JP2000203847A - Cobalt-containing fusiform hematite particulate powder for fusiform magnetic alloy particulate powder predominant in iron and cobalt - Google Patents
Cobalt-containing fusiform hematite particulate powder for fusiform magnetic alloy particulate powder predominant in iron and cobaltInfo
- Publication number
- JP2000203847A JP2000203847A JP11312243A JP31224399A JP2000203847A JP 2000203847 A JP2000203847 A JP 2000203847A JP 11312243 A JP11312243 A JP 11312243A JP 31224399 A JP31224399 A JP 31224399A JP 2000203847 A JP2000203847 A JP 2000203847A
- Authority
- JP
- Japan
- Prior art keywords
- spindle
- shaped
- particles
- particle powder
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Magnetic Record Carriers (AREA)
- Hard Magnetic Materials (AREA)
- Compounds Of Iron (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、紡錘状合金磁性粒
子粉末を得るための加熱還元工程における形状破壊を可
及的に防止することができるので、高保磁力、大きな飽
和磁化値、優れた酸化安定性及び磁性塗膜での優れたS
FDを有する、Fe及びCoを主成分とする紡錘状合金
磁性粒子粉末用材料として好適であるCo含有紡錘状ヘ
マタイト粒子粉末に関するものである。BACKGROUND OF THE INVENTION The present invention can prevent shape destruction in the heating and reducing step for obtaining spindle-shaped alloy magnetic particles as much as possible, so that it has a high coercive force, a large saturation magnetization, and excellent oxidation. Stability and excellent S in magnetic coating
The present invention relates to a Co-containing spindle-shaped hematite particle powder having FD and suitable as a material for a spindle-shaped alloy magnetic particle powder containing Fe and Co as main components.
【0002】[0002]
【従来の技術】近年、オーディオ用、ビデオ用、コンピ
ュータ用の磁気記録再生用機器の小型軽量化、長時間記
録化、記録の高密度化、若しくは記憶容量の増大化が激
化しており、磁気記録媒体である磁気テープ、磁気ディ
スクに対する高性能化、高密度記録化の要求が益々高ま
ってきている。2. Description of the Related Art In recent years, magnetic recording / reproducing devices for audio, video, and computers have become increasingly compact and lightweight, long-time recording, high-density recording, or increased storage capacity. Demands for higher performance and higher density recording of magnetic tapes and magnetic disks as recording media are increasing more and more.
【0003】即ち、磁気記録媒体の高画像画質、高出力
特性、殊に周波数特性の向上及び保存特性、耐久性の向
上が要求され、その為には、高い保磁力Hcと保磁力分
布SFD、耐候性ΔBmが優れていることが要求されて
いる。That is, high image quality and high output characteristics of a magnetic recording medium, particularly, improvement of frequency characteristics and improvement of storage characteristics and durability are required. For this purpose, a high coercive force Hc and a coercive force distribution SFD are required. It is required that the weather resistance ΔBm be excellent.
【0004】磁気記録媒体のこれらの諸特性は磁気記録
媒体に使用される磁性粒子粉末と密接な関係を有してお
り、近年においては、従来の酸化鉄磁性粒子粉末に比較
して高い保磁力と大きな飽和磁化値σsを有する鉄を主
成分とする金属磁性粒子粉末が注目され、デジタルオー
ディオテープ(DAT)、8mmビデオテープ、Hi−
8テープ、さらにハイビジョン用のW−VHSテープ、
デジタル記録方式のDVCテープ等に使用され、コンピ
ューター用ではZip,スーパーディスク等のリムーバ
ブルディスクに使用され、最近では大容量のHi−FD
で採用され、現在その事業化段階にある。[0004] These characteristics of the magnetic recording medium are closely related to the magnetic particle powder used in the magnetic recording medium, and in recent years, the coercive force is higher than that of the conventional iron oxide magnetic particle powder. And magnetic metal particles containing iron as a main component and having a large saturation magnetization σs are attracting attention, such as digital audio tape (DAT), 8 mm video tape, Hi-
8 tapes, and W-VHS tapes for HDTV,
Used for digital recording type DVC tapes and the like. For computers, it is used for removable disks such as Zip and Super Disk. Recently, large capacity Hi-FD is used.
And is currently in the commercialization stage.
【0005】そこで、これらの鉄を主成分とする金属磁
性粒子粉末についても更に特性改善が強く望まれてい
る。[0005] Therefore, it is strongly desired to further improve the characteristics of the magnetic metal particles containing iron as a main component.
【0006】即ち、より高い保磁力、優れた保磁力分布
SFD、優れた耐候性ΔBmを有する磁気記録媒体を得
るためには、鉄を主成分とする金属磁性粒子粉末がより
高い保磁力とより大きい飽和磁化値を有するとともに、
粒子サイズの分布ができるだけ狭く、分散性が優れ、且
つ、酸化安定性Δσsに優れていることが強く要求され
ている。That is, in order to obtain a magnetic recording medium having a higher coercive force, an excellent coercive force distribution SFD, and an excellent weather resistance ΔBm, the magnetic metal particles containing iron as a main component require a higher coercive force. It has a large saturation magnetization and
It is strongly required that the distribution of the particle size be as narrow as possible, the dispersibility be excellent, and the oxidation stability Δσs be excellent.
【0007】しかしながら、これら諸特性をともに満た
す金属磁性粒子粉末を得ることは、その製造法に起因し
て困難である。However, it is difficult to obtain metal magnetic particle powders satisfying all of these properties due to the production method.
【0008】即ち、一般に、鉄を主成分とする金属磁性
粒子粉末は、第一鉄塩水溶液とアルカリ水溶液とを反応
して得られる鉄含有沈殿物を含む水溶液を空気等の酸素
含有ガスを通気して酸化反応を行い得られる紡錘状ゲー
タイト粒子粉末を加熱脱水して得られる紡錘状ヘマタイ
ト粒子粉末、又は該紡錘状へマタイト粒子粉末に鉄以外
の異種元素を含有させた紡錘状へマタイト粒子粉末を出
発原料粒子粉末として用い、該出発原料粒子粉末を還元
性ガス雰囲気下で加熱還元することにより得ることがで
きる。[0008] That is, generally, the magnetic metal particles containing iron as a main component are passed through an aqueous solution containing an iron-containing precipitate obtained by reacting an aqueous ferrous salt solution and an aqueous alkaline solution with an oxygen-containing gas such as air. Spindle-like hematite particle powder obtained by heating and dehydrating the spindle-like goethite particle powder obtained by performing the oxidation reaction, or spindle-like hematite particle powder obtained by adding a different element other than iron to the spindle-like hematite particle powder. Is used as a starting material particle powder, and the starting material particle powder can be obtained by heat reduction under a reducing gas atmosphere.
【0009】前記加熱還元工程における雰囲気や温度等
の条件は非常に過酷であるため、紡錘状へマタイト粒子
粉末は粒子及び粒子相互間で焼結を生起しやすい。特
に、金属磁性粒子粉末の長所である大きな飽和磁化値を
得るためには、加熱還元温度をできるだけ高くして十分
に還元を進めておくことが必要であるが、加熱還元温度
を高くした場合には、逆に紡錘状へマタイト粒子粉末は
形状破壊を生起しやすくなる。Since the conditions such as the atmosphere and the temperature in the heating and reducing step are very severe, the spindle-shaped hematite particles tend to cause sintering between the particles and the particles. In particular, in order to obtain a large saturation magnetization value, which is an advantage of metal magnetic particle powder, it is necessary to increase the heating reduction temperature as much as possible and to promote reduction sufficiently, but when the heating reduction temperature is increased, On the contrary, the spindle-shaped hematite particle powder tends to cause shape breakage.
【0010】近年、高い保磁力を有する金属磁性粒子粉
末を得るために粒子サイズは益々微粒子化し、紡錘状ヘ
マタイト粒子も微粒子化している。殊に、0.14μm
以下の微粒子になると、加熱還元工程における粒子形状
の破壊がより顕著となる傾向にある。このように形状破
壊された金属磁性粒子粉末は、形状異方性の低下により
高い保磁力を得ることができず、粒子サイズの分布は低
下する。そして、磁気記録媒体の製造に当っても、ビヒ
クル中での結合剤との混練、分散過程における粒子間力
の増大、あるいは磁気的凝集力の増大によって、分散性
が低下し、磁性塗膜とした時の角型比が低下し、優れた
SFDを有する磁気記録媒体を得ることはできない。In recent years, in order to obtain metal magnetic particle powder having a high coercive force, the particle size has been increasingly reduced, and spindle-shaped hematite particles have also been reduced. In particular, 0.14 μm
When the following fine particles are obtained, destruction of the particle shape in the heat reduction step tends to be more remarkable. The metal magnetic particle powder whose shape has been destroyed in this manner cannot obtain a high coercive force due to a decrease in shape anisotropy, and the particle size distribution decreases. And even in the production of magnetic recording media, dispersibility is reduced due to kneading with a binder in a vehicle, an increase in interparticle force in a dispersion process, or an increase in magnetic cohesion, and the magnetic coating film In this case, the squareness ratio of the magnetic recording medium decreases, and a magnetic recording medium having an excellent SFD cannot be obtained.
【0011】そこで、加熱還元工程で粒子形状の破壊が
可及的に防止することのできる紡錘状へマタイト粒子粉
末が強く要求される。Therefore, there is a strong demand for spindle-shaped hematite particle powder capable of preventing the destruction of the particle shape as much as possible in the heat reduction step.
【0012】一方、微粒子、殊に長軸径が0.14μm
以下の鉄を主成分とする金属磁性粒子粉末は、加熱還元
工程後、空気中に取り出した時に、空気中の酸素により
酸化反応が急激に進行して大幅な磁気特性の低下、殊
に、飽和磁化値の低下を起こし、目的とする大きな飽和
磁化値を有する金属磁性粒子粉末を得ることができず、
更に、磁性塗膜とした時の耐候性ΔBmに劣るものであ
る。そこで、還元直後の飽和磁化値が大きな金属磁性粒
子粉末であるとともに、酸化安定性に優れた金属磁性粒
子粉末であることが強く要求されている。On the other hand, fine particles, in particular, having a major axis diameter of 0.14 μm
The following iron-based metal magnetic particle powder, when taken out into the air after the heat-reduction step, undergoes an oxidizing reaction rapidly due to oxygen in the air, resulting in a significant decrease in magnetic properties, especially saturation. Due to the decrease in the magnetization value, it was not possible to obtain metal magnetic particle powder having the intended large saturation magnetization value,
Furthermore, it is inferior in weather resistance ΔBm when used as a magnetic coating film. Therefore, there is a strong demand that the metal magnetic particles have a large saturation magnetization immediately after reduction and have excellent oxidation stability.
