JP3087804B2 - A granulated product for iron alloy magnetic particles for magnetic recording, a method for producing the same, and a method for producing iron alloy magnetic particles for magnetic recording using the granulated product. - Google Patents

A granulated product for iron alloy magnetic particles for magnetic recording, a method for producing the same, and a method for producing iron alloy magnetic particles for magnetic recording using the granulated product.

Info

Publication number
JP3087804B2
JP3087804B2 JP05208247A JP20824793A JP3087804B2 JP 3087804 B2 JP3087804 B2 JP 3087804B2 JP 05208247 A JP05208247 A JP 05208247A JP 20824793 A JP20824793 A JP 20824793A JP 3087804 B2 JP3087804 B2 JP 3087804B2
Authority
JP
Japan
Prior art keywords
particles
needle
iron alloy
iron
granulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05208247A
Other languages
Japanese (ja)
Other versions
JPH06191853A (en
Inventor
健二 沖中
泰孝 大田
幸治 森
浩史 川崎
雅之 上神
啓男 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP05208247A priority Critical patent/JP3087804B2/en
Publication of JPH06191853A publication Critical patent/JPH06191853A/en
Application granted granted Critical
Publication of JP3087804B2 publication Critical patent/JP3087804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録用鉄合金磁性
粒子を製造する際の出発原料として好適な鉄合金磁性粒
子用造粒物及びその製造法に関し、更に、該造粒物を用
いた磁気記録用鉄合金磁性粒子の製造法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a granulated material for iron alloy magnetic particles which is suitable as a starting material for producing magnetic particles for magnetic recording and a method for producing the same. And a method for producing iron alloy magnetic particles for magnetic recording.

【0002】[0002]

【従来の技術】近年、ビデオ用、オーディオ用の磁気記
録再生用機器の長時間記録化、小型軽量化が激化してお
り、特に昨今におけるVTR(ビデオ・テープ・レコー
ダー)の普及は目覚ましく、長時間記録化並びに小型軽
量化を目指したVTRの開発が盛んに行われている。一
方においては、磁気記録媒体である磁気テープに対する
高性能化、即ち、出力特性の向上の要求が益々高まって
きている。
2. Description of the Related Art In recent years, long-time recording, miniaturization and lightening of magnetic recording / reproducing devices for video and audio have been intensified. In particular, VTRs (video tape recorders) have been remarkably popularized in recent years. 2. Description of the Related Art VTRs aiming at time recording and reduction in size and weight have been actively developed. On the other hand, there is an increasing demand for higher performance of a magnetic tape as a magnetic recording medium, that is, an improvement in output characteristics.

【0003】磁気記録媒体のこの特性は磁気記録媒体に
使用される磁性粒子と密接な関係を有しており、近年に
おいては、従来の酸化鉄磁性粒子に比較して高い保磁力
と大きな飽和磁化を有する鉄合金磁性粒子が注目され、
ディジタルオーディオテープ(DAT)、8mmビデオ
テープ、Hi−8テープ並びにビデオフロッピー等の磁
気記録媒体に使用され実用化されている。
[0003] This characteristic of a magnetic recording medium is closely related to the magnetic particles used in the magnetic recording medium, and in recent years, it has a higher coercive force and a larger saturation magnetization than conventional iron oxide magnetic particles. Attention is focused on iron alloy magnetic particles having
It is used for magnetic recording media such as digital audio tape (DAT), 8 mm video tape, Hi-8 tape, and video floppy, and has been put to practical use.

【0004】近時、これら鉄合金磁性粒子の特性改善の
要求はとどまることがなく、磁気記録媒体の出力特性の
向上の面から、鉄合金磁性粒子の粒子間における保磁力
及び飽和磁化の各分布幅が出来るだけ小さいことが強く
要求されている。
In recent years, the demand for improving the properties of these iron alloy magnetic particles has not stopped, and from the viewpoint of improving the output characteristics of the magnetic recording medium, the distribution of coercive force and saturation magnetization between the particles of the iron alloy magnetic particles has been increased. It is strongly required that the width be as small as possible.

【0005】周知の通り、鉄合金磁性粒子は、針状ゲー
タイト粒子、該針状ゲータイト粒子を約300℃の温度
で加熱脱水して得られる針状ヘマタイト粒子又は前記針
状ゲータイト粒子を非還元性雰囲気下300〜850℃
の温度範囲で加熱して高密度化された針状ヘマタイト粒
子を出発原料とし、該出発原料を水素ガス等の還元性ガ
ス流下で加熱還元することにより得られている。
As is well known, iron alloy magnetic particles include acicular goethite particles, acicular hematite particles obtained by heating and dehydrating the acicular goethite particles at a temperature of about 300 ° C., or non-reducing 300-850 ° C under atmosphere
The needle-shaped hematite particles which have been densified by heating in the above temperature range are used as a starting material, and the starting material is heated and reduced under a flow of a reducing gas such as hydrogen gas.

【0006】得られる鉄合金磁性粒子の諸特性を左右す
る最も重要な工程は、出発原料の加熱還元工程である
が、該加熱還元に際して用いられる加熱還元装置として
は、出発原料を転動させながら加熱還元する回転炉還元
装置、出発原料を流動させながら加熱還元する流動層還
元装置や出発原料を固定して加熱還元する固定層還元装
置等が知られている。
[0006] The most important step that determines the properties of the obtained iron alloy magnetic particles is the step of heating and reducing the starting material. The heating and reducing apparatus used in the heating and reduction is performed while rolling the starting material. There are known a rotary furnace reduction device for performing heat reduction, a fluidized bed reduction device for performing heat reduction while flowing a starting material, and a fixed bed reduction device for fixing and heating and reducing a starting material.

【0007】針状ゲータイト粒子又は針状ヘマタイト粒
子を出発原料として加熱還元することによって鉄合金磁
性粒子を製造するに際し、回転炉還元装置あるいは流動
層還元装置を用いる場合は出発原料を転動あるいは流動
させることによって還元雰囲気の均一混合状態が得られ
る為反応が均一に進行するという特徴を有する。しかし
ながら、一方では出発原料が転動あるいは流動する為に
原料粒子間あるいは原料粒子と反応器壁との間で衝突や
摩擦が生じる為に還元過程において粒子間の焼結や粒子
の形状のくずれが生じ易く、それに伴って粒子の磁気特
性が低下するという欠点を有する。一方固定層還元装置
を用いる場合、出発原料粒子は殆ど静止状態で加熱還元
される為、転動あるいは流動による原料粒子間の衝突や
摩擦に起因する粒子同志の焼結や一次粒子の形状のくず
れが発生しにくいという特徴を有する。このように固定
層還元装置で加熱還元を実施する場合はガス流速に抗し
て出発原料が流動しないようにする為、出発原料として
は種々の手段を用いて造粒成型したものが用いられる。
In producing iron alloy magnetic particles by heating and reducing acicular goethite particles or acicular hematite particles as a starting material, when a rotary furnace reduction device or a fluidized bed reduction device is used, the starting material is tumbled or fluidized. By doing so, a uniform mixing state of the reducing atmosphere is obtained, so that the reaction proceeds uniformly. However, on the other hand, the starting material rolls or flows, causing collisions or friction between the raw material particles or between the raw material particles and the reactor wall. This has the disadvantage that the magnetic properties of the particles are easily reduced and the magnetic properties of the particles are accordingly reduced. On the other hand, when a fixed bed reduction device is used, the starting material particles are heated and reduced almost in a stationary state, so that sintering of the particles or deformation of the primary particles due to collision or friction between the material particles due to rolling or flowing are performed. Is less likely to occur. As described above, when heat reduction is performed by the fixed bed reduction device, in order to prevent the starting material from flowing against the gas flow rate, a starting material obtained by granulation using various means is used.

