partial pressure of water vapor rapidly increases in the initial stage of reduction, and magnetite, or the like so that shape destruction or short-axis growth does not occur. Has the effect of increasing the crystallite size of wustite, reducing the specific surface area, and reducing the rate of subsequent reduction to pure iron, thus enabling control of the growth of particles and minimizing the shape destruction of particles. It is believed that the crystallite size can be reduced.

【0076】また、出発原料の層高を30cm以下と
し、不活性ガス雰囲気下で昇温することにより、温度が
経時的に変化する昇温時に還元が起こらず、均質な状態
で還元を始めることができ、且つ、還元性ガスに切り替
え一定の温度範囲でガス空塔速度が40〜150cm/
sとすることにより、還元初期において急激に水蒸気分
圧が増大しても、マグネタイト、あるいは、ウスタイト
の形状破壊や短軸成長が誘起されず、層全体で均質に還
元が進行するため、全体として高い保磁力と大きな飽和
磁化値を有する紡錘状合金磁性粒子粉末が得られるもの
と考えている。
Further, by reducing the layer height of the starting material to 30 cm or less and raising the temperature in an inert gas atmosphere, reduction does not occur at the time of temperature change when the temperature changes with time, and reduction starts in a homogeneous state. And switching to reducing gas, the gas superficial velocity is 40 to 150 cm / in a certain temperature range.
By setting s, even if the water vapor partial pressure increases rapidly in the initial stage of reduction, shape destruction or short-axis growth of magnetite or wustite is not induced, and reduction proceeds uniformly in the entire layer. It is believed that spindle-shaped alloy magnetic particles having a high coercive force and a large saturation magnetization can be obtained.

【0077】[0077]

【実施例】次に、実施例及び比較例を挙げる。Next, examples and comparative examples will be described.

【0078】紡錘状ゲータイト粒子粉末1〜2 出発原料粒子粉末として、表1に示した特性を有する紡
錘状ゲータイト粒子粉末を準備した。
Spindle-shaped goethite particles 1 and 2 Spindle-shaped goethite particles having the properties shown in Table 1 were prepared as starting material particles.

【0079】[0079]

【表1】 [Table 1]

【0080】紡錘状ヘマタイト粒子粉末1〜4 紡錘状ゲータイトの種類、焼結防止処理に用いる被覆物
の種類及び添加量、加熱脱水温度を変化させた以外は、
前記発明の実施の形態と同様にして、紡錘状ヘマタイト
粒子粉末を得た。その条件及び得られた紡錘状ヘマタイ
ト粒子粉末の諸特性を表2及び表3に示した。
Spindle-shaped hematite particle powders 1 to 4 Except for changing the type of spindle-shaped goethite, the type and amount of coating used for sintering prevention treatment, and the heating / dehydrating temperature,
Spindle-shaped hematite particles were obtained in the same manner as in the embodiment of the invention. Tables 2 and 3 show the conditions and various properties of the obtained spindle-shaped hematite particles.

【0081】[0081]

【表2】 [Table 2]

【0082】[0082]

【表3】 [Table 3]

【0083】実施例1〜5、比較例1〜7 紡錘状ヘマタイト粒子の種類、層高、昇温ガスの種類、
還元ガスの種類及びガス空塔速度、還元温度を変化させ
た以外は、前記発明の実施の形態と同様にして、紡錘状
合金磁性粉末を得た。そのときの製造条件を表4に、得
られた紡錘状合金磁性粒子粉末の諸特性を表5及び表6
に示した。なお、実施例5はヘマタイト粒子1の製造法
において、焼結防止処理のみを行い脱水及び加熱処理を
行わないゲータイト粒子を出発原料とした。
Examples 1-5, Comparative Examples 1-7 Types of spindle-shaped hematite particles, layer height, type of heating gas,
A spindle-shaped alloy magnetic powder was obtained in the same manner as in the embodiment of the invention except that the type of the reducing gas, the gas superficial velocity, and the reduction temperature were changed. The production conditions at that time are shown in Table 4, and various characteristics of the obtained spindle-shaped alloy magnetic particles are shown in Tables 5 and 6.
It was shown to. In Example 5, in the method for producing the hematite particles 1, goethite particles which had been subjected to only the sintering prevention treatment and had not been subjected to dehydration and heat treatment were used as starting materials.