【0013】従来、高い保磁力を有する鉄を主成分とす
る金属磁性粒子粉末を得るための方法として、鉄を主成
分とする金属磁性粒子粉末の粒子径を微粒子化させる方
法(特開昭57−135436号公報等)が知られてい
る。また、酸化安定性を改良するために、Fe以外の異
種元素としてCoを20原子%を超えて多量に含有させ
ること(特開平3−174704号公報、特開平3−2
93703号公報、特開平5−101917号公報、特
開平6−176912号公報、特開平8−165501
号公報、特開平9−22522号公報、特開平9−22
523号公報等)が広く知られている。Conventionally, as a method for obtaining metal magnetic particle powder mainly composed of iron having a high coercive force, a method of reducing the particle diameter of metal magnetic particle powder mainly composed of iron (Japanese Patent Application Laid-open No. JP-A-135436) is known. Further, in order to improve oxidation stability, Co is contained in a large amount exceeding 20 atomic% as a different element other than Fe (JP-A-3-174704, JP-A-3-2704).
93703, JP-A-5-101917, JP-A-6-176912, JP-A-8-165501
JP, JP-A-9-22522, JP-A-9-22
No. 523) is widely known.
【0014】[0014]
【発明が解決しようとする課題】前記加熱還元工程にお
ける形状破壊が可及的に防止することのできるCo含有
紡錘状ヘマタイト粒子粉末は、現在最も要求されている
ところであるが、これら諸特性を満たす出発原料粒子粉
末は未だ提供されていない。The Co-containing spindle-shaped hematite particle powder capable of preventing the shape destruction in the heating and reducing step as much as possible is the most required at present, but satisfies these characteristics. Starting material particle powder has not yet been provided.
【0015】即ち、鉄を主成分とする金属磁性粒子粉末
の粒子径を微粒子化させる方法による場合は、前述した
通り、紡錘状ヘマタイト粒子粉末が微粒子であることに
より加熱還元する際、粒子及び粒子相互間の焼結が生起
しやすく、形状破壊が起こりやすい。このため、得られ
た金属磁性粒子粉末は所望の高い保磁力を得ることが難
しく、高々159.2kA/m(2000Oe)の保磁
力しか得られていない。そして、微粒子を加熱還元する
ことによる粒子の形状破壊により分散性が低下し、磁性
塗膜としたときのSFDに劣るのもである。That is, in the case of the method of reducing the particle size of the metal magnetic particle powder containing iron as a main component, as described above, since the spindle-shaped hematite particle powder is a fine particle, the particles are not reduced when heated and reduced. Sintering between them easily occurs, and shape destruction easily occurs. Therefore, it is difficult for the obtained metal magnetic particle powder to obtain a desired high coercive force, and only a coercive force of at most 159.2 kA / m (2000 Oe) is obtained. Further, the dispersibility is reduced due to the shape destruction of the particles due to the heat reduction of the fine particles, which is inferior to the SFD when a magnetic coating film is formed.
【0016】また、前出公知のコバルトを多量に含有し
た場合、酸化安定性が改善された金属磁性粒子粉末が得
られるが、加熱処理の際に過度の粒子成長が起こりやす
く、形状破壊を誘起するため、得られた金属磁性粒子粉
末は形状異方性が低下していることにより、高い保磁力
を得ることはできず、サイズ分布が低下し分散性が低下
していることにより磁性塗膜のSFDは高々0.40程
度の金属磁性粒子粉末しか得られていない。When a large amount of the above-mentioned known cobalt is contained, a metal magnetic particle powder having improved oxidation stability can be obtained, but excessive particle growth is liable to occur during heat treatment, and shape destruction is induced. Therefore, the obtained metal magnetic particle powder cannot obtain a high coercive force due to the reduced shape anisotropy, and has a reduced size distribution and reduced dispersibility. As a result, only about 0.40 metal magnetic particle powder was obtained.
【0017】そこで、本発明は、前記加熱還元工程にお
ける形状破壊を可及的に防止することができるので、よ
り高い保磁力、殊に159.2kA/m(2000O
e)以上の保磁力、大きな飽和磁化値、殊に130Am
2/kg(130emu/g)以上であって、酸化安定
性に優れ、且つ、磁性塗膜での優れたSFD、殊に0.
40未満をともに有するFe及びCoを主成分とする紡
錘状合金磁性粒子粉末用材料として好適なCo含有紡錘
状へマタイト粒子粉末を提供することを技術的課題とす
る。Therefore, according to the present invention, since the shape destruction in the heat reduction step can be prevented as much as possible, a higher coercive force, in particular, 159.2 kA / m (2000O
e) Above coercivity, large saturation magnetization, especially 130 Am
2 / kg (130 emu / g) or more, excellent in oxidative stability, and excellent SFD in magnetic coating film, in particular, 0.
It is a technical object of the present invention to provide a Co-containing spindle-shaped hematite particle powder suitable as a material for a spindle-shaped alloy magnetic particle powder containing Fe and Co as main components and having both of less than 40.
【0018】[0018]
【課題を解決するための手段】前記技術的課題は、次の
通りの本発明によって達成できる。The above technical objects can be achieved by the present invention as described below.
【0019】即ち、本発明は、平均長軸径が0.05〜
0.14μm、軸比(平均長軸径/平均短軸径)が4〜
8、結晶子サイズD104が50〜80Åであって、飽
和磁化値σsが0.5〜2Am2/kgであり、且つ、
全Feに対してCo換算で20原子%を超えて45原子
%以下のコバルト、Al換算で5〜15原子%のアルミ
ニウム及び希土類元素換算で5〜15原子%の希土類化
合物を含有しているCo含有紡錘状ヘマタイト粒子粉末
からなることを特徴とするFe及びCoを主成分とする
紡錘状合金磁性粒子粉末用Co含有紡錘状ヘマタイト粒
子粉末である。That is, according to the present invention, the average major axis diameter is 0.05 to
0.14 μm, axial ratio (average major axis diameter / average minor axis diameter) of 4 to
8, a crystallite size D 104 is 50~80A, saturation magnetization value σs is 0.5~2Am 2 / kg, and,
Co containing more than 20 atomic% and less than 45 atomic% of Co in terms of Co, 5 to 15 atomic% of aluminum in terms of Al, and 5 to 15 atomic% of rare earth compounds in terms of rare earth elements with respect to all Fe. The present invention is a Co-containing spindle-shaped hematite particle powder for a spindle-shaped alloy magnetic particle powder containing Fe and Co as a main component, comprising a spindle-containing spindle-shaped hematite particle powder.
【0020】本発明の構成をより詳しく説明すれば次の
通りである。The structure of the present invention will be described in more detail as follows.
【0021】本発明に係るへマタイト粒子粉末の粒子形
状は、紡錘状である。紡錘状へマタイト粒子粉末は、紡
錘状ゲータイト粒子を加熱脱水処理することにより得る
ことができる。The particle shape of the hematite particles according to the present invention is spindle-shaped. Spindle-shaped hematite particle powder can be obtained by subjecting spindle-shaped goethite particles to a heat dehydration treatment.
【0022】周知の通り、紡錘状ヘマタイト粒子粉末は
紡錘状ゲータイト粒子粉末の粒子形状を継承するため、
中央部が太く該中央部から両先端部に向かって徐々に先
細りとなっている形状を有しており、樹枝状粒子が混在
しておらず、粒子サイズの分布が優れている粒子粉末で
ある。As is well known, the spindle-shaped hematite particle powder inherits the particle shape of the spindle-shaped goethite particle powder.
The particle powder has a shape in which the central part is thick and gradually tapered from the central part toward both ends, the dendritic particles are not mixed, and the particle size distribution is excellent. .
【0023】本発明に係る紡錘状ヘマタイト粒子粉末
は、コバルトを全Feに対してCo換算で20原子%を
超えて45原子%以下、好ましくは21〜40原子%、
更に好ましくは21〜35原子%含有し、アルミニウム
を全Feに対してAl換算で5〜15原子%、好ましく
は6〜14原子%含有し、また、希土類元素を、全Fe
に対して希土類元素換算で5〜15原子%、好ましくは
5〜12原子%含有している。In the spindle-shaped hematite particles according to the present invention, the content of cobalt is more than 20 at% and not more than 45 at%, preferably 21 to 40 at% in terms of Co with respect to the total Fe.
More preferably, it contains 21 to 35 at%, aluminum contains 5 to 15 at%, preferably 6 to 14 at% in terms of Al with respect to the total Fe, and the rare earth element contains
5 to 15 at.%, Preferably 5 to 12 at.% In terms of rare earth element.
【0024】コバルトの含有量が全Feに対して20原
子%以下の場合には、得られたFe及びCoを主成分と
する紡錘状合金磁性粒子粉末は酸化安定性を十分に改良
することができず、また、大きな飽和磁化値が得られ難
い。45原子%を超える場合には、還元速度の制御が非
常に難しくなり、加熱還元時に粒子及び粒子相互間で形
状破壊や焼結を生じ、高い保磁力が得られ難くなる。When the content of cobalt is 20 atomic% or less based on the total Fe, the obtained spindle-shaped alloy magnetic particles containing Fe and Co as main components can sufficiently improve the oxidation stability. In addition, it is difficult to obtain a large saturation magnetization value. If the content exceeds 45 atomic%, it becomes very difficult to control the reduction rate, and shape destruction and sintering occur between the particles during heating and reduction, making it difficult to obtain a high coercive force.
【0025】アルミニウムの含有量が全Feに対して5
原子%未満の場合には還元速度の制御が難しく、還元工
程における形状破壊が生起し、得られるFe及びCoを
主成分とする紡錘状合金磁性粒子粉末は、官能基を有す
るバインダーとの吸着が弱く、高い角型比が得られ難
い。15原子%を超える場合は、還元そのものが進行し
難く、また、非磁性分の割合が大きくなるため大きな飽
和磁化値が得られ難くなる。When the content of aluminum is 5
When the content is less than atomic%, it is difficult to control the reduction rate, and shape destruction occurs in the reduction step, and the obtained spindle-shaped alloy magnetic particles containing Fe and Co as a main component are not adsorbed by a binder having a functional group. It is weak and it is difficult to obtain a high squareness ratio. If the content exceeds 15 atomic%, the reduction itself does not easily proceed, and a large saturation magnetization value is hardly obtained because the ratio of the nonmagnetic component increases.