【0008】従来、鉄合金磁性粒子の製造にあたり、固
定層還元装置を用いるものとしては、特公昭61−36
048号公報、特公平1−52441号公報、特公平1
−52442号公報、特公平1−52443号公報、特
公平1−52444号公報、特開昭54−62915号
公報等に開示されている方法がある。
[0008] Conventionally, in the production of iron alloy magnetic particles, a method using a fixed bed reduction apparatus is disclosed in JP-B-61-36.
No. 048, Japanese Patent Publication No. 1-52441, Japanese Patent Publication No. 1
Japanese Patent Application Laid-Open Nos. 52524/1994, 52443/1994, 52444/1994 and 62915/1979, and the like.

【0009】出発原料を予め造粒成形する方法として、
例えば微粉砕粉であるα−Fe2 3 粒子とスプレーに
て散布する水とを所定割合で造粒機に供給して造粒粉を
得る方法(特開昭63−88807号公報)や針状の微
細酸化鉄粉を水に分散させた後、フィルタープレスによ
り含水率60乃至80wt%に圧縮脱水し、塊状に成形
する方法(特開昭57−54205号公報、特開昭57
−116706号公報)等が知られている。
[0009] As a method of granulating the starting material in advance,
For example, α-Fe 2 O 3 particles, which are finely pulverized powder, and water sprayed at a predetermined ratio are supplied to a granulator at a predetermined ratio to obtain granulated powder (Japanese Patent Application Laid-Open No. 63-88807). A method of dispersing fine iron oxide powder in water into water, compressing and dehydrating the powder to a water content of 60 to 80 wt% by a filter press, and forming a block (JP-A-57-54205, JP-A-57-205205)
-116706) and the like.

【0010】[0010]

【発明が解決しようとする課題】高い保磁力と大きな飽
和磁化とを有し、しかも、粒子間における保磁力及び飽
和磁化の各分布幅が小さい鉄合金磁性粒子を工業的、経
済的に有利に製造することは、現在、最も要求されてい
るところであるが、固定層還元装置を用いて前出公知方
法による造粒物を出発原料として用いた場合には、粒子
間における保磁力及び飽和磁化の各分布幅が大きいの
で、前記諸特性を十分満足する鉄合金磁性粒子を得るこ
とができない。
SUMMARY OF THE INVENTION An iron alloy magnetic particle having a high coercive force and a large saturation magnetization and having a small distribution width of the coercive force and the saturation magnetization between particles is industrially and economically advantageous. Production is currently the most demanded, but when a granulated material according to the above-mentioned known method is used as a starting material using a fixed bed reduction device, coercive force and saturation magnetization between particles are used. Since each distribution width is large, it is not possible to obtain iron alloy magnetic particles that sufficiently satisfy the above-mentioned characteristics.

【0011】固定層還元装置を用いる加熱還元による場
合、得られる鉄合金磁性粒子の粒子間における保磁力及
び飽和磁化の各分布幅が大きくなるのは、微粉が発生し
易い造粒物が出発原料として用いられているからであ
る。
In the case of heating reduction using a fixed bed reduction apparatus, the distribution width of the coercive force and the saturation magnetization between the obtained iron alloy magnetic particles is increased because the granulated material from which fine powder is easily generated is a starting material. It is because it is used as.

【0012】即ち、前記した従来の造粒物はバインダー
として水を使用している為、強度の弱い造粒物となり、
加熱還元時の還元効率を上げる為に採られている通気ガ
ス線速度が比較的大きい条件下では、造粒物に微振動が
生じ、強度の弱い造粒物同志の摩擦によって微粉が発生
したり、また、加熱還元前の出発原料の固定層還元装置
内への投入(移送)等の際及び加熱時の熱膨張等により
粉化が起こって微粉が発生したりする。この様に強度の
弱い造粒物を出発原料として用い、固定層還元装置で還
元する際には発生した微粉が層内に局所的に存在し、そ
の部分の圧力損失が大きくなる為、通気ガスの偏流が生
じ、被処理粒子の還元の進行度が不均一になり、還元効
率も非常に悪く、結果的に粒子間における磁気特性分布
(保磁力及び飽和磁化の各分布)幅の大きい鉄合金磁性
粒子となってしまう。
That is, since the above-mentioned conventional granulated product uses water as a binder, it becomes a granulated product having low strength.
Under conditions of relatively high aeration gas linear velocity used to increase the reduction efficiency during heating reduction, fine vibrations occur in the granulated material, and fine powder is generated due to friction between granulated materials having low strength. In addition, powdering occurs due to thermal expansion or the like at the time of charging (transferring) the starting material into the fixed bed reducing device before the heat reduction, and also at the time of heating, thereby generating fine powder. When the granulated material having such a weak strength is used as a starting material and reduced by a fixed bed reduction device, fine powder generated is locally present in the bed, and the pressure loss in that portion increases. Is generated, the degree of reduction of the particles to be treated becomes non-uniform, the reduction efficiency is very poor, and as a result, an iron alloy having a large magnetic characteristic distribution (each distribution of coercive force and saturation magnetization) between particles. It becomes magnetic particles.

【0013】そこで、本発明は、固定層還元装置を用い
て鉄合金磁性粒子を製造する場合に、粒子間における保
磁力及び飽和磁化の各分布幅が出来るだけ小さい鉄合金
磁性粒子が得られる磁気記録用鉄合金磁性粒子用造粒物
を提供することを技術的課題とする。
In view of the above, the present invention provides a method of producing iron alloy magnetic particles using a fixed bed reduction apparatus, in which iron alloy magnetic particles having a distribution width of coercive force and saturation magnetization between particles as small as possible can be obtained. It is a technical object to provide a granulated material for recording iron alloy magnetic particles.