【0084】[0084]

【表4】 [Table 4]

【0085】[0085]

【表5】 [Table 5]

【0086】[0086]

【表6】 [Table 6]

【0087】実施例1及び比較例1において、前記発明
の実施の形態と同様に、固定層の上層部及び下層部より
紡錘状合金磁性粒子粉末を一部抜き出した。抜き出した
紡錘状合金磁性粒子粉末の諸特性を表7に示した。
In Example 1 and Comparative Example 1, as in the embodiment of the present invention, a part of the spindle-shaped alloy magnetic particles was extracted from the upper layer and the lower layer of the fixed layer. Table 7 shows properties of the extracted spindle-shaped alloy magnetic particles.

【0088】[0088]

【表7】 [Table 7]

【0089】表5に示した各々の紡錘状合金磁性粒子粉
末を用いて、前記発明の実施の形態と同様にして磁性塗
膜片を得た。得られた磁性塗膜片の諸特性を表8に示
す。
Using each of the spindle-shaped alloy magnetic particle powders shown in Table 5, magnetic coating pieces were obtained in the same manner as in the embodiment of the present invention. Table 8 shows properties of the obtained magnetic coating film pieces.

【0090】[0090]

【表8】 [Table 8]

【0091】[0091]

【発明の効果】本発明に係るFe及びCoを主成分とす
る紡錘状合金磁性粒子粉末の製造法によれば、加熱還元
時における形状破壊を可及的に防止でき、固定層の層上
部と層下部の還元を均質に行うことができるので、結晶
子サイズが小さく、高い保磁力、大きな飽和磁化値を共
に満たす紡錘状合金磁性粒子粉末を得ることができる
According to the method for producing spindle-shaped alloy magnetic particles containing Fe and Co as the main components according to the present invention, shape destruction at the time of heat reduction can be prevented as much as possible. Since the lower portion of the layer can be uniformly reduced, spindle-shaped alloy magnetic particles having a small crystallite size, a high coercive force, and a large saturation magnetization can be obtained.

【0092】また、本発明に係る製造法により製造した
Fe及びCoを主成分とする紡錘状合金磁性粒子粉末を
用いて得られた磁気記録媒体は、高い保磁力、優れたS
FD、且つ、優れた耐候性を有するので、高密度記録、
高出力の磁気記録媒体用のFe及びCoを主成分とする
紡錘状合金磁性粒子粉末として好適である。
The magnetic recording medium obtained by using the spindle-shaped alloy magnetic particles containing Fe and Co as the main components produced by the production method according to the present invention has a high coercive force and excellent S
FD and excellent weather resistance, so high density recording,
It is suitable as a spindle-shaped alloy magnetic particle powder mainly composed of Fe and Co for a high-output magnetic recording medium.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 全Feに対してCo換算で20〜45原
子%のコバルトを含有する平均長軸径が0.05〜0.
15μmの紡錘状ゲータイト粒子粉末又は該ゲータイト
粒子粉末を加熱脱水して得られる紡錘状へマタイト粒子
粉末を出発原料とし、該出発原料を固定層還元装置内に
投入して層高が30cm以下である固定層を形成した
後、不活性ガス雰囲気下で400〜700℃の温度範囲
まで昇温し、次いで還元性ガス雰囲気に切り替えた後、
400〜700℃の温度範囲において、ガス空塔速度が
40〜150cm/sの還元性ガスによって当該出発原
料を還元してFe及びCoを主成分とする紡錘状合金磁
性粒子粉末とすることを特徴とする磁気記録用Fe及び
Coを主成分とする紡錘状合金磁性粒子粉末の製造法。
1. An average major axis diameter containing 20 to 45 atomic% of cobalt in terms of Co with respect to all Fe and having an average major axis diameter of 0.05 to 0.1%.
A spindle-shaped goethite particle powder having a diameter of 15 μm or a spindle-shaped hematite particle powder obtained by heating and dehydrating the goethite particle powder is used as a starting material, and the starting material is charged into a fixed bed reduction device to have a bed height of 30 cm or less. After forming the fixed layer, the temperature is raised to a temperature range of 400 to 700 ° C. in an inert gas atmosphere, and then the atmosphere is switched to a reducing gas atmosphere.
In a temperature range of 400 to 700 ° C., the starting material is reduced by a reducing gas having a superficial gas velocity of 40 to 150 cm / s to obtain spindle-shaped alloy magnetic particles containing Fe and Co as main components. Of producing spindle-shaped alloy magnetic particles containing Fe and Co as main components for magnetic recording.
JP11343394A 1998-12-03 1999-12-02 PRODUCTION OF SPINDLELIKE ALLOY MAGNETIC GRAIN POWDER ESSENTIALLY CONSISTING OF Fe AND Co FOR MAGNETIC RECORDING Pending JP2000226606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11343394A JP2000226606A (en) 1998-12-03 1999-12-02 PRODUCTION OF SPINDLELIKE ALLOY MAGNETIC GRAIN POWDER ESSENTIALLY CONSISTING OF Fe AND Co FOR MAGNETIC RECORDING