【0026】希土類元素の含有量が全Feに対して5原
子%未満の場合には、還元速度の制御が非常に難しくな
り、形状破壊により高い保磁力が得られ難くなる。ま
た、焼結防止効果が十分でなく、磁性塗膜でのSFDが
悪化する。15原子%を超える場合は、還元そのものが
進行し難く、また、非磁性分の割合が大きくなるため大
きな飽和磁化値が得られ難くなる。When the content of the rare earth element is less than 5 atomic% based on the total Fe, it is very difficult to control the reduction rate, and it is difficult to obtain a high coercive force due to shape destruction. In addition, the effect of preventing sintering is not sufficient, and the SFD on the magnetic coating film deteriorates. If the content exceeds 15 atomic%, the reduction itself does not easily proceed, and a large saturation magnetization value is hardly obtained because the ratio of the nonmagnetic component increases.
【0027】前記希土類元素としては、スカンジウム、
イットリウム、ランタン、セリウム、プラセオジウム、
ネオジウム、サマリウム等の1種又は2種以上が好適で
ある。特に、イットリウム、ネオジウムが好ましい。As the rare earth element, scandium,
Yttrium, lanthanum, cerium, praseodymium,
One or more of neodymium, samarium, and the like are suitable. Particularly, yttrium and neodymium are preferable.
【0028】本発明に係る紡錘状へマタイト粒子粉末の
平均長軸径は、0.05〜0.14μmである。平均長
軸径が0.05μm未満の場合は、得られる紡錘状合金
磁性粒子が超常磁性となるため大きな飽和磁化値が得ら
れず、同時に高い保磁力も得られ難くなる。逆に0.1
4μmを超える場合は、目的とする高い保磁力が得られ
ない。The average major axis diameter of the spindle-shaped hematite particles according to the present invention is 0.05 to 0.14 μm. When the average major axis diameter is less than 0.05 μm, the obtained spindle-shaped alloy magnetic particles become superparamagnetic, so that a large saturation magnetization cannot be obtained, and at the same time, it is difficult to obtain a high coercive force. Conversely 0.1
If it exceeds 4 μm, the desired high coercive force cannot be obtained.
【0029】本発明に係る紡錘状ヘマタイト粒子粉末の
軸比は4〜8である。軸比が4未満の場合は得られる紡
錘状合金磁性粒子の形状異方性が低下するため、高い保
磁力が得られない。8を超える場合は、長軸径に依存す
るが、比較的高い保磁力は得られるものの、大きな飽和
磁化値が得られ難くなる。The spindle ratio of the spindle-shaped hematite particles according to the present invention is 4 to 8. When the axial ratio is less than 4, a high coercive force cannot be obtained because the shape anisotropy of the obtained spindle-shaped alloy magnetic particles is reduced. If it exceeds 8, although it depends on the major axis diameter, a relatively high coercive force can be obtained, but it is difficult to obtain a large saturation magnetization value.
【0030】本発明に係る紡錘状へマタイト粒子粉末の
結晶子サイズD104は、50〜80Åである。結晶子
サイズD104が50Å未満の場合は、紡錘状ヘマタイ
ト粒子の結晶成長が小さく、還元速度の制御が不十分と
なり、形状破壊により目的とする高い保磁力が得られ難
くなる。80Åを超える場合は、紡錘状ヘマタイト粒子
での過度の結晶成長により、短軸方向の成長が促進され
て、形状異方性が低下し、高い保磁力が得られ難くな
る。[0030] The present invention crystallite size D 104 of hematite particles into spindle-shaped according to is 50~80A. When the crystallite size D 104 is less than 50 °, the crystal growth of the spindle-shaped hematite particles is small, the control of the reduction rate becomes insufficient, and it becomes difficult to obtain a desired high coercive force due to shape destruction. If it exceeds 80 °, excessive crystal growth in the spindle-shaped hematite particles promotes growth in the short axis direction, lowers the shape anisotropy, and makes it difficult to obtain a high coercive force.
【0031】本発明に係る紡錘状へマタイト粒子粉末の
飽和磁化値σsは、0.5〜2Am 2/kg(0.5〜
2emu/g)である。σsが0.5Am2/kg
(0.5emu/g)未満の場合、紡錘状へマタイト粒
子粉末の分布はよいが、紡錘状合金磁性粒子粉末とした
場合に、分散性に劣るものである。σsが2Am2/k
g(2emu/g)を超える場合には、コバルトを含有
していることに起因して脱水加熱時にスピネル化合物を
多量に生じ、短軸成長が生起し、更に、過度の場合には
紡錘状へマタイト粒子での形状破壊が起きるため、高い
保磁力を有する紡錘状合金磁性粒子粉末が得られ難い。The spindle-shaped hematite particles according to the present invention
The saturation magnetization value s is 0.5 to 2 Am 2/ Kg (0.5 ~
2 emu / g). σs is 0.5 Am2/ Kg
(0.5 emu / g), spindle-shaped hematite grains
Fine powder distribution is good, but spindle-shaped alloy magnetic particle powder
In this case, the dispersibility is poor. σs is 2 Am2/ K
g (2 emu / g), contains cobalt
The spinel compound during dehydration heating due to
In large amounts, short-axis growth occurs, and if excessive,
Spindle-shaped hematite particles cause shape destruction,
It is difficult to obtain spindle-shaped alloy magnetic particles having coercive force.
【0032】本発明に係る紡錘状へマタイト粒子粉末の
平均短軸径は、0.010〜0.022μmが好まし
い。平均短軸径が0.010μm未満の場合は、得られ
る紡錘状合金磁性粒子が超常磁性となるため大きな飽和
磁化値が得られず、同時に高い保磁力も得られ難くな
る。0.022μmを超える場合は、目的とする高い保
磁力が得られない。The average minor axis diameter of the spindle-shaped hematite particles according to the present invention is preferably 0.010 to 0.022 μm. When the average minor axis diameter is less than 0.010 μm, the obtained spindle-shaped alloy magnetic particles become superparamagnetic, so that a large saturation magnetization cannot be obtained, and at the same time, it is difficult to obtain a high coercive force. If it exceeds 0.022 μm, the desired high coercive force cannot be obtained.
【0033】本発明に係る紡錘状へマタイト粒子粉末の
サイズ分布(標準偏差/平均長軸径)は0.20以下が
好ましい。サイズ分布が0.20を超える場合は、得ら
れた紡錘状合金磁性粒子粉末は当然のことながら、サイ
ズ分布も劣るため、磁性塗膜でのSFDが劣り、結果テ
ープとして使用する場合、高出力化させ難くなる。The size distribution (standard deviation / average major axis diameter) of the spindle-shaped hematite particles according to the present invention is preferably 0.20 or less. When the size distribution exceeds 0.20, the obtained spindle-shaped alloy magnetic particle powder naturally has a poor size distribution, so that the SFD in the magnetic coating film is inferior. It is difficult to make it.
【0034】本発明に係る紡錘状ヘマタイト粒子粉末
は、BET比表面積が30〜150m 2/g、殊に、5
0〜120m2/gが好ましい。Spindle-shaped hematite particles according to the present invention
Has a BET specific surface area of 30 to 150 m 2/ G, especially 5
0-120m2/ G is preferred.
【0035】次に、本発明に係る紡錘状へマタイト粒子
粉末を用いて得られるFe及びCoを主成分とする紡錘
状合金磁性粒子粉末について述べる。Next, a spindle-shaped alloy magnetic particle powder mainly composed of Fe and Co obtained by using the spindle-shaped hematite particle powder according to the present invention will be described.
【0036】本発明におけるFe及びCoを主成分とす
る紡錘状合金磁性粒子粉末は、Coを全Feに対して2
0原子%を超えて45原子%以下、好ましくは21〜4
0原子%、さらに好ましくは21〜35原子%含有す
る。また、Alを全Feに対して5〜15原子%、好ま
しくは6〜14原子%含有する。また、希土類元素を全
Feに対して5〜15原子%、好ましくは5〜12原子
%含有する。The spindle-shaped alloy magnetic particles containing Fe and Co as main components in the present invention contain Co in an amount of 2 to the total Fe.
More than 0 atomic% and 45 atomic% or less, preferably 21 to 4
0 at%, more preferably 21 to 35 at%. Al is contained in an amount of 5 to 15 at%, preferably 6 to 14 at%, based on the total Fe. Further, the rare earth element is contained in an amount of 5 to 15 at%, preferably 5 to 12 at% based on the total amount of Fe.
【0037】本発明におけるFe及びCoを主成分とす
る紡錘状合金磁性粒子粉末は、平均長軸径が0.05〜
0.14μm、好ましくは0.05〜0.13μmであ
り、軸比は4〜8であって、粒子の結晶子サイズD
110は120〜170Åである。また、サイズ分布は
0.18以下であり、平均短軸径は0.010〜0.0
20μmである。The spindle-shaped alloy magnetic particles containing Fe and Co as the main components in the present invention have an average major axis diameter of 0.05 to 0.05.
0.14 μm, preferably 0.05-0.13 μm, the axial ratio is 4-8, and the crystallite size D of the particles
110 is 120 to 170 degrees. The size distribution is 0.18 or less, and the average minor axis diameter is 0.010 to 0.0.
20 μm.
【0038】本発明におけるFe及びCoを主成分とす
る紡錘状合金磁性粒子粉末は、BET比表面積が35〜
65m2/g、好ましくは40〜60m2/gである。The spindle-shaped alloy magnetic particles containing Fe and Co as the main components in the present invention have a BET specific surface area of 35 to 35.
65 m 2 / g, preferably of 40 to 60 2 / g.
【0039】本発明におけるFe及びCoを主成分とす
る紡錘状合金磁性粒子粉末は、保磁力が159.2〜1
98.9kA/m(2000〜2500Oe)である。
また、飽和磁化値が130〜160Am2/kg(13
0〜160emu/g)、好ましくは135〜160A
m2/kg(135〜160emu/g)である。The spindle-shaped alloy magnetic particles containing Fe and Co as main components according to the present invention have a coercive force of 159.2 to 1
98.9 kA / m (2000 to 2500 Oe).
Further, the saturation magnetization value is 130 to 160 Am 2 / kg (13
0-160 emu / g), preferably 135-160 A
m 2 / kg (135-160 emu / g).
【0040】本発明におけるFe及びCoを主成分とす
る紡錘状合金磁性粒子粉末は、温度60℃、相対湿度9
0%の環境下における促進経時試験の1週間後における
飽和磁化値σsの経時劣化Δσs(酸化安定性)が絶対
値として10%以下であり、好ましくは8%以下であ
る。In the present invention, the spindle-shaped alloy magnetic particles containing Fe and Co as main components have a temperature of 60 ° C. and a relative humidity of 9%.