【0014】前記技術的課題は、次の通りの本発明によ
って達成できる。即ち、本発明は、針状含水酸化第二鉄
粒子粉末又は針状酸化鉄粒子粉末に水若しくは温水に可
溶な半合成澱粉又は半合成セルロースを添加して造粒し
てなる平均造粒径が1〜5mmであって、嵩密度が0.
5g/cm以上であり、且つ、粉化率が40%以下で
ある針状含水酸化第二鉄造粒物又は針状酸化鉄造粒物か
らなる固定層を形成して還元される磁気記録用鉄合金磁
性粒子用造粒物、針状含水酸化第二鉄粒子又は針状酸化
鉄粒子を水に懸濁させた懸濁液中に、水若しくは温水に
可溶な半合成澱粉又は半合成セルロースを針状含水酸化
第二鉄粒子又は針状酸化鉄粒子に対して0.1〜5.0
重量%添加・攪拌した後、圧縮脱水して得たケーキを造
粒成形することを特徴とする磁気記録用鉄合金磁性粒子
用造粒物の製造法及び磁気記録用鉄合金磁性粒子用造
粒物を固定層を形成して還元ガス中で加熱還元して鉄合
金磁性粒子とすることを特徴とする磁気記録用鉄合金磁
性粒子の製造法である。
The above technical object can be achieved by the present invention as described below. That is, the present invention relates to a needle-shaped hydrous ferric oxide.
Applicable to water or hot water for particle powder or acicular iron oxide particle powder
Granulate by adding soluble semi-synthetic starch or semi-synthetic cellulose.
Average granulation diameter at Te is a 1 to 5 mm, a bulk density of 0.
Magnetic recording reduced by forming a fixed layer comprising acicular hydrous ferric oxide granules or acicular iron oxide granules of 5 g / cm 3 or more and a powdering ratio of 40% or less. Granules for magnetic particles for iron alloy, needle-like hydrous ferric oxide particles or a suspension of needle-like iron oxide particles in water, semi-synthetic starch or semi-synthetic soluble in water or hot water Cellulose is added in an amount of 0.1 to 5.0 with respect to the acicular ferric hydroxide oxide particles or the acicular iron oxide particles.
After wt% added and stirring, the preparation of the magnetic recording granules for iron alloy magnetic particles, characterized in that the granule compression obtained by dehydration cake and granulated for said magnetic recording iron alloy magnetic particles A method for producing iron alloy magnetic particles for magnetic recording, comprising forming a fixed layer of particles and heating and reducing the particles in a reducing gas to obtain iron alloy magnetic particles.

【0015】次に、本発明実施にあたっての諸条件につ
いて説明する。本発明において使用される針状含水酸化
第二鉄粒子としては、平均長軸径0.05〜1.0μ
m、好ましくは0.05〜0.5μm程度であって、軸
比(長軸径/短軸径−以下同じ−)3以上のα-FeOOH、
β-FeOOH又はγ-FeOOH粒子が使用出来る。また、針状酸
化鉄粒子としては、前記針状含水酸化第二鉄粒子を約3
00℃の温度で加熱脱水して得られた針状ヘマタイト粒
子や該針状含水酸化第二鉄粒子を非還元性雰囲気下30
0〜850℃の温度範囲で加熱処理して得られる高密度
化された針状ヘマタイト粒子、更に、針状マグヘマイト
粒子、ベルトライド化合物(FeOx・Fe2 3 、0
<x<1)のいずれか並びに針状含水酸化第二鉄粒子を
加熱脱水した後、300℃前後の温度で加熱還元して得
られる針状マグネタイト粒子が使用出来る。
Next, various conditions for implementing the present invention will be described. Needle-like hydrous used in the present invention
As ferric particles, the average major axis diameter is 0.05 to 1.0 μm
m, preferably about 0.05 to 0.5 μm, and α-FeOOH having an axial ratio (major axis diameter / minor axis diameter-the same applies hereinafter) of 3 or more;
β-FeOOH or γ-FeOOH particles can be used. In addition, as the acicular iron oxide particles, about 3
The needle-like hematite particles and the needle-like hydrous ferric oxide particles obtained by heating and dehydrating at a temperature of 00 ° C.
Densified acicular hematite particles obtained by heat treatment in a temperature range of 0 to 850 ° C., acicular maghemite particles, and a beltride compound ( FeO x .Fe 2 O 3 , 0
Any one of <x <1) and needle-like magnetite particles obtained by heating and dehydrating the needle-like hydrous ferric oxide particles at a temperature of about 300 ° C. can be used.

【0016】また、本発明において使用される針状含水
酸化第二鉄粒子又は針状酸化鉄粒子には、鉄合金磁性粒
子の諸特性を向上させる為に通常使用されるAl、N
i、Co、B、Zn、P、Si等のFe以外の異種元素
の1種以上を併用して粒子内部に含有させるか又は粒子
表面に被覆しておいてもよい。尚、本発明における針状
粒子とは軸比(長軸径/短軸径)3以上の粒子を指し、
その形状は針状に限らず、紡錘状、米粒状及び短冊状の
ものを含む。
Further, the acicular hydrous used in the present invention
Ferric oxide particles or acicular iron oxide particles include Al, N which are usually used to improve various properties of iron alloy magnetic particles.
One or more kinds of different elements other than Fe such as i, Co, B, Zn, P, and Si may be used in combination in the inside of the particle or coated on the surface of the particle. Incidentally, the acicular particles in the present invention refers to particles having an axial ratio (major axis diameter / minor axis diameter) of 3 or more,
The shape is not limited to a needle shape, and includes a spindle shape, a rice grain shape, and a strip shape.

【0017】 本発明にかかる磁気記録用鉄合金磁性粒
子用造粒物は、針状含水酸化第二鉄粒子又は針状酸化鉄
粒子を水に懸濁させた懸濁液中へ水若しくは温水に可溶
な半合成澱粉又は半合成セルロースを添加・攪拌した
後、圧縮脱水して得たケーキを造粒成形して得られる。
The granules for magnetic particles of iron alloys for magnetic recording according to the present invention are prepared by adding acicular hydrous ferric oxide particles or acicular iron oxide particles to a suspension of water in water or hot water. After adding and stirring a soluble semi-synthetic starch or a semi-synthetic cellulose, the cake obtained by compression dehydration is granulated and obtained.

【0018】 本発明において、添加する半合成澱粉と
しては、可溶性澱粉、陽性澱粉、親水基(カルボキシメ
チルジアルデヒド等)で置換された澱粉等が挙げられ、
半合成セルロースとしは、ビスコース、親水基(メチ
ル、エチル、ヒドロキシエーテル、カルボキシル等)で
置換されたセルロース等が挙げられ、これらは水若しく
温水に可溶である。
In the present invention, examples of the semi-synthetic starch to be added include soluble starch, positive starch, starch substituted with a hydrophilic group (such as carboxymethyldialdehyde), and the like.
And then the semi-synthetic cellulose, viscose, hydrophilic groups (methyl, ethyl, hydroxy ether, carboxyl, etc.) cellulose substituted with, and these are water Moshiku
Is soluble in warm water.

【0019】前記半合成澱粉又は半合成セルロースの添
加量は、針状含水酸化第二鉄粒子又は針状酸化鉄粒子に
対して0.1〜5.0重量%の範囲である。工業的には
添加効果が現れるできる限り少量が好ましいが、0.1
重量%未満の場合には、本発明における効果が発現でき
ない。5.0重量%を超えた場合には、残存有機物によ
る還元への悪影響が著しく現れ、保磁力及び飽和磁化の
低下、更には還元に長時間を要する等の問題を引き起こ
すため好ましくない。
The amount of the semisynthetic starch or semisynthetic cellulose is in the range of 0.1 to 5.0 wt% with respect to acicular ferric oxide particles or acicular iron oxide particles. Industrially, a small amount is preferable as long as the effect of addition can be exhibited.
If the amount is less than 10% by weight, the effects of the present invention cannot be exhibited. If the content exceeds 5.0% by weight, undesired adverse effects on the reduction due to the residual organic matter appear, causing problems such as a reduction in coercive force and saturation magnetization and a long time required for the reduction.