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-344410 1998-12-03
JP34441098 1998-12-03
JP11343394A JP2000226606A (en) 1998-12-03 1999-12-02 PRODUCTION OF SPINDLELIKE ALLOY MAGNETIC GRAIN POWDER ESSENTIALLY CONSISTING OF Fe AND Co FOR MAGNETIC RECORDING

Publications (1)

Publication Number Publication Date
JP2000226606A true JP2000226606A (en) 2000-08-15

Family

ID=26577516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11343394A Pending JP2000226606A (en) 1998-12-03 1999-12-02 PRODUCTION OF SPINDLELIKE ALLOY MAGNETIC GRAIN POWDER ESSENTIALLY CONSISTING OF Fe AND Co FOR MAGNETIC RECORDING

Country Status (1)

Country Link
JP (1) JP2000226606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111599567A (en) * 2019-02-21 2020-08-28 Tdk株式会社 Composite magnetic material, magnetic core, and electronic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111599567A (en) * 2019-02-21 2020-08-28 Tdk株式会社 Composite magnetic material, magnetic core, and electronic component
CN111599567B (en) * 2019-02-21 2021-07-09 Tdk株式会社 Composite magnetic material, magnetic core, and electronic component

Similar Documents

Publication Publication Date Title
US6398863B1 (en) Spindle-shaped hematite particles and process for making spindle-shaped hematite particles
JP3925640B2 (en) Spindle-like alloy magnetic particle powder for magnetic recording and production method thereof
US6391450B1 (en) Spindle-shaped goethite particles, spindle-shaped hematite particles, spindle-shaped magnetic iron-based alloy particles, and process for producing the same
US6720094B2 (en) Secondary agglomerates of magnetic metal particles for magnetic recording and process for producing the same
JP3603926B2 (en) Spindle-shaped goethite particle powder and method for producing the same, spindle-shaped hematite particle powder and method for producing the same, and spindle-shaped metal magnetic particle powder containing iron as a main component and method for producing the same
JP3750414B2 (en) Spindle-shaped goethite particle powder, spindle-shaped hematite particle powder, spindle-shaped metal magnetic particle powder containing iron as a main component, and production method thereof
JP2003059707A (en) Iron-based spindle metal magnetic particle powder and its manufacturing method
JP4305617B2 (en) Metallic magnetic particle powder mainly composed of iron, method for producing the same, and magnetic recording medium
JP3412676B2 (en) Spindle-shaped goethite particle powder and method for producing the same
JP4182310B2 (en) Method for producing spindle-shaped alloy magnetic particle powder mainly composed of Fe and Co for magnetic recording
JPH10245233A (en) Spindle-like hematite particle and its production and spindle-like metal magnetic particle containing iron as main component and obtained from the hematite particle as starting ram material and its production
US6783608B2 (en) Secondary agglomerates of magnetic metal particles for magnetic recording and process for producing the same
JP2000226606A (en) PRODUCTION OF SPINDLELIKE ALLOY MAGNETIC GRAIN POWDER ESSENTIALLY CONSISTING OF Fe AND Co FOR MAGNETIC RECORDING
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JP4336932B2 (en) Secondary aggregate of metal magnetic particles for magnetic recording and process for producing the same
JP2002115002A (en) Spindle shaped metal magnetic particle essentially consisting of iron and its production method
JP2001355001A (en) Spindlelike goethite particle powder, spindlelike hematite particle powder, spindlelike metallic magnetic particle powder essentially consisting of iron and their production method
JP4228165B2 (en) Manufacturing method of spindle-shaped alloy magnetic particle powder for magnetic recording material
JP4378763B2 (en) Method for producing compound particle powder containing iron as its main component
JP4356139B2 (en) Spindle-shaped goethite particles, spindle-shaped hematite particles, spindle-shaped metal magnetic particles containing iron as a main component, and methods for producing them
JP2002289415A (en) Magnetic recording spindle-shaped alloy magnetic particle powder and magnetic recoding medium
JPH11130439A (en) Fusiform goethite particle powder and its production, fusiform hematite particle powder and its production and fusiform metallic magnetic particle powder consisting essentially of iron and its production
JP2000203847A (en) Cobalt-containing fusiform hematite particulate powder for fusiform magnetic alloy particulate powder predominant in iron and cobalt
JP2002053903A (en) Secondarily aggregated body of metallic magnetic grain for magnetic recording and its production method
JP3405748B2 (en) Method for producing metal magnetic powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090218