The aging degradation Δσs (oxidation stability) of the saturation magnetization value σs one week after the accelerated aging test in an environment of 0% is 10% or less as an absolute value, and preferably 8% or less.
【0041】本発明におけるFe及びCoを主成分とす
る紡錘状合金磁性粒子粉末を用いた磁性塗膜の特性は、
角型比(Br/Bm)が0.85以上、好ましくは0.
86以上であり、SFDが0.40未満、好ましくは
0.39以下である。The characteristics of the magnetic coating film using the spindle-shaped alloy magnetic particles containing Fe and Co as main components in the present invention are as follows.
The squareness ratio (Br / Bm) is at least 0.85, preferably at least 0.5.
86 or more, and the SFD is less than 0.40, preferably 0.39 or less.
【0042】本発明におけるFe及びCoを主成分とす
る紡錘状合金磁性粒子粉末を用いた磁性塗膜の特性は、
温度60℃、相対湿度90%の環境下における促進経時
試験の1週間後における飽和磁束密度Bmの経時劣化Δ
Bm(耐候性)が絶対値として8%以下であり、好まし
くは6%以下である。The characteristics of the magnetic coating film using the spindle-shaped alloy magnetic particles containing Fe and Co as main components in the present invention are as follows.
Degradation of saturated magnetic flux density Bm with time after one week of accelerated aging test in an environment of a temperature of 60 ° C. and a relative humidity of 90% Δ
Bm (weather resistance) is 8% or less in absolute value, preferably 6% or less.
【0043】次に、本発明に係る紡錘状へマタイト粒子
粉末の製造法について述べる。Next, a method for producing the spindle-shaped hematite particles according to the present invention will be described.
【0044】本発明に係る紡錘状ヘマタイト粒子粉末
は、例えば、紡錘状ゲータイト粒子粉末を酸化性雰囲気
下で350℃以下で加熱脱水し、更に、同雰囲気下で4
50℃を超えて700℃未満の温度範囲で加熱処理する
ことにより得ることができる。The spindle-shaped hematite particles according to the present invention are prepared by, for example, heating and dehydrating spindle-shaped goethite particles at 350 ° C. or less in an oxidizing atmosphere,
It can be obtained by performing heat treatment in a temperature range of more than 50 ° C and less than 700 ° C.
【0045】出発原料粒子粉末である紡錘状ゲータイト
粒子粉末は、平均長軸径が0.05〜0.17μm、好
ましくは0.05〜0.15μmであり、サイズ分布は
0.24以下である。また、平均短軸径が0.010〜
0.025μm、好ましくは0.010〜0.023μ
mである。軸比が4〜8である。The spindle-shaped goethite particles as the starting material particles have an average major axis diameter of 0.05 to 0.17 μm, preferably 0.05 to 0.15 μm, and a size distribution of 0.24 or less. . Moreover, the average short axis diameter is 0.010 to
0.025 μm, preferably 0.010-0.023 μm
m. The axial ratio is 4-8.
【0046】出発原料粒子粉末である紡錘状ゲータイト
粒子粉末は、コバルトを全Feに対してCo換算で20
原子%を超えて45原子%以下含有するとともに、アル
ミニウムを全Feに対してAl換算で5〜15原子%含
有する。The spindle-shaped goethite particles, which are the starting material particles, are obtained by converting cobalt into Co in terms of Co with respect to all Fe.
It contains not less than 45 at% and more than 45 at%, and contains 5 to 15 at% of aluminum in terms of Al with respect to all Fe.
【0047】出発原料粒子粉末である紡錘状ゲータイト
粒子粉末は、BET比表面積が100〜250m2/
g、好ましくは120〜230m2/gである。The spindle-shaped goethite particles as the starting material particles have a BET specific surface area of 100 to 250 m 2 /
g, preferably 120 to 230 m 2 / g.
【0048】出発原料粒子粉末である紡錘状ゲータイト
粒子粉末は、まず、紡錘状ゲータイト種晶粒子を生成さ
せ、次いで、該種晶粒子表面にゲータイト層を成長させ
ることによって得られる。The spindle-shaped goethite particle powder as the starting material particle powder is obtained by first forming spindle-shaped goethite seed crystal particles and then growing a goethite layer on the surface of the seed crystal particles.
【0049】得られた紡錘状ゲータイト粒子粉末は、加
熱脱水処理に先立って焼結防止のために紡錘状ゲータイ
ト粒子の粒子表面をCo元素の化合物、Al元素の化合
物及び焼結防止剤により被覆処理しておく。The obtained spindle-shaped goethite particle powder is coated with a compound of Co element, a compound of Al element and a sintering inhibitor in order to prevent sintering prior to the heat dehydration treatment. Keep it.
【0050】前記焼結防止剤としては、前記希土類元素
の化合物を用いる。The rare earth element compound is used as the sintering inhibitor.
【0051】なお、焼結防止効果の向上のため、あるい
は、必要によりその他の元素としてSi、B、Ca、M
g、Ba、Sr等から選ばれる元素の化合物の1種又は
2種以上を使用してもよい。これらの化合物は、焼結防
止効果を有するだけでなく、還元速度を制御する働きも
有するので、必要に応じて組み合わせて使用すればよ
い。In order to improve the effect of preventing sintering, or if necessary, other elements such as Si, B, Ca, M
One, two or more compounds of elements selected from g, Ba, Sr and the like may be used. These compounds not only have the effect of preventing sintering but also have the function of controlling the reduction rate, and thus may be used in combination as necessary.
【0052】前記焼結防止剤によってあらかじめ被覆し
ておくことにより、粒子及び粒子相互間の焼結が防止さ
れ、紡錘状ゲータイト粒子の粒子形状及び軸比を保持継
承した紡錘状ヘマタイト粒子粉末を得ることができ、こ
れによって、前記形状等を保持継承し、個々に独立した
Fe及びCoを主成分とする紡錘状合金磁性粒子粉末が
得られやすくなる。By coating in advance with the sintering inhibitor, sintering between the particles and the particles is prevented, and spindle-shaped hematite particle powder that retains and inherits the particle shape and axis ratio of the spindle-shaped goethite particles is obtained. As a result, it becomes easier to obtain spindle-shaped alloy magnetic particle powders that retain the above-mentioned shape and the like and independently contain Fe and Co as main components.
【0053】紡錘状ゲータイト粒子粉末の加熱脱水処理
及び加熱処理の雰囲気は酸化性ガス雰囲気である。不活
性ガス雰囲気で行った場合は、脱水反応及び粒子成長の
制御が難しく、粒子変形による軸比低下、分布悪化など
を引き起こし、得られる紡錘状合金磁性粒子粉末の保磁
力も低下し易くなる。The atmosphere for the heating dehydration treatment and the heating treatment of the spindle-shaped goethite particles is an oxidizing gas atmosphere. When the reaction is carried out in an inert gas atmosphere, it is difficult to control the dehydration reaction and the particle growth, causing a reduction in the axial ratio and a deterioration in the distribution due to the particle deformation, and the coercive force of the obtained spindle-shaped alloy magnetic particles is also easily reduced.
【0054】加熱脱水温度が350℃を超える場合は、
脱水反応が急激に起こり、粒子変形による軸比低下、分
布悪化などを引き起こす。When the heat dehydration temperature exceeds 350 ° C.,
The dehydration reaction occurs rapidly, causing a reduction in the axial ratio and a deterioration in the distribution due to the deformation of the particles.
【0055】加熱温度が450℃以下の場合、十分な粒
子成長が起こらず、加熱還元時の還元速度の制御が不十
分となり、形状破壊などにより目的とする高い保磁力が
得られない。一方、加熱温度が700℃以上の場合、過
度の結晶成長が起こり、特に短軸方向の成長が促進さ
れ、紡錘状合金磁性粒子粉末では高い保磁力が得られな
い等の現象が起こる。When the heating temperature is 450 ° C. or lower, sufficient grain growth does not occur, the control of the reduction rate during the heat reduction becomes insufficient, and the desired high coercive force cannot be obtained due to shape destruction and the like. On the other hand, when the heating temperature is 700 ° C. or higher, excessive crystal growth occurs, particularly growth in the short axis direction is promoted, and phenomena such as a high coercive force cannot be obtained with the spindle-shaped alloy magnetic particles.
【0056】また、Na2SO4などの不純物塩を除去
するために加熱処理後の紡錘状ヘマタイト粒子粉末を洗
浄してもよい。この場合において、被覆された焼結防止
剤が溶出しない条件で洗浄を行うことにより、不要な不
純物の除去を行うことが好ましい。The spindle-shaped hematite particles after the heat treatment may be washed to remove impurity salts such as Na 2 SO 4 . In this case, it is preferable to remove unnecessary impurities by performing washing under conditions where the coated sintering inhibitor does not elute.
【0057】具体的には、陽イオン性不純物の除去には
pHを上げて行い、陰イオン性不純物の除去にはpHを
下げて行うことで、焼結防止剤を溶出させることなく、
より効率的に洗浄できる。Specifically, the removal of cationic impurities is carried out by raising the pH, and the removal of anionic impurities is carried out by lowering the pH, so that the sintering inhibitor is not eluted.
More efficient cleaning.
【0058】次に、本発明におけるFe及びCoを主成
分とする紡錘状合金磁性粒子粉末の製造法について述べ
る。Next, a method for producing spindle-shaped alloy magnetic particles containing Fe and Co as main components in the present invention will be described.
【0059】本発明においては、本発明に係る紡錘状ヘ
マタイト粒子粉末を還元性ガス雰囲気下で加熱還元する
ことによって、Fe及びCoを主成分とする紡錘状合金
磁性粒子粉末を得ることができる。In the present invention, the spindle-shaped hematite particles according to the present invention are heated and reduced in a reducing gas atmosphere to obtain spindle-shaped alloy magnetic particles containing Fe and Co as main components.
【0060】本発明における加熱還元の温度範囲は、4
00〜700℃の温度範囲で行うことが好ましい。加熱
還元温度は、紡錘状ゲータイト粒子粉末の被覆処理に用
いた化合物の種類に応じて適宜選択することがより好ま
しい。400℃未満である場合には、還元反応の進行が
遅く長時間を要する。700℃を越える場合には、還元
反応が急激に進行して粒子の変形と粒子及び粒子相互間
の焼結を引き起こしてしまう。The temperature range of the heat reduction in the present invention is 4
It is preferable to carry out in a temperature range of 00 to 700 ° C. The heat reduction temperature is more preferably selected as appropriate according to the type of the compound used in the coating treatment of the spindle-shaped goethite particles. When the temperature is lower than 400 ° C., the progress of the reduction reaction is slow and a long time is required. When the temperature exceeds 700 ° C., the reduction reaction proceeds rapidly, causing deformation of the particles and sintering between the particles and the particles.