【0020】本発明における針状含水酸化第二鉄粒子又
は針状酸化鉄粒子を造粒成形する手段としては、転動造
粒、圧縮造粒、解砕造粒、押出し造粒等各種の方法があ
るが、針状ヘマタイト粒子を含む懸濁液中に前記半合成
澱粉又は半合成セルロースを添加・攪拌した後、フィル
タープレスにより圧縮脱水して得たケーキを押出し造粒
法によって造粒成形する方法が工業的に好ましい。
Means for granulating and shaping the acicular hydrous ferric oxide particles or the acicular iron oxide particles in the present invention include various methods such as rolling granulation, compression granulation, crushing granulation, and extrusion granulation. However, after adding and stirring the semi-synthetic starch or semi-synthetic cellulose in a suspension containing acicular hematite particles, the cake obtained by compression dehydration by a filter press is extruded and granulated by a granulation method. The method is industrially preferred.

【0021】本発明における磁気記録用鉄合金磁性粒子
用造粒物は平均造粒径が1〜5mmであって、嵩密度が
0.5g/cm3 以上であり、且つ粉化率が40%以下
でなければならない。
The granules for magnetic particles of the iron alloy for magnetic recording according to the present invention have an average grain size of 1 to 5 mm, a bulk density of 0.5 g / cm 3 or more, and a powdering ratio of 40%. Must be:

【0022】造粒物の平均造粒径が1mm未満の場合に
は、還元ガス流によって造粒粒子が大きく流動し始める
ため粒子間の衝突や摩擦を生起し、粒子同士の焼結や一
次粒子の形状のくずれが発生するので好ましくなく、ま
た微粉化した粒子が系外に飛散しダストとなって排気ガ
スフィルターの目詰まりを引き起こすなど設備的にも好
ましくない現象が生ずる。
If the average granulated particle size of the granulated product is less than 1 mm, the granulated particles begin to flow largely due to the reducing gas flow, causing collisions and friction between the particles, sintering of the particles and primary particles. This is not desirable because the shape of the particles is distorted, and undesired phenomena occur in terms of equipment such as finely divided particles scattered outside the system and become dust, causing clogging of the exhaust gas filter.

【0023】一方、5mmを越えた場合には、還元性ガ
スが粒子内部に行渡るまでに時間がかかると同時に、還
元反応を律速する造粒粒子内の水蒸気の拡散も遅くなる
為、還元時間が長くなり、生産性が劣りまた、磁気特性
の劣化を招き好ましくない。
On the other hand, when the distance exceeds 5 mm, it takes time for the reducing gas to pass through the inside of the particles, and at the same time, the diffusion of water vapor in the granulated particles that controls the reduction reaction becomes slow. , The productivity is inferior, and the magnetic properties deteriorate, which is not preferable.

【0024】造粒物の嵩密度が0.5g/cm3 未満の
場合、造粒物の強度が弱くなり粉化率が大きくなり易い
傾向がある為に微粉が発生し易く、また、造粒物1個の
重量が小さくなる為、還元効率を上げる目的でガスの通
気量を増やすと造粒物が流動し易くなり造粒物同志の摩
擦や衝突によって粒子同志の焼結や一次粒子の形状の崩
れが発生し易くなる。
When the bulk density of the granulated material is less than 0.5 g / cm 3 , the strength of the granulated material tends to be weak and the powdering ratio tends to be large, so that fine powder is liable to be generated. Since the weight of one material is reduced, if the gas flow rate is increased for the purpose of increasing the reduction efficiency, the granulated material becomes easier to flow, and the sintering of the particles and the shape of the primary particles due to friction and collision between the granulated materials Collapse easily occurs.

【0025】更に、造粒物の粉化率が40%を越えた場
合には、出発原料の固定層還元装置内への投入等の移送
の際、また、加熱還元過程における造粒物の微振動によ
る摩擦、及び加熱による熱膨張等により粉化が起って微
粉が発生し易くなる。
Further, when the powdered ratio of the granulated material exceeds 40%, the fine particles of the granulated material are transferred at the time of transferring the starting material into the fixed bed reducing device or during the heat reduction process. Powdering occurs due to friction due to vibration, thermal expansion due to heating, and the like, and fine powder is easily generated.

【0026】このような造粒物を出発原料として用い、
固定層還元装置で還元する際には、発生した微粉が層内
に局所的に存在し、しかも、その部分の圧力損失が大き
くなる為、通気ガスの偏流が生じ、被処理粒子の還元の
進行度が不均一になり、還元効率も非常に悪く、粒子間
における磁気特性分布幅の大きい鉄合金磁性粒子が得ら
れる為好ましくない。
Using such granules as starting materials,
When reducing with a fixed bed reduction device, the generated fine powder is locally present in the bed, and the pressure loss in that portion is increased, so that the aeration gas drifts and the reduction of the particles to be treated progresses. This is not preferable because iron alloy magnetic particles having a nonuniform degree and a very low reduction efficiency and a large magnetic property distribution width between particles can be obtained.

【0027】 本発明にかかる磁気記録用鉄合金磁性粒
子は、針状含水酸化第二鉄粒子又は針状酸化鉄粒子を水
に懸濁させた懸濁液中へ水若しくは温水に可溶な半合成
澱粉又は半合成セルロースを添加・攪拌した後、圧縮脱
水して得たケーキを造粒成形して得られた平均造粒径が
1〜5mmであって、嵩密度が0.5g/cm以上で
あり、且つ、粉化率が40%以下である針状含水酸化第
二鉄造粒物又は針状酸化鉄造粒物を還元性ガス中で加熱
還元することにより得ることができる。
[0027] The iron alloy magnetic particles for magnetic recording according to the present invention are prepared by adding acicular ferric hydroxide particles or acicular iron oxide particles to a suspension of water in water or hot water-soluble half-water. After adding and stirring synthetic starch or semi-synthetic cellulose, the cake obtained by compression dehydration is granulated and formed to have an average granulated particle size of 1 to 5 mm and a bulk density of 0.5 g / cm 3. Above, it can be obtained by heating and reducing a needle-like hydrous ferric oxide granule or a needle-like iron oxide granule having a powdering ratio of 40% or less in a reducing gas.

【0028】還元性ガス中での加熱還元は、水素ガス流
下、350〜550℃の温度範囲で行うことができる。
The heat reduction in a reducing gas can be performed in a temperature range of 350 to 550 ° C. under a flow of hydrogen gas.

【0029】本発明における加熱還元後の鉄合金磁性粒
子は周知の方法、例えば、トルエン等の有機溶剤中に浸
漬する方法及び還元後の鉄合金磁性粒子の雰囲気を一旦
不活性ガスに置換した後、不活性ガス中の酸素含有量を
徐に増加させながら最終的に空気とすることによって徐
酸化する方法等により空気中に取り出すことができる。
In the present invention, the heat-reduced iron alloy magnetic particles are prepared by a known method, for example, immersion in an organic solvent such as toluene, and after the atmosphere of the reduced iron alloy magnetic particles is once replaced with an inert gas. Alternatively, it can be taken out into the air by a method such as gradually oxidizing by gradually increasing the oxygen content in the inert gas into air while gradually increasing the oxygen content.

【0030】[0030]

【作用】 先ず、本発明において最も重要な点は、針状
含水酸化第二鉄粒子又は針状酸化鉄粒子を水に懸濁させ
た懸濁液中に、水若しくは温水に可溶な半合成澱粉又は
半合成セルロースを針状ヘマタイト粒子に対して0.1
〜5.0重量%添加・攪拌した後、圧縮脱水して得たケ
ーキを造粒成形した場合には、平均造粒径1〜5mmで
あって、嵩密度が0.5g/cm以上であり、しかも
粉化率が40%以下である磁気記録用鉄合金磁性粒子用
造粒物が得られる点である。
First, the most important point in the present invention is that a semi-synthetic material soluble in water or warm water is added to a suspension of needle-like hydrous ferric oxide particles or needle-like iron oxide particles in water. Starch or semi-synthetic cellulose is added to acicular hematite particles in an amount of 0.1%.
When the cake obtained by compressing and dehydrating after adding and stirring the mixture by granulation is formed with an average particle diameter of 1 to 5 mm and a bulk density of 0.5 g / cm 3 or more, The point is that a granulated product for iron alloy magnetic particles for magnetic recording having a powdering ratio of 40% or less can be obtained.

【0031】更に、該磁気記録用鉄合金磁性粒子用造粒
物を還元性ガス中で加熱還元した場合には、高い保磁力
と大きな飽和磁化とを有し、しかも、粒子間における保
磁力及び飽和磁化の各分布幅が小さい鉄合金磁性粒子が
得られる点である。
Further, when the granules for magnetic particles of iron alloy for magnetic recording are heat-reduced in a reducing gas, they have a high coercive force and a large saturation magnetization, and have a high coercive force between particles. The point is that iron alloy magnetic particles having a small distribution width of saturation magnetization can be obtained.

【0032】本発明において、粒子間における保磁力及
び飽和磁化の各分布幅が小さい鉄合金磁性粒子が得られ
る理由について、本発明者は、半合成澱粉又は半合成セ
ルロースを添加することによって、針状含水酸化第二鉄
粒子又は針状酸化鉄粒子同志の結合を強固にし、強度を
強くすることができ、微粉の発生を効果的に防ぐことが
できる。その結果、固定層中の通気ガスの偏流をも防ぐ
ことが可能となり、造粒物(被処理粒子)の還元の進行
度も均一になり、結果的に粒子間における磁気特性分布
幅の小さい鉄合金磁性粒子が得られるものと考えてい
る。
In the present invention, the reason why iron alloy magnetic particles having small distribution widths of coercive force and saturation magnetization between particles can be obtained is as follows. The present inventor adds needles by adding semi-synthetic starch or semi-synthetic cellulose. Jo hydrous oxide to ferric <br/> strongly binding particles or acicular iron oxide particles each other, it is possible to increase the intensity, it is possible to prevent generation of fine powder effectively. As a result, it is possible to prevent the drift of the ventilation gas in the fixed bed, and the progress of the reduction of the granulated material (particles to be treated) is also uniform. As a result, the iron having a small magnetic characteristic distribution width between the particles is obtained. We believe that alloy magnetic particles can be obtained.

【0033】また、造粒物の嵩密度が0.5g/cm3
を越えるような高嵩密度である場合には、造粒物を形成
する一次粒子間距離が短くなる為、還元によって発生し
た水分の造粒物内部での拡散速度が遅くなる。このこと
は、造粒物内部の水蒸気分圧が高い状態で維持され易い
ことを意味する。従って、一般的には嵩密度が大きくな
ると造粒物内部の水蒸気分圧の制御が困難となり、粒子
間の焼結を起こし易いという問題を生ずる。
The bulk density of the granulated product is 0.5 g / cm 3
If the bulk density is higher than the above, the distance between the primary particles forming the granulated material becomes short, so that the diffusion rate of the moisture generated by the reduction inside the granulated material becomes slow. This means that the water vapor partial pressure inside the granules is easily maintained in a high state. Therefore, in general, when the bulk density becomes large, it becomes difficult to control the partial pressure of water vapor inside the granulated material, and there is a problem that sintering between particles is easily caused.

【0034】 しかしながら、本発明による方法によ
り、針状含水酸化第二鉄粒子又は針状酸化鉄粒子を水に
懸濁させた懸濁液中へ水若しくは温水に可溶な半合成澱
粉又は半合成セルロースを添加・攪拌した後、圧縮脱水
した後、圧縮脱水して得たケーキを造粒成形した場合に
は、嵩密度が0.5g/cm以上の高嵩密度造粒物で
あっても、添加した半合成澱粉又は半合成セルロースが
一次粒子間距離を適度に保つ為、その問題は解消され
る。
However, according to the method according to the present invention, a semi-synthetic starch or semi-synthetic soluble in water or warm water is introduced into a suspension of acicular ferric hydroxide oxide particles or acicular iron oxide particles suspended in water. After adding and stirring cellulose, compressing and dewatering, and then compressing and dehydrating the cake, when the cake obtained is granulated and formed, even if the bulk density is 0.5 g / cm 3 or more, the granulated product has a high bulk density. The problem is solved because the added semi-synthetic starch or semi-synthetic cellulose keeps the distance between the primary particles at an appropriate level.

【0035】 尚、従来、鉄合金磁性粒子を製造するに
あたり半合成澱粉又は半合成セルロースに類似した物を
用いるものとしては、特開昭55−82408号公報に
記載の方法がある。この方法は、澱粉を還元剤として使
用する方法であり、加熱還元前に針状含水酸化第二鉄粒
子又は針状酸化鉄粒子を水若しくは温水に可溶な半合成
澱粉又は半合成セルロースを用いて造粒成形しておく本
発明とは、その目的、構成及び効果において相違するも
のである。
Conventionally, a method similar to semi-synthetic starch or semi-synthetic cellulose for producing iron alloy magnetic particles is described in JP-A-55-82408. This method is a method using starch as a reducing agent, and uses a semi-synthetic starch or a semi-synthetic cellulose in which needle-like hydrous ferric oxide particles or needle-like iron oxide particles are soluble in water or hot water before heat reduction. The present invention is different from the present invention in which granulation is performed by its purpose, configuration and effect.

【0036】[0036]

【実施例】次に、実施例並びに比較例により、本発明を
説明する。尚、以下の実施例並びに比較例における粒子
の長軸、軸比(長軸径/短軸径)は、電子顕微鏡写真か
ら測定した数値の平均値で示した。鉄合金磁性粒子の磁
気特性は「振動試料磁力計VSM−3S−15」(東英
工業(株)製)を使用し、外部磁場10KOeまでかけ
て測定した。
Next, the present invention will be described with reference to examples and comparative examples. In addition, the major axis and the axial ratio (major axis diameter / minor axis diameter) of the particles in the following Examples and Comparative Examples are shown by the average value of numerical values measured from an electron micrograph. The magnetic properties of the iron alloy magnetic particles were measured using an "oscillating sample magnetometer VSM-3S-15" (manufactured by Toei Industry Co., Ltd.) under an external magnetic field of 10 KOe.