【0061】本発明における加熱還元後のFe及びCo
を主成分とする紡錘状合金磁性粒子粉末は、周知の方
法、例えば、トルエン等の有機溶剤中に浸漬する方法、
還元後のFe及びCoを主成分とする紡錘状合金磁性粒
子粉末の雰囲気を一旦不活性ガスに置換した後、不活性
ガス中の酸素含有量を徐々に増加させながら最終的に空
気とする方法及び酸素と水蒸気を混合したガスを使用し
て徐酸化する方法等により空気中に取り出すことができ
る。In the present invention, Fe and Co after heat reduction are used.
Spindle-shaped alloy magnetic particles powder containing as a main component a known method, for example, a method of immersing in an organic solvent such as toluene,
A method in which the atmosphere of the spindle-shaped alloy magnetic particles containing Fe and Co as a main component after the reduction is once replaced with an inert gas, and then the air is finally formed while gradually increasing the oxygen content in the inert gas. It can be taken out into the air by a method of gradually oxidizing using a mixed gas of oxygen and water vapor.
【0062】[0062]
【発明の実施の形態】本発明の代表的な実施の形態は次
の通りである。DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical embodiment of the present invention is as follows.
【0063】本発明における紡錘状ゲータイト粒子粉
末、紡錘状へマタイト粒子粉末及びFe及びCoを主成
分とする紡錘状合金磁性粒子粉末の平均長軸径及び平均
短軸径は、いずれも電子顕微鏡写真から測定した数値の
平均値で示した。また、軸比は平均長軸径/平均短軸径
として求めた。The average major axis diameter and average minor axis diameter of the spindle-shaped goethite particle powder, the spindle-shaped hematite particle powder, and the spindle-shaped alloy magnetic particle powder containing Fe and Co as main components in the present invention are all electron micrographs. The average value of the numerical values measured from is shown. In addition, the axial ratio was determined as average major axis diameter / average minor axis diameter.
【0064】本発明における紡錘状ゲータイト粒子粉
末、紡錘状へマタイト粒子粉末及びFe及びCoを主成
分とする紡錘状合金磁性粒子粉末のCo量、Al量、希
土類元素量及びその他の金属元素の含有量は、「誘導結
合プラズマ発光分光分析装置SPS4000」(セイコ
ー電子工業(株)製)を使用し、測定した。The content of Co, Al, rare earth element and other metal elements in the spindle-shaped goethite particle powder, spindle-shaped hematite particle powder and spindle-shaped alloy magnetic particle powder containing Fe and Co as main components in the present invention. The amount was measured using “Inductively Coupled Plasma Emission Spectroscopy Analyzer SPS4000” (manufactured by Seiko Instruments Inc.).
【0065】粒子粉末の比表面積は、「モノソーブMS
−11」(カンタクロム(株)製)を使用し、BET法
により測定した値で示した。The specific surface area of the particle powder is “Monosorb MS”
-11 "(manufactured by Cantachrome Co., Ltd.) and the value measured by the BET method.
【0066】ヘマタイト粒子の結晶子サイズD104及
び紡錘状合金磁性粒子結晶子サイズD110は、「X線
回折装置」(Rigaku製)(測定条件:ターゲット
Cu、管電圧40kV、管電流40mA)を使用し、X
線回折法で測定される結晶粒子の大きさを、ヘマタイト
粒子の(104)結晶面、紡錘状合金磁性粒子の(11
0)結晶面のそれぞれに垂直な方向における結晶粒子の
厚さを表したものであり、各結晶面についての回折ピー
ク曲線から、下記のシェラーの式を用いて計算した値で
示したものである。[0066] The crystallite size D 104 and spindle-shaped alloy magnetic particle crystallite size D 110 of hematite particles, "X-ray diffraction apparatus" (manufactured by Rigaku) (measurement conditions: Target Cu, tube voltage 40 kV, tube current 40 mA) The Use X
The size of the crystal particles measured by the X-ray diffraction method was determined by comparing the (104) crystal plane of the hematite particles and the (11)
0) It represents the thickness of a crystal grain in a direction perpendicular to each of the crystal planes, and is a value calculated from the diffraction peak curve of each crystal plane using the following Scherrer's formula. .
【0067】D104又はD110=Kλ/βcosθ 但し、β=装置に起因する機械幅を補正した真の回折ピ
ークの半値幅(ラジアン単位)。 K=シェラー定数(=0.9)、 λ=X線の波長(Cu Kα線 0.1542nm)、 θ=回折角((104)面又は(110)面の回折ピー
クに対応)D 104 or D 110 = Kλ / βcos θ, where β = half-width (in radians) of a true diffraction peak corrected for the mechanical width caused by the apparatus. K = Scherrer constant (= 0.9), λ = wavelength of X-ray (Cu Kα-ray 0.1542 nm), θ = diffraction angle (corresponding to diffraction peak of (104) plane or (110) plane)
【0068】紡錘状へマタイト粒子粉末のX線回折測定
は、前記X線回折装置を使用し、回折角2θが10〜6
0°で測定した。X線チャートのスピネル型酸化鉄の生
成量が少ないほど、紡錘状へマタイト粒子粉末の飽和磁
化値σsも低くなる。The X-ray diffraction measurement of the spindle-shaped hematite particles was carried out using the X-ray diffractometer described above, and the diffraction angle 2θ was 10-6.
Measured at 0 °. The smaller the amount of spinel-type iron oxide produced in the X-ray chart, the lower the saturation magnetization value s of the spindle-shaped hematite particles.
【0069】Fe及びCoを主成分とする紡錘状合金磁
性粒子粉末の磁気特性は、「振動試料磁力計VSM−3
S−15」(東英工業(株)製)を使用し、外部磁場7
95.8kA/m(10kOe)で測定した。The magnetic properties of the spindle-shaped alloy magnetic particles containing Fe and Co as main components are described in "Vibration sample magnetometer VSM-3".
S-15 "(manufactured by Toei Industry Co., Ltd.)
It was measured at 95.8 kA / m (10 kOe).
【0070】磁性塗膜片の磁気特性は、下記の成分を1
00mlのポリビンに下記の割合で入れた後、ペイント
シェーカー(レッドデビル社製)で8時間混合分散を行
うことにより調製した磁性塗料を厚さ25μmのポリエ
チレンテレフタートフィルム上にアプリケータを用いて
50μmの厚さに塗布し、次いで、500mT(5kG
auss)の磁場中で乾燥させることにより得た磁性塗
膜片の磁気特性を測定した。 3mmφスチールボール 800重量部、 Fe及びCoを主成分とする紡錘状合金磁性粒子粉末 100重量部、 スルホン酸ナトリウム基を有するポリウレタン樹脂 20重量部、 シクロヘキサノン 83.3重量部、 メチルエチルケトン 83.3重量部、 トルエン 83.3重量部。The magnetic properties of the magnetic coating film piece were as follows:
A magnetic paint prepared by putting the mixture in a 00 ml polybin at the following ratio and mixing and dispersing for 8 hours with a paint shaker (manufactured by Red Devil Co.) was applied to a 25 μm-thick polyethylene terephthalate film with a thickness of 50 μm using an applicator. To a thickness of 500 mT (5 kG
auss) was dried in a magnetic field to measure the magnetic properties of the magnetic coating pieces obtained. 800 parts by weight of 3 mmφ steel ball, 100 parts by weight of spindle-shaped alloy magnetic particles mainly composed of Fe and Co, 20 parts by weight of a polyurethane resin having a sodium sulfonate group, 83.3 parts by weight of cyclohexanone, 83.3 parts by weight of methyl ethyl ketone 83.3 parts by weight of toluene.
【0071】粉体の飽和磁化値の酸化安定性の評価であ
るΔσs及び磁性塗膜の飽和磁束密度Bmの耐候性の評
価であるΔBmは、温度60℃、相対湿度90%の恒温
槽に粉体又は磁性塗膜片を一週間静置する促進経時試験
の後、粉体の飽和磁化値及び磁性塗膜の飽和磁束密度を
それぞれ測定し、試験開始前のσs及びBmと促進経時
試験一週間後のσs’及びBm’との差(絶対値)を試
験開始前のσs及びBmでそれぞれ除した値をΔσs、
ΔBmとして算出した。Δσs、ΔBmが0%に近いほ
ど酸化安定性が優れていることを示す。Δσs, which is an evaluation of the oxidation stability of the saturation magnetization value of the powder, and ΔBm, which is an evaluation of the weather resistance of the saturation magnetic flux density Bm of the magnetic coating film, are obtained by placing the powder in a thermostat at a temperature of 60 ° C. and a relative humidity of 90%. After the accelerated aging test in which the body or the magnetic coating film piece is allowed to stand for one week, the saturation magnetization value of the powder and the saturation magnetic flux density of the magnetic coating film are measured, respectively, and σs and Bm before the test start and the accelerated aging test for one week The difference (absolute value) between the subsequent σs ′ and Bm ′ is divided by σs and Bm before the start of the test, respectively, to obtain Δσs,
It was calculated as ΔBm. The closer the Δσs and ΔBm are to 0%, the better the oxidation stability.
【0072】<紡錘状ゲータイト粒子粉末の製造>炭酸
ナトリウム25molと、水酸化ナトリウム水溶液を2
0mol(混合アルカリに対し水酸化ナトリウムは規定
換算で28.6mol%に該当する。)を含む混合アル
カリ水溶液30lを気泡塔の中に投入し、窒素ガスを空
塔速度2.21cm/sで通気しながら47℃に調整す
る。次いでFe2+として20molを含む硫酸第一鉄
水溶液20l(硫酸第一鉄に対し混合アルカリ水溶液は
規定換算で1.75当量に該当する。)を気泡塔中に投
入して20分間熟成した後、Co2+4.2molを含
む硫酸コバルト水溶液4l(全Feに対しCo換算で2
1原子%に該当する。)を添加し、さらに4時間40分
間熟成した後、空気を空塔速度1.32cm/sで通気
してFe2+の酸化率40%まで酸化反応を行ってゲー
タイト種晶粒子を生成させた。<Production of Spindle-Shaped Goethite Particle Powder> 25 mol of sodium carbonate and an aqueous sodium hydroxide solution
30 l of a mixed alkali aqueous solution containing 0 mol (sodium hydroxide corresponds to 28.6 mol% in terms of a prescribed conversion with respect to the mixed alkali) is charged into the bubble column, and nitrogen gas is passed at a superficial velocity of 2.21 cm / s. While adjusting to 47 ° C. Then, 20 l of an aqueous ferrous sulfate solution containing 20 mol as Fe 2+ (a mixed alkali aqueous solution with respect to ferrous sulfate corresponds to 1.75 equivalents in terms of a prescribed conversion) was charged into a bubble column and aged for 20 minutes. 4 l of an aqueous solution of cobalt sulfate containing 4.2 mol of Co 2+ (2
It corresponds to 1 atomic%. ) Was added and the mixture was further aged for 4 hours and 40 minutes, and then air was passed at a superficial velocity of 1.32 cm / s to carry out an oxidation reaction until the oxidation rate of Fe 2+ was 40%, thereby producing goethite seed crystal particles.
【0073】次いで、空気の通気量を空塔速度3.31
cm/sに増加させた後、Al3+2.4molを含む
硫酸アルミニウム水溶液1l(全Feに対しAl換算で
12原子%に該当する。)を3ml/sec以下の速度
で添加して酸化反応を行った後、フィルタープレスで電
気伝導度60μSまで水洗を行ってプレスケーキとし
た。Next, the air flow rate was adjusted to a superficial velocity of 3.31.
After increasing the concentration to 1 cm / s, 1 l of an aqueous solution of aluminum sulfate containing 2.4 mol of Al 3+ (corresponding to 12 atom% in terms of Al with respect to the total Fe) was added at a rate of 3 ml / sec or less to carry out the oxidation reaction. After that, water was washed with a filter press to an electric conductivity of 60 μS to obtain a press cake.
【0074】前記ケーキの一部を常法により乾燥、粉砕
を行って得られた紡錘状ゲータイト粒子粉末は、粒子形
状が図1の透過型電子顕微鏡写真に示されるように紡錘
状を呈しており、BET比表面積が179.2m2/
g、平均長軸径が0.131μm、σ(標準偏差)が
0.0250μm、サイズ分布(標準偏差/長軸径)が
0.191、平均短軸径が0.0175μm、軸比が
7.5で樹枝状粒子が全く存在していないものであり、
粒子全体としてCo含有量が全Feに対して21原子
%、Al含有量が全Feに対して12原子%であった。A spindle-shaped goethite particle powder obtained by drying and pulverizing a part of the cake by a conventional method has a spindle shape as shown in the transmission electron micrograph of FIG. Has a BET specific surface area of 179.2 m 2 /
g, average major axis diameter is 0.131 μm, σ (standard deviation) is 0.0250 μm, size distribution (standard deviation / major axis diameter) is 0.191, average minor axis diameter is 0.0175 μm, and axis ratio is 7. 5. No dendritic particles are present at all,
The Co content of the whole particles was 21 atomic% based on the total Fe, and the Al content was 12 atomic% based on the total Fe.
【0075】<紡錘状へマタイト粒子粉末の製造>次い
で、ここに得た紡錘状ゲータイト粒子粉末1000g
(Feとして7.8mol)を含有するプレスケーキを
40lの水中に十分分散させた後、243gの硝酸イッ
トリウム6水塩を含む硝酸イットリウム水溶液2l(紡
錘状ゲータイト粒子粉末中の全Feに対しYとして8原
子%に該当する。)と197gの硫酸コバルト7水塩を
含む硫酸コバルト溶液2lを添加し(紡錘状ゲータイト
粒子粉末中の全Feに対しCoとして9原子%に該当す
る。)、攪拌し、次いで濃度25.0重量%の炭酸ナト
リウム水溶液を沈澱剤として添加してpH9.5に調整
した後、フィルタープレスで水洗し、得られたプレスケ
ーキを圧縮成型機を用いて孔径3mmの成型板で押し出
し成型して120℃で乾燥してYとCo化合物が被覆さ
れた紡錘状ゲータイト粒子粉末を得た。得られた紡錘状
ゲータイト粒子粉末中のCoの含有量は全Feに対して
30原子%、Alの含有量は全Feに対して12原子
%、Yの含有量は全Feに対して8原子%であった。<Production of Spindle-Shaped Hematite Particle Powder> Then, 1000 g of the spindle-shaped goethite particle powder thus obtained was obtained.
After sufficiently dispersing the press cake containing (7.8 mol as Fe) in 40 l of water, 2 l of an yttrium nitrate aqueous solution containing 243 g of yttrium nitrate hexahydrate (as Y with respect to all Fe in the spindle-shaped goethite particles powder) 2 liters of a cobalt sulfate solution containing 197 g of cobalt sulfate heptahydrate (corresponding to 9 atomic% as Co with respect to the total Fe in the spindle-shaped goethite particles) and stirred. Then, an aqueous solution of sodium carbonate having a concentration of 25.0% by weight was added as a precipitant to adjust the pH to 9.5, and then washed with a filter press, and the obtained press cake was molded using a compression molding machine to form a molded plate having a pore size of 3 mm. And dried at 120 ° C. to obtain spindle-shaped goethite particles powder coated with Y and Co compounds. The content of Co in the obtained spindle-shaped goethite particles was 30 atom% with respect to all Fe, the content of Al was 12 atom% with respect to all Fe, and the content of Y was 8 atom with respect to all Fe. %Met.
【0076】上記Y、Co化合物が被覆された紡錘状ゲ
ータイト粒子粉末を空気中300℃で脱水し、その後、
同雰囲気中600℃で加熱脱水して紡錘状ヘマタイト粒
子粉末を得た。The spindle-shaped goethite particles coated with the Y and Co compounds are dehydrated in air at 300 ° C.
Heat dehydration was performed at 600 ° C. in the same atmosphere to obtain spindle-shaped hematite particles.
【0077】得られた紡錘状ヘマタイト粒子粉末は、図
2の透過型電子顕微鏡写真に示されるように、平均長軸
径が0.122μm、σ(標準偏差)が0.0218μ
m、サイズ分布が0.179、平均短軸径が0.016
8μm、軸比が7.3、BET比表面積が95.7m2
/gであり、該粒子中のCoの含有量は全Feに対して
30原子%、Alの含有量は全Feに対して12原子
%、Yの含有量は全Feに対して8原子%であった。ま
た、結晶子サイズD104が76Å、飽和磁化値が1.
0Am2/kg(1.0emu/g)であった。As shown in the transmission electron micrograph of FIG. 2, the obtained spindle-shaped hematite particles had an average major axis diameter of 0.122 μm and a σ (standard deviation) of 0.0218 μm.
m, size distribution: 0.179, average minor axis diameter: 0.016
8 μm, axial ratio 7.3, BET specific surface area 95.7 m 2
/ G, the content of Co in the particles is 30 atomic% based on the total Fe, the content of Al is 12 atomic% based on the total Fe, and the content of Y is 8 atomic% based on the total Fe. Met. The crystallite size D 104 is 76 °, and the saturation magnetization value is 1.
0Am was 2 /kg(1.0emu/g).
【0078】<紡錘状合金磁性粒子粉末の製造>次い
で、ここに得た紡錘状ヘマタイト粒子粉末100gを内
径72mmの固定層還元装置に投入し、毎分35lのH
2ガスを通気し、還元温度600℃で加熱還元した後、
窒素ガスに切り替えて80℃まで冷却し、次いで、水蒸
気を通気しながら酸素分圧を徐々に増加させて空気と同
じ比率として粒子表面に安定な酸化被膜を形成した。<Production of Spindle-Shaped Alloy Magnetic Particle Powder> Next, 100 g of the obtained spindle-shaped hematite particle powder was put into a fixed-bed reducing device having an inner diameter of 72 mm, and 35 l of H 2 / min.
After passing 2 gases and reducing by heating at a reduction temperature of 600 ° C,
After switching to nitrogen gas and cooling to 80 ° C., the oxygen partial pressure was gradually increased while passing water vapor to form a stable oxide film on the particle surface at the same ratio as air.
【0079】得られた紡錘状合金磁性粒子粉末は、図3
の透過型電子顕微鏡写真に示されるように、平均長軸径
が0.105μm、σ(標準偏差)が0.0163μ
m、サイズ分布(標準偏差/長軸径)が0.155、平
均短軸径が0.0154μm、軸比が6.8、BET比
表面積が50.1m2/g、結晶子サイズD110が1
52Åの粒子からなり、紡錘形状で粒度が均斉で樹枝状
粒子の少ないものであった。また、該粒子中のCoの含
有量は全Feに対して30原子%、Alの含有量は全F
eに対して12原子%、Yの含有量は全Feに対して8
原子%であった。The spindle-shaped alloy magnetic particles thus obtained are shown in FIG.
As shown in the transmission electron micrograph, the average major axis diameter was 0.105 μm and σ (standard deviation) was 0.0163 μm.
m, size distribution (standard deviation / major axis diameter) is 0.155, average minor axis diameter is 0.0154 μm, axis ratio is 6.8, BET specific surface area is 50.1 m 2 / g, and crystallite size D 110 is 1
It consisted of 52 ° particles, had a spindle shape, uniform particle size, and had few dendritic particles. The content of Co in the particles was 30 atomic% based on the total Fe, and the content of Al was
e is 12 atomic%, and the content of Y is 8
Atomic%.
【0080】また、このFe及びCoを主成分とする紡
錘状合金磁性粒子粉末の磁気特性は、保磁力が188.
0kA/m(2362Oe)と高いものであり、飽和磁
化値が140.5Am2/kg(140.5emu/
g)、角形比(σr/σs)が0.543、飽和磁化値
の酸化安定性Δσsが絶対値として7.0%(実測値−
7.0%)であった。また、磁性塗膜特性は、塗膜Hc
が191.9kA/m(2411Oe)、飽和磁束密度
Bmが389.5mT(3895G)、角形比(Br/
Bm)が0.873、SFDが0.382、ΔBmが
5.1%(実測値−5.1%)であった。The magnetic properties of the spindle-shaped alloy magnetic particles containing Fe and Co as main components have a coercive force of 188.
0 kA / m (2362 Oe) and a saturation magnetization of 140.5 Am 2 / kg (140.5 emu /
g), the squareness ratio (σr / σs) is 0.543, and the oxidation stability Δσs of the saturation magnetization value is 7.0% as an absolute value (actual value−
7.0%). The properties of the magnetic coating film are as follows.