【0037】また、粉化率は、下記の方法にて測定した
値で示したものである。1mmを超える大きさの造粒
径を有する針状含水酸化第二鉄造粒物又は針状酸化鉄造
粒物100gと12.5mmφのスチールボール200
gとを、内径8.5cm、高さ8.5cm、内容積48
2cm3 のスチール製容器に投入した後、周速50rp
mで1時間混合する。次いで、スチール製容器中にお
ける1mm未満の大きさの造粒径を有する針状含水酸化
第二鉄造粒物又は針状酸化鉄造粒物を秤量する。(1
mm未満の針状含水酸化第二鉄造粒物又は針状酸化鉄造
粒物重量/測定前の針状含水酸化第二鉄造粒物又は針状
酸化鉄造粒物重量(100g))×100=粉化率
(%)とする
The powdering ratio is shown by a value measured by the following method. Acicular ferric oxide granules or acicular oxide Tetsuzo Tsububutsu 100g and 12.5mmφ steel ball 200 having a granulation diameter size of more than 1mm
g, 8.5 cm inside diameter, 8.5 cm height, 48 internal volumes
After putting into a 2cm 3 steel container, the peripheral speed is 50rpm
Mix for 1 hour at m. Next, acicular hydrous oxyhydroxide having a particle size of less than 1 mm in a steel container.
Weigh ferric granulation or acicular oxide Tetsuzo grain product. (1
acicular ferric oxide granules or acicular oxide Tetsuzo Tsububutsu weight / measurement before the acicular ferric oxide granules of less than mm or acicular oxide Tetsuzo Tsububutsu weight (100 g)) × 100 = powdering rate (%)

【0038】<磁気記録用鉄合金磁性粒子用造粒物の製
造> 実施例1〜15、比較例1〜5; 実施例1 Al化合物、Co化合物及びB化合物によって粒子表面
が被覆されている長軸0.23μm、軸比(長軸径/短
軸径)11の針状を呈したゲータイト粒子(Al=1.
0重量%、Co=4.6重量%、B=0.9重量%)を
空気中400℃で加熱処理して針状ヘマタイト粒子を得
た。
<Manufacture of Granules for Iron Alloy Magnetic Particles for Magnetic Recording> Examples 1 to 15, Comparative Examples 1 to 5; Example 1 A long particle surface coated with an Al compound, a Co compound and a B compound. Needle-like goethite particles having an axis of 0.23 μm and an axis ratio (major axis diameter / short axis diameter) of 11 (Al = 1.
(0% by weight, Co = 4.6% by weight, B = 0.9% by weight) in air at 400 ° C. to obtain acicular hematite particles.

【0039】次に、得られた針状ヘマタイト粒子を湿式
粉砕機を用いて微粉砕し、針状ヘマタイト粒子分散懸濁
液を得た。
Next, the obtained acicular hematite particles were finely pulverized using a wet pulverizer to obtain a dispersion of acicular hematite particles.

【0040】次いで、上記得られた針状ヘマタイト粒子
懸濁液を、固形分濃度8重量%に調整し、該懸濁液に脂
肪族第三級アミンで置換された陽性澱粉を溶解した溶液
(針状ヘマタイト粒子に対して1wt%の陽性澱粉量に
相当する。)を添加・攪拌した後、フィルタープレスに
より圧縮脱水し、含水率35重量%のケーキを得、続い
て孔径3mmの成型スクリーンを用いて押し出し成型を
行った後、100℃の温度で乾燥して針状酸化鉄造粒物
を得た。得られた針状酸化鉄造粒物は、平均造粒径2.
5mmであって、嵩密度が0.58g/cm3 であり、
粉化率は33%であった。
Next, the needle-like hematite particle suspension obtained above was adjusted to a solid concentration of 8% by weight, and a solution obtained by dissolving a positive starch substituted with an aliphatic tertiary amine in the suspension ( After adding and stirring, the mixture was compressed and dewatered by a filter press to obtain a cake having a water content of 35% by weight. After extrusion molding using the same, drying was performed at a temperature of 100 ° C. to obtain an acicular iron oxide granulated product. The obtained acicular iron oxide granulated product has an average granulated particle size of 2.
5 mm, the bulk density is 0.58 g / cm 3 ,
The powdering rate was 33%.

【0041】実施例2〜15、比較例1〜5 針状ゲータイト粒子の種類、添加元素の種類及び量、加
熱処理の有無及び加熱温度、半合成澱粉又は半合成セル
ロースの種類及び添加量、並びに成型スクリーンの孔径
を種々変化させた以外は実施例1と同様にして鉄合金磁
性粒子用造粒物を製造した。この時の主要製造条件と諸
特性を表1に示す。尚、実施例14の被処理物は針状ゲ
ータイト粒子、実施例15の被処理物は針状ゲータイト
粒子を400℃の温度で加熱脱水した後、300℃の温
度で加熱還元して得た針状マグネタイト粒子である
Examples 2 to 15, Comparative Examples 1 to 5 Types of needle-like goethite particles, types and amounts of additional elements, presence or absence of heat treatment and heating temperature, types and amounts of semi-synthetic starch or semi-synthetic cellulose, and A granulated product for iron alloy magnetic particles was produced in the same manner as in Example 1 except that the pore size of the molding screen was variously changed. Table 1 shows the main manufacturing conditions and various characteristics at this time. The object to be treated in Example 14 was acicular goethite particles, and the object to be treated in Example 15 was needles obtained by heating and dehydrating acicular goethite particles at a temperature of 400 ° C., and then reducing by heating at a temperature of 300 ° C. Magnetite particles

【0042】<鉄合金磁性粒子の製造> 実施例16〜30、比較例6〜10; 実施例16 実施例1で得られた針状酸化鉄造粒物5Kgを内径16
0mmの固定層還元装置へ投入し、続いて、200Nl
/分の割合で水素ガスを通気し、410℃の温度で加熱
還元を行い、鉄合金磁性粒子造粒物を得た。還元時間は
20時間であった。
<Production of Iron Alloy Magnetic Particles> Examples 16 to 30, Comparative Examples 6 to 10; Example 16 5 kg of the acicular iron oxide granules obtained in Example 1 was applied to an inner diameter of 16 kg.
0 mm fixed bed reduction device, followed by 200 Nl
Per minute, and hydrogen reduction was performed at a temperature of 410 ° C. to obtain iron alloy magnetic particle granules. The reduction time was 20 hours.

【0043】得られた固定層内の鉄合金磁性粒子造粒物
をトルエン中に浸漬して取り出し、該鉄合金磁性粒子造
粒物を目開き1mmの篩で篩い分け、1mm以上及び1
mm未満の鉄合金磁性粒子造粒物を得た。次いで、それ
ぞれトルエンを蒸発させながら表面に薄い安定な酸化被
膜を形成させた。
The obtained iron alloy magnetic particle granules in the fixed layer were immersed in toluene and taken out, and the iron alloy magnetic particle granules were sieved with a sieve having an opening of 1 mm, and sieved with 1 mm or more and 1 mm or more.
An iron alloy magnetic particle granulated product having a diameter of less than 1 mm was obtained. Next, a thin stable oxide film was formed on the surface while evaporating toluene.