Is 191.9 kA / m (2411 Oe), the saturation magnetic flux density Bm is 389.5 mT (3895 G), and the squareness ratio (Br /
Bm) was 0.873, SFD was 0.382, and ΔBm was 5.1% (actual measurement value-5.1%).
【0081】[0081]
【作用】本発明において最も重要な点は、平均長軸径が
0.05〜0.14μm、軸比が4〜8、結晶子サイズ
D104が50〜80Åであって、飽和磁化値が0.5
〜2Am2/kg(0.5〜2emu/g)であり、且
つ、全Feに対してCo換算で20原子%を超えて45
原子%以下のコバルト、Al換算で5〜15原子%のア
ルミニウム及び希土類元素換算で5〜15原子%の希土
類化合物を含有しているCo含有紡錘状ヘマタイト粒子
粉末は、加熱還元工程における形状破壊が可及的に防止
できるということである。The most important points in the present invention are that the average major axis diameter is 0.05 to 0.14 μm, the axial ratio is 4 to 8, the crystallite size D 104 is 50 to 80 °, and the saturation magnetization value is 0. .5
22 Am 2 / kg (0.5 to 2 emu / g), and more than 20 atomic% in terms of Co with respect to all Fe
The Co-containing spindle-shaped hematite particle powder containing at most atomic% of cobalt, 5 to 15 atomic% of aluminum in terms of Al, and 5 to 15 atomic% of a rare earth compound in terms of a rare earth element has a shape destruction in the heat reduction step. It can be prevented as much as possible.
【0082】形状破壊が可及的に防止できる理由につい
ては、未だ明らかではないが、本発明者は、紡錘状ヘマ
タイト粒子粉末のスピネル型酸化鉄の生成を抑制し、適
度な結晶子サイズを有し、更に、紡錘状ヘマタイト粒子
粉末中に特定量のアルミニウムと特定量の希土類元素を
含有していることの相乗効果によるものと考えている。The reason why the shape destruction can be prevented as much as possible is not yet clear, but the present inventor has suppressed the formation of spinel-type iron oxide in the spindle-shaped hematite particle powder and has an appropriate crystallite size. Further, it is considered that the synergistic effect of the fact that the spindle-shaped hematite particles contain a specific amount of aluminum and a specific amount of a rare earth element is included.
【0083】また、本発明に係る紡錘状へマタイト粒子
粉末は、紡錘状ゲータイト粒子粉末を酸化性雰囲気中で
350℃以下で加熱脱水処理を行い、更に、酸化性ガス
雰囲気中で450〜700℃の温度範囲で加熱処理を行
うことにより、スピネル型酸化鉄の生成を抑制できるた
め、粒子の形状破壊を可及的に防止することができ、適
度な結晶子サイズを有し、サイズ分布が良好である紡錘
状へマタイト粒子粉末を得ることができるものと本発明
者は考えている。Further, the spindle-shaped hematite particle powder according to the present invention is obtained by subjecting the spindle-shaped goethite particle powder to a heat dehydration treatment at 350 ° C. or less in an oxidizing atmosphere, and further, to a temperature of 450 to 700 ° C. in an oxidizing gas atmosphere. By performing the heat treatment in the temperature range described above, the generation of spinel-type iron oxide can be suppressed, so that the shape breakage of the particles can be prevented as much as possible, having an appropriate crystallite size, and a good size distribution. The present inventor believes that a spindle-shaped hematite particle powder can be obtained.
【0084】更に、本発明に係る紡錘状へマタイト粒子
粉末を用いることにより、加熱還元時の形状破壊を防止
することができ、保磁力の低下を防止し、分散性の優れ
たFe及びCoを主成分とする紡錘状合金磁性粒子が得
られる。Further, by using the spindle-shaped hematite particle powder according to the present invention, it is possible to prevent shape destruction at the time of heat reduction, prevent a decrease in coercive force, and obtain Fe and Co having excellent dispersibility. Spindle-shaped alloy magnetic particles as a main component are obtained.
【0085】更に、Coを全Feに対して20原子%を
超えて45原子%以下含有させており、組成的にも酸化
安定性を向上させる事が可能となり、上述のように焼結
防止性を一層向上させたことにより各種熱処理時の形状
分布が更に改善され、分布の狭いものとなり、相乗的に
酸化安定性が向上した紡錘状合金磁性粒子が得られる。Further, Co is contained in an amount of more than 20 at% and not more than 45 at% with respect to the total Fe, so that the oxidation stability can be improved in composition, and the sintering prevention property is improved as described above. Is further improved, the shape distribution during various heat treatments is further improved, the distribution becomes narrower, and spindle-shaped alloy magnetic particles having synergistically improved oxidation stability are obtained.
【0086】本発明に係る紡錘状へマタイト粒子粉末を
出発原料としてFe及びCoを主成分とする紡錘状合金
磁性粒子粉末を製造した場合、該紡錘状合金磁性粒子粉
末が高い保磁力と大きな飽和磁化値を有し、酸化安定性
にも優れ、また、結合剤樹脂への分散性が良好なことに
より、磁性塗膜においても高い保磁力を有し、角型比
(Br/Bm)、SFD、耐候性が良好なFe及びCo
を主成分とする紡錘状合金磁性粒子粉末を得ることがで
きる。When the spindle-shaped alloy magnetic particle powder containing Fe and Co as a main component is manufactured using the spindle-shaped hematite particle powder according to the present invention as a starting material, the spindle-shaped alloy magnetic particle powder has a high coercive force and a large saturation. It has a magnetization value, excellent oxidation stability, and good dispersibility in a binder resin, so that it has a high coercive force even in a magnetic coating film, and has a squareness ratio (Br / Bm), SFD Fe and Co with good weather resistance
Can be obtained.
【0087】[0087]
【実施例】次に、実施例、比較例及び参考例を挙げる。Next, examples, comparative examples and reference examples will be described.
【0088】ゲータイト粒子粉末1〜4:出発原料粒子
粉末として表1に示した特性を有する紡錘状ゲータイト
粒子粉末を準備した。Goethite particle powders 1-4: Spindle-shaped goethite particles having the properties shown in Table 1 were prepared as starting material particle powders.
【0089】[0089]
【表1】 [Table 1]
【0090】実施例1〜4、比較例1〜4:出発原料粒
子の種類、焼結防止処理に用いる被覆物の種類、組成
比、ヘマタイト化時における脱水温度、加熱温度、雰囲
気を種々変化させた以外は、前記発明の実施の形態と同
様の方法で、紡錘状ヘマタイト粒子を得た。Examples 1-4, Comparative Examples 1-4: The type of starting material particles, the type of coating used for sintering prevention treatment, the composition ratio, the dehydration temperature during hematite formation, the heating temperature, and the atmosphere were varied. Other than the above, spindle-shaped hematite particles were obtained in the same manner as in the embodiment of the invention.
【0091】この時の焼結防止処理の条件及びヘマタイ
ト化の条件を表2、得られた紡錘状へマタイト粒子粉末
の諸特性を表3に示す。Table 2 shows the conditions for the sintering prevention treatment and the conditions for hematite formation, and Table 3 shows the properties of the obtained spindle-shaped hematite particles.
【0092】参考例1〜2:出発原料粒子の種類を変化
させ、脱水することなく1段階で加熱処理して紡錘状ヘ
マタイト粒子を得た。Reference Examples 1-2: Spindle-shaped hematite particles were obtained by changing the type of starting material particles and subjecting them to heat treatment in one step without dehydration.
【0093】このときの処理条件を表2、紡錘状へマタ
イト粒子の諸特性を表3に示す。Table 2 shows the treatment conditions and Table 3 shows the characteristics of the spindle-shaped hematite particles.
【0094】[0094]
【表2】 [Table 2]
【0095】[0095]
【表3】 [Table 3]
【0096】使用例1〜4、参考使用例1、2及び比較
使用例1〜4:表3に示した各紡錘状へマタイト粒子粉
末を600℃で加熱還元して、紡錘状合金磁性粒子粉末
を得た。Use Examples 1-4, Reference Use Examples 1 and 2, and Comparative Use Examples 1-4: Each spindle-shaped hematite particle powder shown in Table 3 was heated and reduced at 600 ° C. to obtain a spindle-shaped alloy magnetic particle powder. I got
【0097】このときの紡錘状合金磁性粒子粉末の諸特
性を表4及び表5に示す。Tables 4 and 5 show various characteristics of the spindle-shaped alloy magnetic particles at this time.
【0098】[0098]
【表4】 [Table 4]
【0099】[0099]
【表5】 [Table 5]
【0100】表4及び表5に示した各紡錘状合金磁性粒
子粉末を用いて、前記発明の実施の形態と同様にして磁
性塗膜片を得た。Using the spindle-shaped alloy magnetic particle powders shown in Tables 4 and 5, magnetic coating pieces were obtained in the same manner as in the embodiment of the present invention.
【0101】得られた磁性塗膜片の諸特性を表6に示
す。Table 6 shows the properties of the obtained magnetic coating film pieces.
【0102】[0102]
【表6】 [Table 6]
【0103】[0103]
【発明の効果】本発明に係る紡錘状ヘマタイト粒子粉末
は、スピネル型酸化鉄が特定範囲内であって、適当な結
晶子サイズを有していることにより、加熱還元時におけ
る形状破壊を可及的に防止できるので、Fe及びCoを
主成分とする紡錘状合金磁性粒子粉末用出発材料として
好適である。The spindle-shaped hematite particles according to the present invention have a spinel-type iron oxide within a specific range and have an appropriate crystallite size, so that shape destruction during heat reduction can be achieved. Therefore, it is suitable as a starting material for spindle-shaped alloy magnetic particles containing Fe and Co as main components.
【0104】また、本発明に係る紡錘状へマタイト粒子
粉末を用いて製造したFe及びCoを主成分とする紡錘
状合金磁性粒子粉末は、微粒子であってサイズ分布が良
好であり、樹枝状粒子が混在しておらず、しかも、高い
保磁力と大きな飽和磁化値と優れた酸化安定性を有して
おり、結合剤樹脂への分散性が良好であるので、高密度
記録、高出力の磁気記録媒体用のFe及びCoを主成分
とする紡錘状合金磁性粒子粉末として好適である。The spindle-shaped alloy magnetic particles containing Fe and Co as the main components produced using the spindle-shaped hematite particles according to the present invention are fine particles having a good size distribution and dendritic particles. , High coercive force, large saturation magnetization, excellent oxidation stability, and good dispersibility in the binder resin. It is suitable as a spindle-shaped alloy magnetic particle powder mainly containing Fe and Co for a recording medium.