【0044】得られた鉄合金磁性粒子造粒物において、
1mm以上の大きさを有する鉄合金磁性粒子造粒物の保
磁力Hcが1610 Oe、飽和磁化σsが158em
u/gであって、1mm未満の大きさを有する鉄合金磁
性粒子造粒物の保磁力Hcが1595Oe、飽和磁化σ
sが156emu/gであった。両鉄合金磁性粒子造粒
物の保磁力及び飽和磁化の各分布幅は小さかった。
In the obtained iron alloy magnetic particle granules,
The coercive force Hc of the iron alloy magnetic particles having a size of 1 mm or more is 1610 Oe, and the saturation magnetization s is 158 em.
u / g, and the coercive force Hc of the iron alloy magnetic particles having a size of less than 1 mm is 1595 Oe and the saturation magnetization σ
s was 156 emu / g. The distribution widths of the coercive force and the saturation magnetization of the ferromagnetic particles were small.

【0045】実施例17〜30、比較例6〜10 実施例2〜15、比較例1〜5で得られた鉄合金磁性粒
子用造粒物を加熱還元するに際して、還元温度及び還元
時間を種々変化させた以外は実施例16と同様にして鉄
合金磁性粒子造粒物を製造した。この時の主要製造条件
と諸特性を表2に示す。
Examples 17 to 30, Comparative Examples 6 to 10 When the granules for iron alloy magnetic particles obtained in Examples 2 to 15 and Comparative Examples 1 to 5 were heat-reduced, various reduction temperatures and reduction times were used. Except having changed, it carried out similarly to Example 16, and manufactured the iron alloy magnetic particle granule. Table 2 shows the main manufacturing conditions and various characteristics at this time.

【0046】尚、実施例17〜30で得られた各鉄合金
磁性粒子造粒物の粒子間における保磁力及び飽和磁化の
各分布幅は小さいものであったが、比較例6〜10で得
られた各鉄合金磁性粒子造粒物の粒子間における各分布
幅は大きいものであった。
The distribution widths of the coercive force and the saturation magnetization between the particles of the iron alloy magnetic particles obtained in Examples 17 to 30 were small, but were obtained in Comparative Examples 6 to 10. The distribution width between the particles of the obtained iron alloy magnetic particle granules was large.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【発明の効果】本発明に係る磁気記録用鉄合金磁性粒子
用造粒物は、前出実施例に示した通り、平均造粒径が1
〜5mmであって、嵩密度が0.5g/cm3 以上であ
り、且つ、粉化率が40%以下である針状含水酸化第二
造粒物又は針状酸化鉄造粒物であるので、固定層還元
装置で用いる場合、微粉の発生が少なく、従って加熱還
元時における層内の通気ガスの偏流も生じることなく、
該造粒物(被処理物)の還元の進行度も均一となるの
で、現在、最も要求されている高い保磁力と大きな飽和
磁化とを有し、しかも粒子間における保磁力及び飽和磁
化の各分布幅の小さい鉄合金磁性粒子を得る出発原料と
して好適である。
According to the present invention, the granulated material for iron alloy magnetic particles for magnetic recording according to the present invention has an average granulated particle size of 1 as described in the above embodiment.
55 mm, a bulk density of 0.5 g / cm 3 or more, and a powdered ratio of 40% or less .
Since iron granules or acicular oxide Tetsuzo grain product, when used in a fixed bed reduction apparatus, it generates less fines, therefore without drift also occurs vent gas in the layer during the heat-reduction,
Since the degree of reduction of the granulated material (workpiece) is also uniform, it has the most required high coercive force and large saturation magnetization at present, and furthermore, each of the coercive force and saturation magnetization between particles. It is suitable as a starting material for obtaining iron alloy magnetic particles having a small distribution width.