【0105】本発明におけるFe及びCoを主成分とす
る紡錘形合金磁性粒子粉末を用いた磁気記録媒体は、高
い保磁力、優れたSFD、優れた耐候性を有する。The magnetic recording medium of the present invention using the spindle-shaped alloy magnetic particles containing Fe and Co as main components has high coercive force, excellent SFD, and excellent weather resistance.
【図1】発明の実施の形態で得られた紡錘状ゲータイト
粒子粉末の粒子形状を示す透過型電子顕微鏡写真(30
000倍)FIG. 1 is a transmission electron micrograph (30) showing the particle shape of spindle-shaped goethite particles obtained in an embodiment of the present invention.
000 times)
【図2】発明の実施の形態で得られた紡錘状ヘマタイト
粒子粉末の粒子形状を示す透過型電子顕微鏡写真(30
000倍)FIG. 2 is a transmission electron micrograph (30) showing the particle shape of the spindle-shaped hematite particles obtained in the embodiment of the invention.
000 times)
【図3】発明の実施の形態で得られた紡錘状合金磁性粒
子粉末の粒子形状を示す透過型電子顕微鏡写真(300
00倍)FIG. 3 is a transmission electron micrograph (300) showing the particle shape of the spindle-shaped alloy magnetic particles obtained in the embodiment of the invention.
00)
【図4】実施例における紡錘状ゲータイト粒子粉末1の
粒子形状を示す透過型電子顕微鏡写真(30000倍)FIG. 4 is a transmission electron micrograph (× 30000) showing the particle shape of spindle-shaped goethite particle powder 1 in Example.
【図5】実施例における紡錘状ゲータイト粒子粉末2の
粒子形状を示す透過型電子顕微鏡写真(30000倍)FIG. 5 is a transmission electron micrograph (× 30000) showing the particle shape of spindle-shaped goethite particle powder 2 in Example.
【図6】実施例における紡錘状ゲータイト粒子粉末3の
粒子形状を示す透過型電子顕微鏡写真(30000倍)FIG. 6 is a transmission electron micrograph (× 30000) showing the particle shape of spindle-shaped goethite particle powder 3 in Example.
【図7】実施例3で得られた紡錘状ヘマタイト粒子粉末
の粒子形状を示す透過型電子顕微鏡写真(30000
倍)FIG. 7 is a transmission electron micrograph (30000) showing the particle shape of the spindle-shaped hematite particles obtained in Example 3.
Times)
【図8】実施例4で得られた紡錘状ヘマタイト粒子粉末
の粒子形状を示す透過型電子顕微鏡写真(30000
倍)FIG. 8 is a transmission electron micrograph (30000) showing the particle shape of the spindle-shaped hematite particles obtained in Example 4.
Times)
【図9】比較例1で得られた紡錘状ヘマタイト粒子粉末
の粒子形状を示す透過型電子顕微鏡写真(30000
倍)FIG. 9 is a transmission electron micrograph (30000) showing the particle shape of the spindle-shaped hematite particles obtained in Comparative Example 1.
Times)
【図10】比較例3で得られた紡錘状ヘマタイト粒子粉
末の粒子形状を示す透過型電子顕微鏡写真(30000
倍)FIG. 10 is a transmission electron micrograph (30000) showing the particle shape of the spindle-shaped hematite particles obtained in Comparative Example 3.
Times)
【図11】実施例3で得られた紡錘状へマタイト粒子粉
末を用いて使用例3で得られた紡錘状合金磁性粒子粉末
の粒子形状を示す透過型電子顕微鏡写真(30000
倍)FIG. 11 is a transmission electron micrograph (30000) showing the particle shape of the spindle-shaped alloy magnetic particle powder obtained in Use Example 3 using the spindle-shaped hematite particle powder obtained in Example 3.
Times)
【図12】実施例4で得られた紡錘状へマタイト粒子粉
末を用いて使用例4で得られた紡錘状合金磁性粒子の粒
子形状を示す透過型電子顕微鏡写真(30000倍)FIG. 12 is a transmission electron micrograph (× 30000) showing the particle shape of the spindle-shaped alloy magnetic particles obtained in Use Example 4 using the spindle-shaped hematite particle powder obtained in Example 4.
【図13】発明の実施の形態で得られた紡錘状へマタイ
ト粒子粉末のX線回折パターン(○:ヘマタイト、△:
スピネル型酸化鉄)。FIG. 13 is an X-ray diffraction pattern of a spindle-shaped hematite particle powder obtained in the embodiment of the invention (:: hematite, Δ:
Spinel-type iron oxide).
【図14】比較例1で得られた紡錘状へマタイト粒子粉
末のX線回折パターン(○:ヘマタイト、△:スピネル
型酸化鉄)。FIG. 14 is an X-ray diffraction pattern (○: hematite, Δ: spinel-type iron oxide) of the spindle-shaped hematite particles obtained in Comparative Example 1.
【図15】比較例2で得られた紡錘状へマタイト粒子粉
末のX線回折パターン(○:ヘマタイト)。FIG. 15 is an X-ray diffraction pattern (○: hematite) of the spindle-shaped hematite particle powder obtained in Comparative Example 2.
Claims (1)
軸比(平均長軸径/平均短軸径)が4〜8、結晶子サイ
ズD104が50〜80Åであって、飽和磁化値σsが
0.5〜2Am2/kgであり、且つ、全Feに対して
Co換算で20原子%を超えて45原子%以下のコバル
ト、Al換算で5〜15原子%のアルミニウム及び希土
類元素換算で5〜15原子%の希土類化合物を含有して
いるCo含有紡錘状ヘマタイト粒子粉末からなることを
特徴とするFe及びCoを主成分とする紡錘状合金磁性
粒子粉末用Co含有紡錘状ヘマタイト粒子粉末。An average major axis diameter of 0.05 to 0.14 μm,
The axial ratio (average major axis diameter / average minor axis diameter) is 4 to 8, the crystallite size D 104 is 50 to 80 °, the saturation magnetization value s is 0.5 to 2 Am 2 / kg, and Co containing Fe in excess of 20 at% and up to 45 at% in terms of Co, aluminum in 5 to 15 at% in terms of Al, and 5 to 15 at% in terms of rare earth element with respect to Fe A spindle-shaped hematite particle powder for a spindle-shaped alloy magnetic particle powder containing Fe and Co as a main component, comprising a spindle-shaped hematite particle powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11312243A JP2000203847A (en) | 1998-11-05 | 1999-11-02 | Cobalt-containing fusiform hematite particulate powder for fusiform magnetic alloy particulate powder predominant in iron and cobalt |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-315080 | 1998-11-05 | ||
JP31508098 | 1998-11-05 | ||
JP11312243A JP2000203847A (en) | 1998-11-05 | 1999-11-02 | Cobalt-containing fusiform hematite particulate powder for fusiform magnetic alloy particulate powder predominant in iron and cobalt |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000203847A true JP2000203847A (en) | 2000-07-25 |
Family
ID=26567083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11312243A Pending JP2000203847A (en) | 1998-11-05 | 1999-11-02 | Cobalt-containing fusiform hematite particulate powder for fusiform magnetic alloy particulate powder predominant in iron and cobalt |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000203847A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007200547A (en) * | 2007-05-01 | 2007-08-09 | Tdk Corp | Magnetic recording medium |
-
1999
- 1999-11-02 JP JP11312243A patent/JP2000203847A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007200547A (en) * | 2007-05-01 | 2007-08-09 | Tdk Corp | Magnetic recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5645652A (en) | Spindle-shaped magnetic iron-based alloy particles containing cobalt and iron as the main ingredients and process for producing the same | |
JP3087825B2 (en) | Spindle-shaped goethite particle powder, method for producing the same, spindle-shaped metal magnetic particle powder containing iron as a main component obtained using the goethite particle powder as a starting material, and method for producing the same | |
JP3925640B2 (en) | Spindle-like alloy magnetic particle powder for magnetic recording and production method thereof | |
JP4143713B2 (en) | Magnetic powder for magnetic recording | |
JP3412676B2 (en) | Spindle-shaped goethite particle powder and method for producing the same | |
JP3750414B2 (en) | Spindle-shaped goethite particle powder, spindle-shaped hematite particle powder, spindle-shaped metal magnetic particle powder containing iron as a main component, and production method thereof | |
JP4305617B2 (en) | Metallic magnetic particle powder mainly composed of iron, method for producing the same, and magnetic recording medium | |
JPH10245233A (en) | Spindle-like hematite particle and its production and spindle-like metal magnetic particle containing iron as main component and obtained from the hematite particle as starting ram material and its production | |
JP4182310B2 (en) | Method for producing spindle-shaped alloy magnetic particle powder mainly composed of Fe and Co for magnetic recording | |
JP2003059707A (en) | Iron-based spindle metal magnetic particle powder and its manufacturing method | |
JPH1111951A (en) | Spindle goethite particle powder and its production, spindle hematite particle powder and its production and spindle metallic magnetic particle powder consisting essentially of iron and its production | |
JP2001081506A (en) | Precursor for producing magnetic powder and ferromagneric metal powder obtained from the same | |
JP3337046B2 (en) | Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same | |
JP2001355001A (en) | Spindlelike goethite particle powder, spindlelike hematite particle powder, spindlelike metallic magnetic particle powder essentially consisting of iron and their production method | |
US5989516A (en) | Spindle-shaped geothite particles | |
JP4378763B2 (en) | Method for producing compound particle powder containing iron as its main component | |
JP2000203847A (en) | Cobalt-containing fusiform hematite particulate powder for fusiform magnetic alloy particulate powder predominant in iron and cobalt | |
JP4356139B2 (en) | Spindle-shaped goethite particles, spindle-shaped hematite particles, spindle-shaped metal magnetic particles containing iron as a main component, and methods for producing them | |
JP3264374B2 (en) | Method for producing spindle-shaped iron-based metal magnetic particle powder | |
JP4228165B2 (en) | Manufacturing method of spindle-shaped alloy magnetic particle powder for magnetic recording material | |
JP2002115002A (en) | Spindle shaped metal magnetic particle essentially consisting of iron and its production method | |
JP3303896B2 (en) | Spindle-shaped iron-based metal magnetic particle powder and method for producing the same | |
JP3428197B2 (en) | Acicular magnetic iron oxide particles and method for producing the same | |
JP3171223B2 (en) | Method for producing acicular magnetic particle powder | |
JP3092649B2 (en) | Method for producing spindle-shaped metal magnetic particles containing iron as a main component |