【0050】また、本発明に係る磁気記録用鉄合金磁性
粒子の製造法によれば、前出実施例に示した通り、出発
原料として前記した特定の針状含水酸化第二鉄造粒物又
は針状酸化鉄造粒物を用いているので、固定層還元装置
で用いる場合、微粉の発生が少なく、従って加熱還元時
における層内の通気ガスの偏流も生じることなく、該造
粒物(被処理物)の還元の進行度も均一となるので、現
在、最も要求されている高い保磁力と大きな飽和磁化と
を有し、しかも粒子間における保磁力及び飽和磁化の各
分布幅の小さい鉄合金磁性粒子を得ることができるので
高密度記録用の磁性粒子として好適である。
[0050] Further, according to the manufacturing method of the magnetic recording iron alloy magnetic particles according to the present invention, as shown in supra embodiment, specific acicular ferric oxide granules described above as starting materials or Since the needle-shaped iron oxide granules are used, when used in a fixed bed reduction apparatus, the generation of fine powder is small, and thus the aeration gas in the bed is not deviated during heating and reduction. Since the degree of reduction of the processed material is also uniform, an iron alloy having the most required high coercive force and large saturation magnetization at present, and having a small distribution width of the coercive force and saturation magnetization between particles. Since magnetic particles can be obtained, they are suitable as magnetic particles for high density recording.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C01G 49/06 C01G 49/06 A G11B 5/706 G11B 5/706 H01F 1/06 H01F 1/06 L (72)発明者 上神 雅之 広島県広島市中区舟入南4丁目1番2号 戸田工業株式会社創造センター内 (72)発明者 三島 啓男 広島県広島市中区舟入南4丁目1番2号 戸田工業株式会社創造センター内 審査官 三崎 仁 (56)参考文献 特開 昭57−116716(JP,A) 特開 昭63−88807(JP,A) 特開 平4−62906(JP,A) 特開 平4−144208(JP,A) 特開 昭54−33258(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 49/02 - 49/06 B22F 1/00,9/00 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI C01G 49/06 C01G 49/06 A G11B 5/706 G11B 5/706 H01F 1/06 H01F 1/06 L (72) Masayuki Kami 4-1-2, Funairi Minami, Naka-ku, Hiroshima City, Hiroshima Prefecture Inside the Creative Center of Toda Kogyo Co., Ltd. (72) Inventor Hiroo Mishima 4-1-2, Funamiri Minami, Naka-ku, Hiroshima City, Hiroshima Hiroshima Prefecture Toda Kogyo Co., Ltd. Examiner in the center Hitoshi Misaki (56) References JP-A-57-116716 (JP, A) JP-A-63-88807 (JP, A) JP-A-4-62906 (JP, A) JP-A-4-144208 (JP, A) JP-A-54-33258 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01G 49/02-49/06 B22F 1/00, 9/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 針状含水酸化第二鉄粒子粉末又は針状酸
化鉄粒子粉末に水若しくは温水に可溶な半合成澱粉又は
半合成セルロースを添加して造粒してなる平均造粒径が
1〜5mmであって、嵩密度が0.5g/cm以上で
あり、且つ、下記の測定方法において測定した粉化率が
40%以下である針状含水酸化第二鉄造粒物又は針状酸
化鉄造粒物からなる固定層を形成して還元される磁気記
録用鉄合金磁性粒子用造粒物。1mmを超える大きさ
の造粒径を有する針状含水酸化第二鉄造粒物又は針状酸
化鉄造粒物100gと12.5mmφのスチールボール
200gとを、内径8.5cm、高さ8.5cm、内容
積482cmのスチール製容器に投入した後、周速5
0rpmで1時間混合する。次いで、スチール製容器
中における1mm未満の大きさの造粒径を有する針状含
水酸化第二鉄造粒物又は針状酸化鉄造粒物を秤量する。
(1mm未満の針状含水酸化第二鉄造粒物又は針状酸
化鉄造粒物重量/測定前の針状含水酸化第二鉄造粒物又
は針状酸化鉄造粒物重量(100g))×100=粉化
率(%)とする
Claims: 1. A needle-like hydrous ferric oxide particle powder or a needle-like acid
Semi-synthetic starch soluble in water or warm water in iron fossil particles or
The average granulated particle diameter obtained by adding and granulating semi-synthetic cellulose is 1 to 5 mm, the bulk density is 0.5 g / cm 3 or more, and the powdering ratio measured by the following measurement method is A granulated material for magnetic particles of an iron alloy for magnetic recording, which is reduced by forming a fixed layer of a needle-shaped hydrous ferric oxide granulated material or a needle-shaped iron oxide granulated material of 40% or less. 100 g of a needle-like hydrous ferric oxide granulation or a needle-like iron oxide granulation having a granulated particle size of more than 1 mm and 200 g of 12.5 mmφ steel balls were prepared with an inner diameter of 8.5 cm and a height of 8. 5 cm, put in a steel container with an inner volume of 482 cm 3 ,
Mix for 1 hour at 0 rpm. Next, a needle-like hydrous ferric oxide granule or a needle-like iron oxide granule having a granulated particle size of less than 1 mm in a steel container is weighed.
(Weight of needle-like hydrous ferric oxide granules or needle-like iron oxide granules less than 1 mm / weight of needle-like hydrous ferric oxide granules or needle-like iron oxide granules before measurement (100 g)) × 100 = powdering rate (%)
【請求項2】 針状含水酸化第二鉄粒子又は針状酸化鉄
粒子を水に懸濁させた懸濁液中に、水若しくは温水に可
溶な半合成澱粉又は半合成セルロースを針状含水酸化第
二鉄粒子又は針状酸化鉄粒子に対して0.1〜5.0重
量%添加・攪拌した後、圧縮脱水して得たケーキを造粒
成形することを特徴とする請求項1記載の磁気記録用鉄
合金磁性粒子用造粒物の製造法。
2. A method in which a needle-like hydrous ferric oxide particle or a needle-like iron oxide particle is suspended in water, and a semi-synthetic starch or a semi-synthetic cellulose soluble in water or hot water is acicular. The cake obtained by adding and stirring 0.1 to 5.0% by weight of ferric oxide particles or needle-like iron oxide particles, and then compressing and dewatering the resulting product is granulated. Production method of iron alloy magnetic particles for magnetic recording.
【請求項3】 請求項1記載の磁気記録用鉄合金磁性粒
子用造粒物を固定層を形成して還元ガス中で加熱還元し
て鉄合金磁性粒子とすることを特徴とする磁気記録用鉄
合金磁性粒子の製造法。
3. A magnetic recording material according to claim 1, wherein the granules for magnetic particles of iron alloy for magnetic recording are formed in a fixed layer and reduced by heating in a reducing gas to form magnetic particles of iron alloy. Manufacturing method of iron alloy magnetic particles.
JP05208247A 1992-08-04 1993-07-30 A granulated product for iron alloy magnetic particles for magnetic recording, a method for producing the same, and a method for producing iron alloy magnetic particles for magnetic recording using the granulated product. Expired - Fee Related JP3087804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05208247A JP3087804B2 (en) 1992-08-04 1993-07-30 A granulated product for iron alloy magnetic particles for magnetic recording, a method for producing the same, and a method for producing iron alloy magnetic particles for magnetic recording using the granulated product.

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP22921392 1992-08-04
JP28660492 1992-09-30
JP4-286604 1992-09-30
JP4-229213 1992-09-30
JP05208247A JP3087804B2 (en) 1992-08-04 1993-07-30 A granulated product for iron alloy magnetic particles for magnetic recording, a method for producing the same, and a method for producing iron alloy magnetic particles for magnetic recording using the granulated product.

Publications (2)

Publication Number Publication Date
JPH06191853A JPH06191853A (en) 1994-07-12
JP3087804B2 true JP3087804B2 (en) 2000-09-11

Family

ID=27328857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05208247A Expired - Fee Related JP3087804B2 (en) 1992-08-04 1993-07-30 A granulated product for iron alloy magnetic particles for magnetic recording, a method for producing the same, and a method for producing iron alloy magnetic particles for magnetic recording using the granulated product.

Country Status (1)

Country Link
JP (1) JP3087804B2 (en)

Also Published As

Publication number Publication date
JPH06191853A (en) 1994-07-12

Similar Documents

Publication Publication Date Title
EP0717397A2 (en) Spindle-shaped magnetic ironbased alloy particles containing cobalt and iron as the main ingredients and process for producing the same
US5531922A (en) Granulated particles for magnetic particles for magnetic recording, and process for producing the same
US4400337A (en) Method for production of metal magnetic particles
JP3087804B2 (en) A granulated product for iron alloy magnetic particles for magnetic recording, a method for producing the same, and a method for producing iron alloy magnetic particles for magnetic recording using the granulated product.
JPS60255628A (en) Fine powder of ba ferrite plate particle for magnetic recording use and its preparation
JPH06345439A (en) Granulated substance for magnetic iron oxide particle for magnetic recording, production thereof and production of magnetic iron oxide granular powder for magnetic recording with the use of the granulated substance
JP2000302445A (en) Fusiform goethite particle powder, fusiform hematite particle powder, and fusiform metallic magnetic particle powder consisting mainly of iron, and their production
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPH09205012A (en) Method for manufacturing metal magnetic powder
JP3129414B2 (en) Manufacturing method of acicular iron alloy magnetic particles for magnetic recording
JPS6411577B2 (en)
JPH0152443B2 (en)
JP2827190B2 (en) Method for producing acicular iron alloy magnetic particles for magnetic recording
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JP2003037004A (en) Secondary agglomerate body of metal magnetic particle for magnetic recording, and manufacturing method therefor
JPH06302413A (en) Manufacture of metallic magnetic powder for magnetic recording
JPH05140620A (en) Production of powdery ferromagnetic metal powder
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JPH04144208A (en) Manufacture of magnetic metal powder for magnetic recording
JPH0152442B2 (en)
JP3405748B2 (en) Method for producing metal magnetic powder
JPS6354763B2 (en)
JPS61159502A (en) Production of magnetic metallic powder
JPH0790331A (en) Manufacture of magnetic metallic powder
JPS60181209A (en) Manufacture of magnetic powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees