JPH06172821A - Method and device for producing magnetic metal powder - Google Patents

Method and device for producing magnetic metal powder

Info

Publication number
JPH06172821A
JPH06172821A JP4350604A JP35060492A JPH06172821A JP H06172821 A JPH06172821 A JP H06172821A JP 4350604 A JP4350604 A JP 4350604A JP 35060492 A JP35060492 A JP 35060492A JP H06172821 A JPH06172821 A JP H06172821A
Authority
JP
Japan
Prior art keywords
gas
belt
product
heating
reaction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4350604A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nakamura
浩之 中村
Yoshinori Hama
良典 浜
Shiyuuhei Arikita
周平 有北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP4350604A priority Critical patent/JPH06172821A/en
Publication of JPH06172821A publication Critical patent/JPH06172821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To industrially, advantageously and continuously produce magnetic metal powders having a uniform and excellent magnetic characteristic by heating and dehydrating a material to be treated substantially kept standing on a belt, preventing the collision of the particles and the generation of fine powders and bringing the material into good contact with gas. CONSTITUTION:Iron compd. powders contg. iron oxide hydrate as the essential component are granulated into a granulated material having 1-20mm weight average particle diameter, a gas-permeable rection furnace having a gas- permeable belt is used with the granulated material as a raw material, the granulated material is continuously supplied on the belt, heated and dehydrated by a nonreducing gas to obtain the dehydrated material. The dehydrated material is simultaneously heated and reduced to obtain a reduced material. The reduced material is simultaneously heated and oxidized by an oxygen-contg. gas to continuously produce a magnetic metal powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属磁性粉末の製造方法
および製造装置に関する。更に詳しくは磁気記録に有用
な金属磁性粉末を連続して製造する製造方法および製造
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing metallic magnetic powder. More specifically, the present invention relates to a manufacturing method and a manufacturing apparatus for continuously manufacturing metal magnetic powder useful for magnetic recording.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
各種の記録方式の発展は著しいものがあるが、中でも磁
気記録再生装置の小型軽量化の進歩は顕著である。これ
につれて磁気テープ・磁気ディスク等の磁気記録媒体に
対する高性能化の要求が大きくなってきている。磁気記
録に対するこのような要求を満足するためには、高い保
磁力と高い飽和磁化を有する磁性粉末が必要である。従
来、磁気記録用の磁性粉末として一般には針状のマグネ
タイトやマグヘマイト又はこれらの磁性酸化鉄粉末をコ
バルトで変性したいわゆるコバルト含有酸化鉄が用いら
れているが、より高出力の媒体を得るためにはより高い
保磁力・飽和磁化を持つ強磁性金属粉末いわゆるメタル
磁性粉が用いられ始めている。
2. Description of the Related Art In recent years,
Although various recording systems have been developed remarkably, the progress in reduction in size and weight of magnetic recording / reproducing devices is remarkable. Along with this, there is an increasing demand for higher performance of magnetic recording media such as magnetic tapes and magnetic disks. In order to satisfy such requirements for magnetic recording, magnetic powder having high coercive force and high saturation magnetization is required. Conventionally, as magnetic powder for magnetic recording, generally needle-shaped magnetite or maghemite or so-called cobalt-containing iron oxide obtained by modifying these magnetic iron oxide powders with cobalt is used, but in order to obtain a medium with higher output. Has started to use ferromagnetic metal powders with higher coercive force and saturation magnetization, so-called metal magnetic powders.

【0003】このような金属磁性粉末は、一般的には針
状の含水酸化鉄を主体として含む鉄化合物の粉末を原料
として用い、次の(1)〜(3)の工程により製造され
る。 (1)含水酸化鉄を加熱脱水して酸化鉄とする工程(加
熱脱水工程)。 (2)この酸化鉄を水素等の還元性ガス雰囲気中で加熱
して金属鉄にまで還元する工程(加熱還元工程)。 (3)この金属鉄を酸素含有ガス等の酸化性ガスにより
気相酸化して金属鉄粒子表面に酸化被膜を形成する工程
(気相酸化工程)。 ここで、(2)の工程で得られる金属鉄粒子は化学的に
不安定であり、空気中では急激な酸化を受けて磁気特性
を大幅に損なってしまう。このため、(3)の気相酸化
工程により、この金属鉄を安定化処理する必要がある。
Such metal magnetic powder is generally manufactured by the following steps (1) to (3) using a powder of an iron compound mainly containing acicular hydrous iron oxide as a raw material. (1) A step of heating and dehydrating hydrous iron oxide to form iron oxide (heating and dehydrating step). (2) A step of heating the iron oxide in a reducing gas atmosphere such as hydrogen to reduce it to metallic iron (heating reduction step). (3) A step of vapor-phase oxidizing the metallic iron with an oxidizing gas such as an oxygen-containing gas to form an oxide film on the surface of the metallic iron particles (vapor-phase oxidizing step). Here, the metallic iron particles obtained in the step (2) are chemically unstable and undergo a rapid oxidation in the air, which significantly impairs the magnetic characteristics. Therefore, it is necessary to stabilize the metallic iron by the vapor phase oxidation step (3).

【0004】磁気記録用として有用な金属磁性粉末とし
ては、保磁力や飽和磁化が高いだけでなく、これらの磁
気特性にバラツキが少ないことが要求される。このよう
な金属磁性粉末を得るためには上記の3つの工程におい
て、原料である含水酸化鉄の針状形状を損なうことなく
加熱脱水、加熱還元、気相酸化の各反応を均一に行う必
要がある。これらの3つの反応はいずれも気体と固体の
接触により反応を行うものであり従来より、このような
反応に用いられる装置としては、気体−固体の接触が良
好な流動床反応方式が用いられることが多い(特開昭5
8−174509号公報、特開昭55−157214号
公報、特公昭59−14081号公報、特開昭59−1
10701号公報、特開平2−192103号公報)。
しかしながら、これらの方式では、粉末粒子同士の接触
あるいは衝突により粉末の凝集が促進されて磁気特性が
低下したり、また微粉が発生してこれが反応器外に飛び
出してしまうといった問題がある。
A metal magnetic powder useful for magnetic recording is required to have high coercive force and saturation magnetization as well as little variation in these magnetic characteristics. In order to obtain such a metallic magnetic powder, it is necessary to uniformly carry out the respective reactions of heat dehydration, heat reduction, and gas phase oxidation in the above three steps without impairing the acicular shape of the iron oxide hydroxide as a raw material. is there. All of these three reactions are carried out by contact between a gas and a solid, and conventionally, as a device used for such a reaction, a fluidized bed reaction system in which gas-solid contact is good is used. There are many
8-174509, JP-A-55-157214, JP-B-59-14081, and JP-A-59-1.
10701 gazette, JP-A-2-192103).
However, in these methods, there is a problem in that the agglomeration of the powder is promoted by the contact or collision of the powder particles with each other, the magnetic properties are deteriorated, and fine powder is generated and jumps out of the reactor.

【0005】これに対して、被反応粉末を静置した状
態、即ち固定床方式で反応を行えば前記問題は解決でき
るが、この反応方式(例えば、特公昭60−48563
号公報、特公平1−52442号公報)では次の様な問
題がある。すなわち、含水酸化鉄の脱水反応及び酸化鉄
の水素還元反応は次の (I)〜(III)式で示されるが、
On the other hand, the above problem can be solved by carrying out the reaction in a state where the powder to be reacted is allowed to stand, that is, in a fixed bed system, but this reaction system (for example, Japanese Patent Publication No. 60-48563).
Japanese Patent Publication No. 52242/1989) has the following problems. That is, the dehydration reaction of hydrous iron oxide and the hydrogen reduction reaction of iron oxide are represented by the following formulas (I) to (III).

【0006】[0006]

【化1】 [Chemical 1]

【0007】固定床方式ではこれらの反応による生成水
蒸気が、原料粒子の層高(層厚み)が高くなるに従い蓄
積されるため、層上部の水蒸気分圧が過大となる。そし
て、水蒸気は針状の形骸粒子を構成する結晶子の粒子成
長を促進する。このため層高が高くなるほど形骸粒子を
構成する結晶子の大きさ(X線結晶粒径)が大きくなり
すぎて針状形状の変形および形骸粒子間の焼結が生じ、
得られた金属磁性粉末の磁気特性が低下する。さらに
(III)の反応は可逆反応であるため、層高が高くなるほ
ど生成水蒸気の影響をうけて還元反応速度が低下し還元
が不均一となる。
In the fixed bed system, the steam generated by these reactions accumulates as the bed height (bed thickness) of the raw material particles increases, so that the steam partial pressure at the top of the bed becomes excessive. Then, the water vapor promotes the particle growth of the crystallites forming the acicular particles. Therefore, as the layer height increases, the size of the crystallites forming the skeleton particles (X-ray crystal grain size) becomes too large, resulting in needle-like deformation and sintering between skeleton particles,
The magnetic properties of the obtained metal magnetic powder are deteriorated. Furthermore, since the reaction of (III) is a reversible reaction, as the bed height increases, the reduction reaction rate decreases due to the influence of the generated steam, and the reduction becomes non-uniform.

【0008】また、金属磁性粉末の飽和磁化(σs)は
気相酸化により低下し、その低下量は気相酸化温度によ
り一義的に決定される。この気相酸化を固定床方式で行
うと酸化反応により発生する反応熱が部分的に蓄積し、
その部分のみ高温となり必要以上に飽和磁化が低下した
り、また逆にガスの偏流により酸化されない部分が生じ
ることがある。その結果、得られる金属磁性粉末は飽和
磁化に非常にばらつきのあるものとなる。また場合によ
っては、大気中に取り出したときに、未酸化の部分が急
激な酸化反応により発熱あるいは発火し、本来有する保
磁力と飽和磁化を大幅に損なう恐れがある。さらに、こ
の様な反応熱の部分的蓄積やガス偏流は固定床方式にお
いて層高を高くするほど生じ易い。このような固定床に
より加熱脱水、還元および気相酸化を行う際の問題はい
ずれも層高を高くするほど顕著であり、(固定床層高/
塔径)を小さくすればある程度解決できる。しかしなが
ら、その様な固定床バッチ反応方式では、生産効率が非
常に悪く工業的生産方法として適していない。
Further, the saturation magnetization (σs) of the magnetic metal powder is reduced by vapor phase oxidation, and the amount of reduction is uniquely determined by the vapor phase oxidation temperature. When this gas phase oxidation is carried out in a fixed bed system, the reaction heat generated by the oxidation reaction is partially accumulated,
Only that part may become hot and the saturation magnetization may be reduced more than necessary, or conversely, a part that is not oxidized due to the drift of the gas may occur. As a result, the obtained magnetic metal powder has very different saturation magnetization. In some cases, when taken out into the atmosphere, a non-oxidized portion may generate heat or ignite due to a rapid oxidation reaction, and the original coercive force and saturation magnetization may be significantly impaired. Further, such partial accumulation of reaction heat and gas drift are more likely to occur as the bed height is increased in the fixed bed system. The problems in performing heat dehydration, reduction and gas phase oxidation by such a fixed bed become more remarkable as the bed height increases, and (fixed bed bed height /
It can be solved to some extent by reducing the tower diameter). However, such a fixed bed batch reaction system has a very poor production efficiency and is not suitable as an industrial production method.

【0009】本発明の目的は、このような金属磁性粉末
の製造段階における粒子の形状変化および粒子同士の焼
結を防止し、均一で優れた磁気特性を示す金属磁性粉末
を工業的規模で高効率で連続的に量産するための製造方
法および製造装置を提供することにある。
It is an object of the present invention to prevent the shape change of particles and the sintering of particles at the production stage of such metal magnetic powder, and to provide the metal magnetic powder showing uniform and excellent magnetic characteristics on an industrial scale. An object of the present invention is to provide a manufacturing method and a manufacturing apparatus for mass-producing continuously with high efficiency.

【0010】[0010]

【課題を解決するための手段】本発明者らは、前記の課
題について検討を行った結果、加熱脱水、還元、気相酸
化の各反応処理をガス流通可能なベルトを有するガス流
通型反応炉を用いて行うことにより、実質的に静置状態
の反応においても粒子の形状変化および粒子同士の焼結
がなく、均一で優れた磁気特性を示す金属磁性粉末が得
られること、およびこの様な金属磁性粉末を工業的に有
利に連続製造できることを見出し、本発明を完成したも
のである。
DISCLOSURE OF THE INVENTION As a result of studying the above-mentioned problems, the inventors of the present invention have found that a gas flow type reactor having a belt through which heat dehydration, reduction and gas phase oxidation can be carried. By using the above, it is possible to obtain a metal magnetic powder that exhibits uniform and excellent magnetic characteristics without causing shape change of particles and sintering of particles even in a reaction in a substantially static state, and The present invention has been completed by finding that the magnetic metal powder can be industrially advantageously continuously produced.

【0011】すなわち、本発明の要旨は、 (1)含水酸化鉄を主体として含む鉄化合物粉末を造粒
して重量平均粒子径1〜20mmの造粒物とし、該造粒
物を原料としてガス流通可能なベルトを有するガス流通
型反応炉を用いて、以下の(a)〜(c)の工程からな
る処理をすることを特徴とする金属鉄を主成分とする金
属磁性粉末の製造方法、並びに(a)前記造粒物をベル
ト上に連続的に供給して載置し、該造粒物を移送しなが
ら、非還元性ガスにより加熱脱水処理を行い、加熱脱水
物を連続的に得る工程、(b)工程(a)で得られた加
熱脱水物をベルト上に連続的に供給して載置し、該加熱
脱水物を移送しながら、還元性ガスにより加熱還元処理
を行い、還元物を連続的に得る工程、および(c)工程
(b)で得られた還元物をベルト上に連続的に供給して
載置し、該還元物を移送しながら、酸素含有ガスにより
加熱気相酸化処理を行い、金属鉄を主成分とする金属磁
性粉末を連続的に得る工程、 (2)含水酸化鉄を主体として含む鉄化合物粉末の造粒
物を加熱脱水する加熱脱水反応炉と、該反応炉より得ら
れる加熱脱水物を加熱還元する加熱還元反応炉と、該反
応炉より得られる還元物を加熱気相酸化する加熱気相酸
化反応炉とにより構成される金属磁性粉末の製造装置で
あって、これらの反応炉が少なくとも粉体輸送手段を介
して加熱脱水反応炉、加熱還元反応炉、加熱気相酸化反
応炉の順に直列に接続され、各反応炉がガスの入口およ
び排出口、並びに被処理物の供給口および処理物の排出
口を有するガス流通型反応炉本体と、該反応炉本体内に
設けられたガス流通可能なベルトを有する処理物移送用
ベルトコンベアと、前記ガスの入口より導入されたガス
を被処理物の載置された該ベルト面に均一に分散供給さ
せるガス分散板と、前記反応炉本体内を加熱するよう配
設された加熱手段を備えてなるガス流通型反応炉である
ことを特徴とする金属磁性粉末の製造装置に関する。
That is, the gist of the present invention is as follows: (1) An iron compound powder mainly containing hydrous iron oxide is granulated to obtain a granulated product having a weight average particle diameter of 1 to 20 mm, and the granulated product is used as a gas. A method for producing a metallic magnetic powder containing metallic iron as a main component, which comprises performing the following steps (a) to (c) using a gas flow type reaction furnace having a flowable belt: And (a) the granulated product is continuously supplied and placed on a belt, and while the granulated product is being transferred, heat dehydration treatment is performed with a non-reducing gas to continuously obtain a heat dehydrated product. Step, (b) The heated dehydrated product obtained in the step (a) is continuously supplied and placed on a belt, and while the heated dehydrated product is being transferred, a heating reduction treatment is performed with a reducing gas to perform reduction. The step of continuously obtaining the product and (c) reducing the product obtained in step (b) A step of continuously supplying and placing on a glass plate, carrying the reduced gas while carrying out a heating vapor phase oxidation treatment with an oxygen-containing gas, and continuously obtaining a metallic magnetic powder containing metallic iron as a main component, (2) A heating dehydration reaction furnace for heating and dehydrating a granulated product of an iron compound powder mainly containing iron oxide hydroxide, a heating reduction reaction furnace for heating and reducing the heated dehydration product obtained from the reaction furnace, and a reaction furnace A heating apparatus for producing a magnetic metal powder, comprising a heating vapor-phase oxidation reaction furnace for heating and vapor-oxidizing a reduced product, wherein these reaction furnaces are heated and dehydrated at least through a powder transport means, and heated. A reduction flow reactor and a heating vapor-phase oxidation reaction furnace are connected in series in this order, and each reaction furnace has a gas flow-type reactor main body having a gas inlet and a gas outlet, and a supply port and a discharge port for the object to be treated. , Gas distribution provided in the reactor body A belt conveyor for transporting a processed material having a possible belt, a gas dispersion plate for uniformly dispersing and supplying the gas introduced from the gas inlet to the belt surface on which the object to be processed is mounted, and in the reaction furnace main body The present invention relates to an apparatus for producing magnetic metal powder, which is a gas flow type reaction furnace provided with a heating means arranged to heat a gas.

【0012】まず、本発明の金属磁性粉末の製造方法に
用いる製造装置を構成するガス流通型反応炉について、
概略説明図である図4を用いて説明する。本発明におけ
るガス流通型反応炉は、ガスの入口および排出口、並び
に被処理物の供給口および処理物の排出口を有するガス
流通型反応炉本体と、該反応炉本体内に設けられたガス
流通可能なベルトを有する処理物移送用ベルトコンベア
と、前記ガスの入口より導入されたガスを被処理物の載
置された該ベルト面に均一に分散供給させるガス分散板
と、前記反応炉本体内を加熱するよう配設された加熱手
段を備えてなるものである。即ち、反応炉本体40はガ
スの入口44およびガスの排出口45、被処理物の供給
口46および処理物の排出口47を有する密閉式横型容
器である。該反応炉本体の周囲には加熱手段43が設け
られている。加熱手段の方式としては被処理物を処理温
度まで加熱できるものであれば特に限定されない。例え
ば、可燃性燃料の燃焼方式、電気炉方式、ジャケット方
式などを用いることができる。なお、本発明において
は、反応炉本体40内の処理温度を一定に保つ目的等
で、通常保温材を用いるなどして保温を行なっている。
First, the gas flow type reaction furnace constituting the production apparatus used in the method for producing metallic magnetic powder of the present invention will be described.
This will be described with reference to FIG. 4, which is a schematic explanatory diagram. The gas flow type reaction furnace in the present invention is a gas flow type reaction furnace main body having a gas inlet and outlet, and a supply port and a processed product discharge port of a processing object, and a gas provided in the reaction furnace main body. A belt conveyor for transporting a processed material having a flowable belt, a gas dispersion plate for uniformly dispersing and supplying the gas introduced from the gas inlet to the belt surface on which the object to be processed is mounted, and the reactor main body It comprises a heating means arranged to heat the inside. That is, the reactor main body 40 is a sealed horizontal container having a gas inlet 44, a gas outlet 45, a workpiece supply port 46, and a treated product outlet 47. A heating means 43 is provided around the reactor body. The heating means is not particularly limited as long as it can heat the object to be processed to the processing temperature. For example, a combustible fuel combustion method, an electric furnace method, a jacket method, or the like can be used. In addition, in the present invention, in order to keep the processing temperature in the reaction furnace main body 40 constant, the heat is normally maintained by using a heat insulating material.

【0013】反応炉本体内には被処理物を移送するため
にベルトコンベア41を設けている。ベルトの形状とし
ては、造粒した被処理物を保持できる目開きであり、ガ
スが該ベルト面の空孔中を流通した時の圧力損失が小さ
くなる開口率を有する通風性のエンドレスベルト等であ
れば特に限定されない。例えばメッシュベルト、多孔板
ベルト等が挙げられる。また、移送のための駆動装置も
特に限定されることなく、例えば回転数可変モーターが
好適である。
A belt conveyor 41 is provided in the reaction furnace main body for transferring an object to be processed. The shape of the belt is an openable endless belt or the like which has openings that can hold the granulated object and has an opening ratio that reduces the pressure loss when gas flows through the pores of the belt surface. There is no particular limitation as long as it exists. For example, a mesh belt, a perforated plate belt, etc. may be mentioned. Further, the drive device for transfer is not particularly limited, and for example, a rotation speed variable motor is suitable.

【0014】反応炉本体内には、ガスの入口44より導
入されたガスを造粒した被処理物の載った上記ベルト面
に均一に分散供給するために、ガス分散板42を設けて
いる。ガス分散板としては多孔板、焼結金属板、金網
型、キャップ型等種々の形状のものが採用できる。ま
た、ガス分散板は造粒被処理物を載置したベルトの上
側、またはベルトのリターン面の下側に設置してもよい
が、好ましくは、ガスシールが容易であることから図4
に示すように造粒被処理物を積載した面とリターン面の
間に設置する。その際、ベルトの有効処理長さ(被処理
物が載置されたベルト面の長さ)に合わせて1個の分散
板を設置してもよいし、数個の分散板をベルトの走行方
向に連続して設置しても良い。ガス分散板42へのガス
の供給は、ガス分散板、ベルト及び被処理物層等をガス
が流通する際の圧力損失以上の吐出圧力を有するブロア
ー等で好適に行われる。
In the reactor main body, a gas dispersion plate 42 is provided in order to uniformly disperse and supply the gas introduced from the gas inlet 44 to the belt surface on which the granulated object to be treated is placed. As the gas dispersion plate, various shapes such as a porous plate, a sintered metal plate, a wire mesh type, and a cap type can be adopted. Further, the gas dispersion plate may be installed on the upper side of the belt on which the granulation object is placed, or on the lower side of the return surface of the belt, but preferably, the gas sealing is easy, so that FIG.
As shown in, it is installed between the surface on which the granulation object is loaded and the return surface. At that time, one dispersion plate may be installed according to the effective processing length of the belt (the length of the belt surface on which the object to be processed is placed), or several dispersion plates may be installed in the running direction of the belt. It may be installed continuously. The gas supply to the gas dispersion plate 42 is preferably performed by a blower or the like having a discharge pressure equal to or higher than the pressure loss when the gas flows through the gas dispersion plate, the belt, the object layer, and the like.

【0015】本発明におけるガス流通型反応炉には、ガ
ス分散板より噴出したガスがベルトの側面(端部)を通
過することなくベルト面を効果的に流通するように、適
切なガスシール構造を設けるのが好ましい。この構造と
してはガス分散板およびベルトの側面にシール壁を設け
た構造、ガス分散板およびベルト側面と反応炉本体の側
壁を密着させた構造等が挙げられる。
The gas flow reactor of the present invention has an appropriate gas seal structure so that the gas ejected from the gas dispersion plate can effectively flow through the belt surface without passing through the side surface (end portion) of the belt. Is preferably provided. Examples of this structure include a structure in which a seal wall is provided on the side surface of the gas dispersion plate and the belt, and a structure in which the side surface of the gas dispersion plate and the belt are in close contact with the side wall of the reactor body.

【0016】次に、前記のガス流通型反応炉により構成
された本発明の金属磁性粉末の製造装置について説明す
る。図5は、本発明の金属磁性粉末の製造方法に好適な
製造装置の一例の概略説明図である。図に示す如く、本
発明の製造装置は加熱脱水反応炉51、加熱還元反応炉
52、加熱気相酸化反応炉53の順にこれらの反応炉を
直列に接続して構成されており、各反応炉の接続が少な
くとも粉体輸送手段を介してなされていることを特徴と
するものである。加熱脱水反応炉51の被処理物(原料
造粒物)の供給口71には被処理物貯槽54内の被処理
物を反応炉内のメッシュベルト上に連続して供給するた
めの粉体輸送手段、例えば粉体フィーダー55を直結し
ている。同様に加熱還元反応炉52の被処理物(加熱脱
水物)の供給口73には粉体フィーダー58を、加熱気
相酸化反応炉53の被処理物(還元物)の供給口75に
は粉体フィーダー61をそれぞれ直結している。粉体フ
ィーダーとしては、スクリューフィーダー、ロータリー
フィーダー、ゲート式フィーダー等公知の種々形式のも
のが採用できる。
Next, the apparatus for producing the metallic magnetic powder of the present invention constituted by the gas flow type reaction furnace will be explained. FIG. 5 is a schematic explanatory view of an example of a manufacturing apparatus suitable for the method for manufacturing the metallic magnetic powder of the present invention. As shown in the figure, the production apparatus of the present invention comprises a heating dehydration reaction furnace 51, a heating reduction reaction furnace 52, and a heating gas phase oxidation reaction furnace 53, which are connected in series in this order. Is connected via at least the powder transport means. Powder transport for continuously supplying the material to be processed (raw material granulated material) supply port 71 of the heat dehydration reaction furnace 51 to the material to be processed in the material storage tank 54 on the mesh belt in the reaction furnace. The means, for example, the powder feeder 55, is directly connected. Similarly, the powder feeder 58 is provided in the supply port 73 for the object to be treated (heated dehydration product) of the heating reduction reaction furnace 52, and the powder feeder 58 is provided in the supply port 75 for the object to be treated (reduced product) in the heating gas phase oxidation reaction furnace 53. The body feeders 61 are directly connected to each other. As the powder feeder, various known types such as a screw feeder, a rotary feeder and a gate type feeder can be adopted.

【0017】各反応炉の処理物の排出口72、74、7
6にはそれぞれ処理物を回収するために処理物貯槽5
6、59、62が連結されている。この処理物貯槽56
から被処理物貯槽57への加熱脱水物の供給および処理
物貯槽59から被処理物貯槽60への還元物の供給はそ
れぞれ粉体供給弁63、64により行われる。また、ガ
ス、被処理物および処理物が直接大気と接触することが
ないように、あるいは、各反応炉を流通させるガスが互
いに混合することのないように、これらの被処理物貯槽
54、57、60および処理物貯槽56、59、62は
窒素ガスパージを施している。
Discharge ports 72, 74, 7 of each reactor
6 is a treated product storage tank 5 for collecting the treated products.
6, 59 and 62 are connected. This treated product storage tank 56
The powder supply valves 63 and 64 respectively supply the heated dehydrated product from the processed material storage tank 57 to the processed material storage tank 57 and the reduced product from the processed material storage tank 59 to the processed material storage tank 60. In addition, the gas, the object to be treated, and the object to be treated do not come into direct contact with the atmosphere, or the gases flowing through the reaction furnaces do not mix with each other, these object-to-be-treated storage tanks 54, 57. , 60 and the treated material storage tanks 56, 59, 62 are purged with nitrogen gas.

【0018】次に、本発明の金属磁性粉末の製造方法に
ついて説明する。本発明の製造方法は、含水酸化鉄を主
体として含む鉄化合物粉末を造粒して重量平均粒子径1
〜20mmの造粒物とし、該造粒物を原料としてガス流
通可能なベルトを有するガス流通型反応炉を用いて、以
下の(a)〜(c)の工程からなる処理をすることを特
徴とするものである。 (a)前記造粒物をベルト上に連続的に供給して載置
し、該造粒物を移送しながら、非還元性ガスにより加熱
脱水処理を行い、加熱脱水物を連続的に得る工程 (b)工程(a)で得られた加熱脱水物をベルト上に連
続的に供給して載置し、該加熱脱水物を移送しながら、
還元性ガスにより加熱還元処理を行い、還元物を連続的
に得る工程 (c)工程(b)で得られた還元物をベルト上に連続的
に供給して載置し、該還元物を移送しながら、酸素含有
ガスにより加熱気相酸化処理を行い、金属鉄を主成分と
する金属磁性粉末を連続的に得る工程 本発明の製造方法は、前記の製造装置を用いて好適に行
うことができる。
Next, the method for producing the metallic magnetic powder of the present invention will be described. According to the production method of the present invention, an iron compound powder mainly containing hydrous iron oxide is granulated to obtain a weight average particle diameter of 1
A granulated product having a size of 20 mm and a gas flow type reaction furnace having a belt through which the granulated product can be used as a raw material, and a treatment including the following steps (a) to (c) is performed. It is what (A) A step of continuously supplying and placing the granulated product on a belt and carrying out a heat dehydration treatment with a non-reducing gas while transferring the granulated product to obtain a heated dehydrated product continuously. (B) The heated dehydrated product obtained in the step (a) is continuously supplied and placed on a belt, and while transferring the heated dehydrated product,
Step of performing heat reduction treatment with a reducing gas to continuously obtain a reduced product (c) The reduced product obtained in the step (b) is continuously supplied and placed on a belt, and the reduced product is transferred. However, the step of performing a heating gas phase oxidation treatment with an oxygen-containing gas to continuously obtain a metal magnetic powder containing metallic iron as a main component The production method of the present invention can be suitably performed using the production apparatus described above. it can.

【0019】本発明に用いられる原料は、含水酸化鉄を
主体として含む鉄化合物粉末である。含水酸化鉄として
は、例えばα−FeOOH、β−FeOOH、γ−Fe
OOHが挙げられる。これらの含水酸化鉄には、コバル
ト、亜鉛、銅、クロム、ニッケル、ケイ素、アルミニウ
ム、錫、チタン等の元素を添加しても良い。含水酸化鉄
を主体として含む鉄化合物粉末の粒子形状は、針状であ
れば特に限定されることはなく、具体的には短冊状、ス
ピンドル状、紡錘状、米粒状等を含むものである。これ
らのうち、特に長さ0.3μm以下、軸比5以上の針状
晶の微粒子を用いる場合に、本発明の効果がさらに有効
となる。
The raw material used in the present invention is an iron compound powder mainly containing hydrous iron oxide. Examples of the hydrous iron oxide include α-FeOOH, β-FeOOH, and γ-Fe.
OOH is mentioned. Elements such as cobalt, zinc, copper, chromium, nickel, silicon, aluminum, tin and titanium may be added to these iron oxide hydroxides. The particle shape of the iron compound powder mainly containing hydrous iron oxide is not particularly limited as long as it is needle-like, and specifically, it includes strips, spindles, spindles, rice grains and the like. Among these, the effect of the present invention becomes more effective particularly when fine particles of needle crystals having a length of 0.3 μm or less and an axial ratio of 5 or more are used.

【0020】本発明では、加熱脱水処理、加熱還元処
理、加熱気相酸化処理の各工程において、ガス流通可能
なベルトに被処理物が保持されるように、またガス流通
により被処理物がベルト上で流動化状態となり被処理物
同士が接触することを防ぎ、さらに被処理物が飛散する
ことを防止するため、原料である鉄化合物粉末より粒径
が大きい造粒物、即ち、鉄化合物粉末を造粒した被処理
物を原料として用いる。
In the present invention, in each step of the heat dehydration treatment, heat reduction treatment, and heat vapor phase oxidation treatment, the object to be treated is held by the belt through which gas can flow and the object to be treated is belted by the gas flow. Granules having a larger particle size than the iron compound powder as the raw material, that is, the iron compound powder, in order to prevent the objects to be processed from contacting each other in the fluidized state above and further preventing the objects to be scattered The material to be treated which is granulated is used as a raw material.

【0021】このとき、造粒物の形状は特に限定されな
いが、重量平均粒子径1〜20mmに造粒したものを用
いることが好ましい。1mm未満の造粒物とした場合、
加熱脱水処理、加熱還元処理、加熱気相酸化処理の各工
程において、ガスを好ましいガス流速で造粒物と接触さ
せた時に、造粒物が流動化状態となり易い。これにより
微粉が発生したり、造粒物がベルト上より飛散したり、
また造粒物同士の衝突により磁気特性が低下してしま
う。20mmを越える造粒物とすると、前記各工程にお
いて造粒物内での処理ガスおよび生成水蒸気等の拡散が
不良となり処理が不均一なものとなってしまう。造粒方
法としては、公知の方法が用いられ、例えば攪拌転動造
粒、流動造粒、押し出し造粒、破砕造粒等が挙げられ
る。
At this time, the shape of the granulated product is not particularly limited, but it is preferable to use a granulated product having a weight average particle diameter of 1 to 20 mm. When the granulated product is less than 1 mm,
In each step of the heat dehydration treatment, heat reduction treatment, and heat vapor phase oxidation treatment, when the gas is brought into contact with the granule at a preferable gas flow rate, the granule tends to be in a fluidized state. As a result, fine powder is generated, granules are scattered from the belt,
Further, the magnetic properties are deteriorated due to the collision of the granulated materials. If the granulation product exceeds 20 mm, the diffusion of the processing gas, generated steam, etc. in the granulation product in each of the above-mentioned steps will be poor, and the processing will be non-uniform. A known method is used as the granulation method, and examples thereof include stirring rolling granulation, fluidized granulation, extrusion granulation, and crush granulation.

【0022】本発明の製造方法では上記の原料を用い
て、図5の各反応炉51、52、53により(a)、
(b)、(c)の各工程が順次実施されるが、各工程に
共通する処理方法について図4を用いて説明すると下記
のようになる。ガスはガスの入口44より導入され、ガ
ス分散板42よりガス流通可能なベルト41面に分散供
給されベルト41面の空孔中を通過してガスの排出口4
5から排出される。このようにガスをベルトを介して流
通させつつ、加熱手段43により反応炉本体40内部を
所定の処理温度で加熱する。また、ガスの入口44より
導入されるガスは外部の熱交換器(図示せず)等によ
り、加熱してもよい。一方、被処理物をベルト41上に
連続的に被処理物の供給口46より供給して載置し、ベ
ルトコンベア41により被処理物を図中に示す矢印A方
向に移送しながら、被処理物層内にガスを流通させて加
熱反応処理を連続的に行う。得られた処理物は、処理物
の排出口47より回収する。
In the manufacturing method of the present invention, the above-mentioned raw materials are used, and (a) is used in each of the reaction furnaces 51, 52 and 53 of FIG.
Although the steps (b) and (c) are sequentially performed, the processing method common to each step will be described below with reference to FIG. The gas is introduced from the gas inlet 44, dispersedly supplied from the gas dispersion plate 42 to the surface of the belt 41 through which the gas can flow, passes through the holes on the surface of the belt 41, and the gas outlet 4
Emitted from 5. In this way, while the gas is flowing through the belt, the inside of the reaction furnace main body 40 is heated by the heating means 43 at a predetermined processing temperature. The gas introduced from the gas inlet 44 may be heated by an external heat exchanger (not shown) or the like. On the other hand, the object to be processed is continuously supplied onto the belt 41 through the supply port 46 of the object to be processed and placed, and the object to be processed is transferred by the belt conveyor 41 in the direction of arrow A shown in the figure. Gas is circulated in the material layer to continuously perform the heat reaction treatment. The obtained processed product is collected from the processed product outlet 47.

【0023】次に(a)、(b)、(c)の各工程に特
有な条件等について以下に説明する。 〔工程(a)〕(a)工程は、前記の原料造粒物を加熱
脱水反応炉内のベルト上に連続的に供給して載置し、該
造粒物を移送しながら、非還元性ガスにより加熱脱水処
理を行い、加熱脱水物を連続的に得る工程である。使用
する非還元性ガスとしては、還元力のないガスであれば
特に限定されることなく、空気または不活性ガス等が挙
げられる。不活性ガスとしてはN2 、He、Ne、A
r、CO2 等の単独または混合物が挙げられる。
Next, conditions and the like peculiar to the respective steps (a), (b) and (c) will be described below. [Step (a)] In the step (a), the raw material granulated product is continuously supplied and placed on a belt in a heating dehydration reaction furnace, and the granulated product is transferred while being non-reducing. In this step, a heated dehydration product is continuously obtained by heating with a gas. The non-reducing gas to be used is not particularly limited as long as it has no reducing power, and may be air or an inert gas. N 2 , He, Ne, A as the inert gas
r, CO 2 and the like may be used alone or as a mixture.

【0024】非還元性ガスの好ましいガス流速は造粒物
の粒径により異なるが、ベルト面に対して垂直上向きの
ガス線速度で2cm/sec以上が好ましく、10〜1
00cm/secがより好ましい。なお、ガス線速度
は、加熱脱水温度における速度である。ガス線速度が2
cm/sec未満であると、脱水反応により生成する水
蒸気の分圧が高くなり、加熱脱水物の針状の形骸粒子を
構成する酸化鉄の結晶子の大きさ(X線結晶粒径)が大
きくなりすぎて針状形状に変形や形骸粒子間の焼結が起
こり、最終的に得られる金属磁性粉末の磁気特性が低下
する。
Although the preferable gas flow rate of the non-reducing gas varies depending on the particle size of the granulated product, it is preferably 2 cm / sec or more at a gas linear velocity vertically upward with respect to the belt surface, and 10 to 1
00 cm / sec is more preferable. The gas linear velocity is the velocity at the heating dehydration temperature. Gas linear velocity is 2
If it is less than cm / sec, the partial pressure of water vapor generated by the dehydration reaction becomes high, and the size of the iron oxide crystallites (X-ray crystal grain size) constituting the needle-shaped particles of the heated dehydration product becomes large. If it becomes too much, it will be deformed into a needle shape and sintering between skeleton particles will occur, and the magnetic properties of the finally obtained metal magnetic powder will deteriorate.

【0025】造粒物のベルト上での層厚みは通常30c
m以下、好ましくは25cm以下である。即ち、層を厚
くしていくと層上部の造粒物は層下部で生成した水蒸気
をより多く含んだ非還元性ガスで加熱脱水を受けること
になり、層上部の加熱脱水物の形骸粒子の針状形状が劣
化し、これが原因で最終的に得られる金属磁性粉末の磁
気特性が低下してしまうので好ましくない。
The layer thickness of the granulated product on the belt is usually 30 c.
m or less, preferably 25 cm or less. That is, as the layer is made thicker, the granules in the upper part of the layer will be heated and dehydrated by the non-reducing gas containing a larger amount of water vapor generated in the lower part of the layer. The needle-like shape is deteriorated, and the magnetic properties of the finally obtained metal magnetic powder are deteriorated, which is not preferable.

【0026】加熱脱水温度は、350〜700℃が好ま
しく、400〜650℃がより好ましい。350℃未満
の加熱温度で脱水すると、脱水時に形骸粒子内に生成す
る脱水孔が封孔されず、最終的に得られる金属磁性粉末
の磁気特性が低下するので好ましくない。700℃を越
えると形骸粒子の針状形状が崩壊して、磁気特性が低下
してしまい好ましくない。
The heat dehydration temperature is preferably 350 to 700 ° C, more preferably 400 to 650 ° C. Dehydration at a heating temperature of less than 350 ° C. is not preferable because the dehydration pores formed in the skeleton particles at the time of dehydration are not sealed and the magnetic properties of the finally obtained metal magnetic powder deteriorate. If the temperature exceeds 700 ° C., the acicular shape of the skeleton particles collapses and the magnetic properties deteriorate, which is not preferable.

【0027】加熱脱水反応炉本体内の滞留時間、即ち原
料造粒物が該反応炉本体内のベルト上に供給されてから
処理物(加熱脱水物)の排出口より出るまでの時間(加
熱脱水時間)は、上記の諸条件にもよるが通常0.5〜
5時間、好ましくは0.5〜2時間である。0.5時間
より短時間であると加熱脱水が不十分となり、5時間よ
り長時間であると金属磁性粉末の品質面では問題ないが
生産効率が低くなり好ましくない。本発明ではこのよう
に一定の滞留時間を設けて加熱脱水を行うものであり、
実質的に静置状態で加熱脱水を行うことが可能であるた
め、粒子同士の衝突や微粉の発生がなく、また、被処理
物と非還元性ガスの接触が良好であり、均一に加熱脱水
を行うことができる。このような滞留時間は、通常、駆
動用モーターの制御等によりベルトの走行速度を変化さ
せることにより調整することができる。
Residence time in the heating dehydration reaction furnace main body, that is, the time from the feed of the raw material granules onto the belt in the reaction furnace main body until it exits from the discharge port of the processed product (heating dehydration product) (heating dehydration The time is usually 0.5-, though it depends on the above conditions.
It is 5 hours, preferably 0.5 to 2 hours. When the time is shorter than 0.5 hours, the heat dehydration is insufficient, and when the time is longer than 5 hours, there is no problem in terms of the quality of the metal magnetic powder, but the production efficiency is lowered, which is not preferable. In the present invention, heat dewatering is performed by thus providing a certain residence time,
Since it is possible to perform heat dehydration in a substantially stationary state, there is no collision between particles or generation of fine powder, and the contact between the object to be treated and the non-reducing gas is good, and heat dehydration is uniform. It can be performed. Such a residence time can be usually adjusted by changing the traveling speed of the belt by controlling the driving motor or the like.

【0028】〔工程(b)〕(b)工程は、上記の工程
(a)で得られた加熱脱水物を加熱還元反応炉内のベル
ト上に連続的に供給して載置し、該加熱脱水物を移送し
ながら、還元性ガスにより加熱還元処理を行い、還元物
を連続的に得る工程である。
[Step (b)] In the step (b), the heated dehydration product obtained in the above step (a) is continuously supplied and placed on a belt in a heating reduction reaction furnace, and the heating is performed. This is a step of continuously obtaining a reduced product by carrying out a heat reduction treatment with a reducing gas while transferring the dehydrated product.

【0029】還元性ガスとしては純水素ガス、COガス
あるいはこれらに不活性成分を含有させた混合ガス等を
用いることができるが、好ましくは純水素ガスが使用さ
れる。好ましいガス流速は造粒物の粒径により異なる
が、ベルト面に対して垂直上向きのガス線速度で10c
m/sec以上が好ましく、20cm/sec以上がよ
り好ましく、30〜100cm/secが特に好まし
い。なお、ガス線速度は、還元温度における速度であ
る。ガス線速度が10cm/sec未満であると、還元
反応により生成する水蒸気の分圧が高くなり、針状の形
骸粒子を構成する金属鉄の結晶子の大きさ(X線結晶粒
径)が大きくなりすぎて針状形状の変形や形骸粒子間の
焼結が起こり、得られる金属磁性粉末の磁気特性が低下
する。
As the reducing gas, pure hydrogen gas, CO gas or a mixed gas of these containing an inert component can be used, but pure hydrogen gas is preferably used. The preferable gas flow rate varies depending on the particle size of the granulated product, but is 10c at a gas linear velocity upward and perpendicular to the belt surface.
m / sec or more is preferable, 20 cm / sec or more is more preferable, and 30 to 100 cm / sec is particularly preferable. The gas linear velocity is the velocity at the reduction temperature. If the gas linear velocity is less than 10 cm / sec, the partial pressure of water vapor generated by the reduction reaction becomes high, and the size of the crystallite of metallic iron (X-ray crystal grain size) forming needle-shaped particles is large. If it becomes too much, needle-like deformation and sintering between skeletal particles occur, and the magnetic properties of the obtained metal magnetic powder deteriorate.

【0030】載置された加熱脱水物のベルト上での層厚
みは、通常25cm以下、好ましくは20cm以下であ
る。即ち、層を厚くしていくと層上部の加熱脱水物は層
下部で生成した水蒸気をより多く含んだ水素ガスで還元
を受けることになり、層上部の還元物のX線結晶粒径が
大きくなって磁気特性が低下して好ましくない。また層
上部における還元速度が低下し、還元が不均一となり好
ましくない。層厚みが25cmを越えると、前記の様に
水素ガスのガス線速度を10cm/sec以上として
も、層上部における水蒸気分圧の影響を無視できなくな
るため好ましくない。
The layer thickness of the placed heat-dehydrated product on the belt is usually 25 cm or less, preferably 20 cm or less. That is, as the layer becomes thicker, the heated dehydration product in the upper part of the layer is reduced by hydrogen gas containing a larger amount of water vapor generated in the lower part of the layer, and the X-ray crystal grain size of the reduced product in the upper part of the layer becomes large. It is not preferable because the magnetic properties deteriorate. In addition, the reduction rate at the upper part of the layer is reduced and the reduction is not uniform, which is not preferable. If the layer thickness exceeds 25 cm, even if the gas linear velocity of hydrogen gas is 10 cm / sec or more as described above, the influence of the partial pressure of water vapor on the upper part of the layer cannot be ignored, which is not preferable.

【0031】還元温度は、300〜700℃が好まし
く、350〜600℃がより好ましい。300℃未満で
は金属磁性粉末として有効な磁気特性を備えた還元物を
得る事ができず好ましくない。700℃を越えると形骸
粒子の針状形状が崩壊して、磁気特性が低下してしまい
好ましくない。
The reduction temperature is preferably 300 to 700 ° C, more preferably 350 to 600 ° C. If the temperature is lower than 300 ° C., a reduced product having magnetic properties effective as a magnetic metal powder cannot be obtained, which is not preferable. If the temperature exceeds 700 ° C., the acicular shape of the skeleton particles collapses and the magnetic properties deteriorate, which is not preferable.

【0032】加熱還元反応炉本体内の滞留時間、即ち加
熱脱水物が該反応炉本体内のベルト上に供給されてから
還元物の排出口より出るまでの時間(還元時間)は、上
記の諸条件にもよるが通常0.5〜10時間、好ましく
は1〜8時間である。0.5時間より短時間であると還
元が不十分であり、10時間より長時間であると金属磁
性粉末の品質面では問題ないが生産効率が低く好ましく
ない。本発明ではこのように一定の滞留時間を設けて加
熱還元を行うものであり、実質的に静置状態で加熱還元
を行うことが可能であるため、粒子同士の衝突や微粉の
発生がなく、また、被処理物と還元性ガスの接触が良好
であり、均一な加熱還元を行うことができる。このよう
な滞留時間は、通常、駆動用モーターの制御等によりベ
ルトの走行速度を変化させることにより調整することが
できる。
The residence time in the heating / reduction reactor main body, that is, the time from the supply of the heated dehydration product onto the belt in the reactor main body to the exit from the outlet of the reduced product (reduction time), is as described above. Depending on the conditions, it is usually 0.5 to 10 hours, preferably 1 to 8 hours. If the time is shorter than 0.5 hours, the reduction is insufficient, and if the time is longer than 10 hours, there is no problem in terms of the quality of the metal magnetic powder, but the production efficiency is low, which is not preferable. In the present invention, the heating and reduction are performed by providing a constant residence time in this manner, and since it is possible to perform the heating and reduction in a substantially stationary state, there is no collision between particles or generation of fine powder, Further, the contact between the object to be treated and the reducing gas is good, and uniform heat reduction can be performed. Such a residence time can be usually adjusted by changing the traveling speed of the belt by controlling the driving motor or the like.

【0033】〔工程(c)〕(c)工程は、上記の工程
(b)で得られた還元物を加熱気相酸化反応炉内のベル
ト上に連続的に供給して載置し、該還元物を移送しなが
ら、酸素含有ガスにより加熱気相酸化処理を行い、金属
鉄を主成分とする金属磁性粉末を連続的に得る工程であ
る。
[Step (c)] In the step (c), the reduced product obtained in the above step (b) is continuously supplied and placed on a belt in a heating gas-phase oxidation reaction furnace. This is a step of continuously performing a heat-induced gas phase oxidation treatment with an oxygen-containing gas while transferring a reduced product to continuously obtain a metal magnetic powder containing metal iron as a main component.

【0034】本発明で使用する酸素含有ガスとしては、
酸素または空気と不活性ガスとの混合ガスを用いること
ができる。不活性ガスは金属磁性粉末と実質的に接触処
理条件下で反応することのないガスであり、具体的には
2 、He、Ne、Ar、CO2 等の単独または混合物
が挙げられる。混合ガス中の酸素濃度は100ppm 以上
2500ppm 以下が好ましく、150ppm 以上2000
ppm 以下がより好ましい。混合ガス中の酸素濃度が10
0ppm 未満では加熱気相酸化処理に長時間を要し工業的
に好ましくない。2500ppm を超えると酸化反応が急
激に起こり、反応温度が上昇し、一定反応温度を保持す
ることが困難となり好ましくない。
The oxygen-containing gas used in the present invention includes
A mixed gas of oxygen or air and an inert gas can be used. The inert gas is a gas which does not substantially react with the magnetic metal powder under the contact treatment condition, and specific examples thereof include N 2 , He, Ne, Ar and CO 2 alone or in a mixture. The oxygen concentration in the mixed gas is preferably 100 ppm or more and 2500 ppm or less, and 150 ppm or more and 2000
ppm or less is more preferable. Oxygen concentration in mixed gas is 10
If it is less than 0 ppm, it takes a long time for the heating gas phase oxidation treatment, which is not industrially preferable. If it exceeds 2500 ppm, the oxidation reaction rapidly occurs, the reaction temperature rises, and it becomes difficult to maintain a constant reaction temperature, which is not preferable.

【0035】酸素含有ガスの好ましいガス流速は造粒物
の粒径により異なるが、ベルト面に対して垂直上向きの
ガス線速度で5cm/sec以上が好ましく、10cm
/sec以上がより好ましく、15cm/sec以上1
00cm/sec以下が特に好ましい。なお、ガス線速
度は気相酸化温度における速度である。ガス線速度が5
cm/sec未満であると、ガス気流による反応熱の除
去効果が小さくなるため、反応温度を一定に保つことが
困難となり反応熱が部分的に蓄積され、その部分のみ高
温となり必要以上に飽和磁化が低下することがある。ま
たガスの偏流も発生し易くなるため、酸化されない部分
が生じることもある。その結果、飽和磁化に非常にばら
つきのある金属磁性粉末が得られてしまい、場合によっ
ては大気中に取り出したときに、未酸化の部分が急激な
酸化反応により発熱あるいは発火し、本来有する保磁力
と飽和磁化を大幅に損なう恐れがあり好ましくない。
The preferred gas flow rate of the oxygen-containing gas varies depending on the particle size of the granulated product, but is preferably 5 cm / sec or more, and 10 cm in the upward linear gas velocity perpendicular to the belt surface.
/ Sec or more is more preferable, and 15 cm / sec or more 1
It is particularly preferably not more than 00 cm / sec. The gas linear velocity is the velocity at the gas phase oxidation temperature. Gas linear velocity is 5
If it is less than cm / sec, the effect of removing the reaction heat by the gas flow becomes small, so that it becomes difficult to keep the reaction temperature constant, the reaction heat is partially accumulated, and only that part becomes high temperature, and the saturation magnetization becomes higher than necessary. May decrease. In addition, since a nonuniform flow of gas is likely to occur, a portion that is not oxidized may occur. As a result, a magnetic metal powder with extremely different saturation magnetization is obtained, and in some cases, when taken out into the atmosphere, the unoxidized part generates heat or ignites due to a rapid oxidation reaction, and the coercive force originally possessed. And the saturation magnetization may be significantly impaired, which is not preferable.

【0036】載置された還元物のベルト上での層厚みは
通常30cm以下、好ましくは25cm以下である。層
厚みが30cmを越えると、前記の様に酸素含有ガスの
ガス線速度を5cm/sec以上としても、反応熱の部
分的蓄積やガスの偏流により酸化被膜の形成が不均一と
なる恐れがあり好ましくない。
The layer thickness of the placed reduced product on the belt is usually 30 cm or less, preferably 25 cm or less. When the layer thickness exceeds 30 cm, even if the gas linear velocity of the oxygen-containing gas is 5 cm / sec or more as described above, the formation of an oxide film may be non-uniform due to partial accumulation of reaction heat or gas drift. Not preferable.

【0037】気相酸化温度は40℃以上150℃以下が
好ましく、50℃以上130℃以下がより好ましい。特
に好ましくは50℃以上100℃以下である。反応温度
が40℃未満では、表面酸化が充分に行われず、大気中
に取り出したときに発火してしまう。150℃を超える
と必要以上に表面酸化が進み高い飽和磁化が得られず好
ましくない。また、加熱気相酸化後の金属磁性粉末の飽
和磁化は反応温度により一義的に決定されるため、所望
の飽和磁化に応じて上記範囲内の略一定反応温度に保つ
必要がある。なお、略一定反応温度とは所定の温度±5
℃をいう。±5℃を越えて反応温度が変動すると、所望
の飽和磁化を有する金属磁性粉末が得ることが困難であ
る。
The vapor phase oxidation temperature is preferably 40 ° C. or higher and 150 ° C. or lower, and more preferably 50 ° C. or higher and 130 ° C. or lower. It is particularly preferably 50 ° C. or higher and 100 ° C. or lower. If the reaction temperature is lower than 40 ° C., the surface is not sufficiently oxidized, and it will ignite when taken out into the atmosphere. If the temperature exceeds 150 ° C., the surface is oxidized more than necessary and high saturation magnetization cannot be obtained, which is not preferable. Moreover, since the saturation magnetization of the metallic magnetic powder after heated vapor phase oxidation is uniquely determined by the reaction temperature, it is necessary to maintain the reaction temperature at a substantially constant reaction temperature within the above range depending on the desired saturation magnetization. The substantially constant reaction temperature is a predetermined temperature ± 5
Refers to ° C. If the reaction temperature fluctuates beyond ± 5 ° C, it is difficult to obtain a metal magnetic powder having a desired saturation magnetization.

【0038】加熱気相酸化反応炉本体内の滞留時間、即
ち還元物が該反応炉本体内のベルト上に供給されてから
処理物の排出口より出るまでの時間(加熱気相酸化時
間)は、上記の諸条件にもよるが、通常1〜20時間、
好ましくは1.5〜18時間である。1時間より短時間
であると加熱気相酸化による安定化処理が不十分であ
り、20時間より長時間であると金属磁性粉末の品質面
では問題ないが生産効率が低く好ましくない。本発明で
はこのように一定の滞留時間を設けて気相酸化を行うも
のであり、実質的に静置状態で気相酸化を行うことが可
能であるため、粒子同士の衝突や微粉の発生がなく、ま
た、被処理物と酸素含有ガスの接触が良好であり、均一
な酸化被膜を有し優れた磁気特性を有する金属磁性粉末
を製造することができる。このような滞留時間は、通
常、駆動用モーターの制御等によりベルトの走行速度を
変化させることにより調整することができる。
The residence time in the heated gas-phase oxidation reaction furnace body, that is, the time from when the reduced product is supplied onto the belt in the reaction furnace body to when it exits from the discharge port of the treated material (heating gas-phase oxidation time) , Usually 1 to 20 hours, depending on the above conditions,
It is preferably 1.5 to 18 hours. If it is shorter than 1 hour, the stabilization treatment by heating vapor phase oxidation is insufficient, and if it is longer than 20 hours, there is no problem in terms of the quality of the metal magnetic powder, but the production efficiency is low, which is not preferable. In the present invention, the gas phase oxidation is carried out by thus providing a certain residence time, and since the gas phase oxidation can be carried out in a substantially stationary state, the particles collide with each other and the generation of fine powder occurs. In addition, it is possible to produce a metal magnetic powder that has good contact between the object to be treated and the oxygen-containing gas, has a uniform oxide film, and has excellent magnetic properties. Such a residence time can be usually adjusted by changing the traveling speed of the belt by controlling the driving motor or the like.

【0039】以上のような本発明の製造方法により、製
造段階における粒子の形状変化および粒子同士の焼結を
防止しながら、均一で優れた磁気特性を示す金属磁性粉
末を得ることができる。更に本発明の製造方法は、加熱
脱水処理、加熱還元処理、加熱気相酸化処理の各工程に
供する反応炉が直列に接続され各処理が連続して行われ
るため、上記のような金属磁性粉末を工業的規模で高効
率で連続的に量産することができる。
By the manufacturing method of the present invention as described above, it is possible to obtain a metallic magnetic powder exhibiting uniform and excellent magnetic characteristics while preventing the shape change of particles and the sintering of particles at the manufacturing stage. Further, in the production method of the present invention, since the reaction furnaces used for the heating dehydration treatment, the heating reduction treatment, and the heating vapor phase oxidation treatment are connected in series and each treatment is continuously performed, the above-mentioned metal magnetic powder is used. Can be continuously mass-produced on an industrial scale with high efficiency.

【0040】[0040]

【実施例】以下、本発明を実施例により説明するが、本
発明はこれらの実施例によりなんら限定されるものでは
ない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0041】実施例1(ガス流通型反応炉の例) 図1は本発明におけるガス流通型反応炉を縦断面図によ
り示したものである。図2,3はそのガス流通型反応炉
の各部の断面図を示したものである。反応炉本体1の大
きさは巾390mm、高さ520mm、長さ2900m
mである。加熱手段としては加熱用電気ヒーター4およ
び保温材5を用いた電気炉方式を採用している。
Example 1 (Example of Gas Flow Type Reactor) FIG. 1 is a longitudinal sectional view showing a gas flow type reactor according to the present invention. 2 and 3 are cross-sectional views of each part of the gas flow reactor. The size of the reactor body 1 is 390 mm in width, 520 mm in height, and 2900 m in length.
m. As a heating means, an electric furnace system using an electric heater 4 for heating and a heat insulating material 5 is adopted.

【0042】ベルト3は巾300mm、有効処理長さ2
000mmのスチール製エンドレスメッシュベルト(メ
ッシュ口径0.15mm)である。このベルトは被処理
物がベルトの端部から脱落しないようにするために図3
に示すような断面形状となっている。そして、このベル
トはベルト駆動ローラー11および反応炉本体外に設け
た駆動用モーター21により図中の矢印A方向に一定の
速度で走行する。ローラー駆動軸12にはガスをシール
するために軸シール20が設けてある。
The belt 3 has a width of 300 mm and an effective processing length of 2
A steel endless mesh belt (mesh diameter 0.15 mm) of 000 mm. This belt is shown in FIG. 3 in order to prevent the object to be processed from falling off from the end of the belt.
The cross-sectional shape is as shown in. Then, this belt travels at a constant speed in the direction of arrow A in the figure by the belt drive roller 11 and the drive motor 21 provided outside the reactor main body. The roller drive shaft 12 is provided with a shaft seal 20 for sealing gas.

【0043】ガス分散板2は300×300mmの断面
を有する多孔板である。またこのガス分散板は被処理物
の載ったメッシュベルト面下側に5個の分散板を連続し
て設置している。また、図2に示すようにガス分散板よ
り噴出したガスが、ベルトの側面を通過せずベルト面を
効果的に流通するようにガスシール壁22を設けてい
る。
The gas dispersion plate 2 is a perforated plate having a cross section of 300 × 300 mm. Further, this gas dispersion plate is such that five dispersion plates are continuously installed below the surface of the mesh belt on which the object to be processed is placed. Further, as shown in FIG. 2, the gas seal wall 22 is provided so that the gas ejected from the gas dispersion plate does not pass through the side surface of the belt but effectively flows through the belt surface.

【0044】反応炉本体の被処理物の供給口8には被処
理物貯槽14内の被処理物をメッシュベルト上に連続し
て供給するための粉体フィーダー13を直結している。
粉体フィーダーにはスクリューフィーダーを使用した。
また、厚み調整板10はメッシュベルト上に供給された
被処理物をメッシュベルト上で一定の層厚みにするため
に設けてあり、層厚みを変化できる調整機構を有してい
る。層厚みは、被処理物の供給速度を粉体フィーダー1
3の回転速度を制御するとともに厚み調整板10の設定
厚みを変えることにより調整することができる。一定の
層厚みになった被処理物はベルトにより図中の矢印A方
向に移動して、ガス入口6から反応炉本体内に導入され
ガス分散板より噴出するガスと接触し連続的に処理され
る。被処理物の滞留時間(被処理物が該反応炉本体内の
ベルト上に供給されてから処理物の排出口9より出るま
での時間)、すなわち処理時間はベルトの走行速度によ
り調整できるが、このベルト走行速度を適切に制御する
ために前記駆動用モーター21は、モーターの回転数を
可変に制御できる機構を有している。所定の処理時間を
経て得られた処理物を回収するために処理物の排出口9
には処理物貯槽15が連結されている。また、ガスおよ
び処理物が直接大気と接触することがないように被処理
物貯槽14と処理物貯槽15は窒素ガスによりパージし
ている。
A powder feeder 13 for continuously supplying the object to be processed in the object storage tank 14 onto the mesh belt is directly connected to the object supply port 8 of the reaction furnace main body.
A screw feeder was used as the powder feeder.
Further, the thickness adjusting plate 10 is provided to make the object to be processed supplied on the mesh belt a constant layer thickness on the mesh belt, and has an adjusting mechanism capable of changing the layer thickness. The layer thickness depends on the feed rate of the object to be treated, the powder feeder 1
It can be adjusted by controlling the rotation speed of No. 3 and changing the set thickness of the thickness adjusting plate 10. The object having a constant layer thickness is moved in the direction of arrow A in the figure by the belt, is brought into contact with the gas introduced into the reactor main body from the gas inlet 6 and ejected from the gas dispersion plate, and is continuously processed. It The residence time of the object to be treated (the time from when the object to be treated is supplied onto the belt in the reactor body until it exits from the outlet 9 of the object to be treated), that is, the treatment time can be adjusted by the traveling speed of the belt, In order to appropriately control the belt traveling speed, the drive motor 21 has a mechanism capable of variably controlling the rotation speed of the motor. In order to collect the processed product obtained after a predetermined processing time, the processed product discharge port 9
A processed material storage tank 15 is connected to the. Further, the object storage tank 14 and the object storage tank 15 are purged with nitrogen gas so that the gas and the object are not in direct contact with the atmosphere.

【0045】実施例2(製造装置例) 本実施例の製造装置は、図5に示す如く、加熱脱水反応
炉51、加熱還元反応炉52、加熱気相酸化反応炉53
を直列に接続して構成されており、各反応炉の接続は粉
体供給弁を介してなされている。加熱脱水反応炉51と
しては、実施例1のガス流通型反応炉において、反応炉
本体の大きさを巾390mm、高さ620mm、長さ1
900mmとし、ベルト3を巾300mm、有効処理長
さ1000mmとし、300×300mmのガス分散板
2を3個連続して設置した以外は同様のガス流通型反応
炉を使用する。加熱還元反応炉52としては、実施例1
のガス流通型反応炉を使用している。また加熱気相酸化
反応炉53としては、反応炉本体1の長さが3900m
m、ベルト3の有効処理長さ3000mm、ガス分散板
2の個数が8個である以外は上記と同様のガス流通型反
応炉が用いられる。加熱脱水反応炉51の被処理物(原
料造粒物)の供給口71には被処理物貯槽54内の被処
理物を反応炉内のメッシュベルト上に連続して供給する
ための粉体フィーダー55を直結している。同様に加熱
還元反応炉52の被処理物(加熱脱水物)の供給口73
には粉体フィーダー58を、加熱気相酸化反応炉53の
被処理物(還元物)の供給口75には粉体フィーダー6
1を、それぞれ直結している。粉体フィーダーとして
は、スクリューフィーダーが用いられている。
Embodiment 2 (Example of Manufacturing Apparatus) As shown in FIG. 5, the manufacturing apparatus of this embodiment has a heating dehydration reaction furnace 51, a heating reduction reaction furnace 52, and a heating gas phase oxidation reaction furnace 53.
Are connected in series, and each reactor is connected via a powder supply valve. As the heating and dehydration reaction furnace 51, in the gas flow type reaction furnace of Example 1, the size of the reaction furnace main body was 390 mm in width, 620 mm in height, and 1 in length.
The same gas flow reactor is used except that the belt 3 has a width of 300 mm, the effective treatment length is 1000 mm, and three gas distribution plates 2 of 300 × 300 mm are continuously installed. As the heating / reduction reaction furnace 52, Example 1 was used.
I am using a gas flow reactor. As the heating vapor-phase oxidation reaction furnace 53, the length of the reaction furnace main body 1 is 3900 m.
m, the effective treatment length of the belt 3 is 3000 mm, and the gas distribution plate 2 is 8 in number, and the same gas flow reactor is used. A powder feeder for continuously supplying the material to be processed (raw material granulated material) supply port 71 of the heat dehydration reaction furnace 51 to the material to be processed in the material storage tank 54 on the mesh belt in the reaction furnace. 55 is directly connected. Similarly, a supply port 73 for the object to be treated (heated dehydration product) of the heating reduction reaction furnace 52
Is a powder feeder 58, and the heating gas-phase oxidation reaction furnace 53 is provided with a powder feeder 6 at a supply port 75 for an object to be treated (reduced product).
1 is directly connected. A screw feeder is used as the powder feeder.

【0046】各反応炉の処理物の排出口72、74、7
6にはそれぞれ処理物を回収するために処理物貯槽5
6、59、62が連結されている。また、処理物貯槽5
6と被処理物貯槽57および処理物貯槽59と被処理物
貯槽60の間には粉体供給弁63、64が設けられてい
る。また、被処理物貯槽54、57、60および処理物
貯槽56、59、62は窒素ガスパージを施している。
Discharge ports 72, 74, 7 of each reactor
6 is a treated product storage tank 5 for collecting the treated products.
6, 59 and 62 are connected. Also, the processed material storage tank 5
6, powder supply valves 63 and 64 are provided between the processed material storage tank 57 and the processed material storage tank 59 and the processed material storage tank 60. Further, the object storage tanks 54, 57, 60 and the object storage tanks 56, 59, 62 are purged with nitrogen gas.

【0047】実施例3(製造例) 原料としては、AlをFeに対して4重量%含み、一次
粒子の大きさが長軸長さ0.22μm、軸比10である
針状晶α−FeOOHを押し出し造粒により重量平均粒
子径3mmの造粒物としたものを用いた。これを実施例
2に示した製造装置(図1〜3及び図5参照)により、
以下の条件で工程(a)、(b)、(c)の処理を順次
行った。
Example 3 (Production Example) As a raw material, needle-like α-FeOOH containing 4% by weight of Al with respect to Fe and having a primary particle size of 0.22 μm in major axis length and 10 in axial ratio. Was used to make a granulated product having a weight average particle diameter of 3 mm by extrusion granulation. By using the manufacturing apparatus shown in Embodiment 2 (see FIGS. 1 to 3 and 5),
The processes of steps (a), (b), and (c) were sequentially performed under the following conditions.

【0048】〔工程(a)〕非還元性ガスには窒素ガス
を使用し、500℃で加熱脱水処理を行った。窒素ガス
はメッシュベルト面に対して垂直上向きのガス線速度が
8cm/secとなるように流通した。上記造粒物は被
処理物貯槽54に充填後、粉体フィーダー55により
8.5kg/hrの速度で加熱脱水温度まで加熱した反
応炉本体内に連続的に供給した。造粒物のメッシュベル
ト上での層厚みは厚み調整板により14cmとした。造
粒物はベルトとともに図1中の矢印A方向に移動してメ
ッシュベルトを流通する窒素ガスと接触しながら連続的
に加熱脱水処理された。造粒物の反応炉本体内滞留時間
は、反応炉本体外部に設けたベルト駆動用モーターによ
りベルトの走行速度を調整して1.5hrとした。以上
の様な設定条件で処理物貯槽56内に7.4kg/hr
の加熱脱水物を得た。この加熱脱水物は粉体供給弁63
を自動開閉して、被処理物貯槽57内に連続的に供給さ
れた。
[Step (a)] Nitrogen gas was used as the non-reducing gas, and heat dehydration treatment was performed at 500 ° C. Nitrogen gas was circulated so that the linear gas velocity in the vertical upward direction with respect to the mesh belt surface was 8 cm / sec. The above-mentioned granulated material was filled in the material storage tank 54, and then continuously fed into the reactor body heated to the dehydration temperature by the powder feeder 55 at a rate of 8.5 kg / hr. The layer thickness of the granulated product on the mesh belt was set to 14 cm by the thickness adjusting plate. The granulated product was continuously heated and dehydrated while moving in the direction of arrow A in FIG. 1 together with the belt and in contact with the nitrogen gas flowing through the mesh belt. The residence time of the granulated product in the reaction furnace main body was set to 1.5 hours by adjusting the traveling speed of the belt by the belt driving motor provided outside the reaction furnace main body. Under the above setting conditions, 7.4 kg / hr is stored in the processed material storage tank 56.
To obtain a heated dehydrated product. This heated dehydrated product is supplied by the powder supply valve 63.
Was automatically opened and closed and continuously supplied into the object storage tank 57.

【0049】〔工程(b)〕還元性ガスとして水素ガス
を用いて480℃で加熱還元を行った。水素ガスはメッ
シュベルト面に対して垂直上向きのガス線速度が50c
m/secとなるように流通した。被処理物貯槽57内
の上記加熱脱水物は、粉体フィーダー58により7.4
kg/hrの速度で加熱還元温度まで加熱した反応炉本
体内に連続的に供給した。加熱脱水物のメッシュベルト
上での層厚みは厚み調整板により12cmとした。加熱
脱水物はベルトとともに図1中の矢印A方向に移動して
メッシュベルトを流通する水素ガスと接触しながら連続
的に加熱還元された。加熱脱水物の反応炉本体内滞留時
間は、反応炉本体外部に設けたベルト駆動用モーターに
よりベルトの走行速度を調整して3.0hrとした。以
上の様な設定条件で処理物貯槽59内に5.3kg/h
rの還元物を得た。この還元物は粉体供給弁64を自動
開閉して、被処理物貯槽60に連続的に供給された。な
お、この還元物を一部抜き出してトルエン中に浸漬し、
続いて大気中で風乾した後、試料振動型磁力計(VS
M)により磁気特性を測定したところ、保磁力(H
c):1600[Oe]、飽和磁化(σs):141
[emu/g]、角形比(σr/σs):0.52
[−]であった。
[Step (b)] Using hydrogen gas as a reducing gas, heat reduction was performed at 480 ° C. Hydrogen gas has a gas linear velocity of 50c vertically upward with respect to the mesh belt surface.
It was distributed so that it would be m / sec. The heated dehydration product in the processed material storage tank 57 is measured by the powder feeder 58 to be 7.4.
It was continuously fed into the reactor body heated to the heating reduction temperature at a rate of kg / hr. The layer thickness of the heated dehydration product on the mesh belt was set to 12 cm by the thickness adjusting plate. The heated dehydrated product moved in the direction of arrow A in FIG. 1 together with the belt and was continuously heated and reduced while being in contact with hydrogen gas flowing through the mesh belt. The residence time of the heated dehydration product in the reaction furnace main body was set to 3.0 hr by adjusting the traveling speed of the belt by the belt driving motor provided outside the reaction furnace main body. 5.3 kg / h in the treated material storage tank 59 under the above setting conditions
A reduced product of r was obtained. The reduced material was continuously supplied to the object storage tank 60 by automatically opening and closing the powder supply valve 64. Incidentally, a part of this reduced product was extracted and immersed in toluene,
Then, after air-drying in the air, a sample vibration type magnetometer (VS
When the magnetic characteristics were measured by M, the coercive force (H
c): 1600 [Oe], saturation magnetization (σs): 141
[Emu / g], squareness ratio (σr / σs): 0.52
It was [-].

【0050】〔工程(c)〕酸素含有ガスとして500
ppmの酸素を含有する空気/窒素混合ガスを使用し、
70℃で加熱気相酸化を行った。この酸素含有ガスはメ
ッシュベルト面に対して垂直上向きのガス線速度が35
cm/secとなるように流通した。
[Step (c)] 500 as an oxygen-containing gas
using an air / nitrogen mixture containing ppm oxygen,
The heating vapor phase oxidation was performed at 70 ° C. The oxygen-containing gas has a gas linear velocity of 35 in the vertical upward direction with respect to the mesh belt surface.
It was distributed so that it would be cm / sec.

【0051】被処理物貯槽60内の上記還元物は、粉体
フィーダー61により5.3kg/hrの速度で気相酸
化温度まで加熱した反応炉本体内に連続的に供給した。
還元物のメッシュベルト上での層厚みは厚み調整板によ
り17cmとした。還元物はベルトとともに図1中の矢
印A方向に移動してメッシュベルトを流通する上記酸素
含有ガスと接触しながら連続的に気相酸化された。還元
物の反応炉本体内滞留時間は、反応炉本体外部に設けた
ベルト駆動用モーターによりベルトの走行速度を調整し
て9.0hrとした。
The above-mentioned reduced material in the material storage tank 60 was continuously supplied by the powder feeder 61 at a rate of 5.3 kg / hr into the reactor main body heated to the gas phase oxidation temperature.
The layer thickness of the reduced product on the mesh belt was set to 17 cm by the thickness adjusting plate. The reduced product moved in the direction of arrow A in FIG. 1 together with the belt and was continuously gas-phase oxidized while being in contact with the oxygen-containing gas flowing through the mesh belt. The residence time of the reduced product in the reaction furnace body was set to 9.0 hr by adjusting the traveling speed of the belt by a belt driving motor provided outside the reaction furnace body.

【0052】以上の様な設定条件で処理物貯槽62内に
5.8kg/hrの金属磁性粉末を得ることができた。
この金属磁性粉末の一部を抜き出し、前記VSMにより
磁気特性および60℃、相対湿度90%の酸化促進条件
下に一週間放置後の飽和磁化の保持率を測定した。ま
た、X線結晶粒径(金属鉄の結晶子の大きさ)をX線回
折装置により測定した。この際、X線結晶粒径はX線回
折の鉄(110)回折ピークの半値巾よりシェラーの式
を用いて求めた。その結果、保磁力(Hc):1565
[Oe]、飽和磁化(σs):128[emu/g]、
角形比(σr/σs):0.52[−]、飽和磁化保持
率:82[%]であり、X線結晶粒径:165[A]で
あり、優れた磁気特性を有するものであった。
Under the above setting conditions, 5.8 kg / hr of metallic magnetic powder could be obtained in the treated material storage tank 62.
A part of this metal magnetic powder was extracted, and the VSM was used to measure the magnetic properties and the retention ratio of the saturation magnetization after standing for one week under the oxidation promoting condition of 60 ° C. and relative humidity of 90%. Further, the X-ray crystal grain size (size of crystallite of metallic iron) was measured by an X-ray diffractometer. At this time, the X-ray crystal grain size was obtained from the half-width of the iron (110) diffraction peak of X-ray diffraction using the Scherrer's formula. As a result, coercive force (Hc): 1565
[Oe], saturation magnetization (σs): 128 [emu / g],
The squareness ratio (σr / σs) was 0.52 [−], the saturation magnetization retention rate was 82 [%], the X-ray crystal grain size was 165 [A], and the magnetic properties were excellent. .

【0053】実施例4(製造例) 原料として、SiをFeに対して3重量%含み、一次粒
子の大きさが長軸長さ0.25μm、軸比10である針
状晶α−FOOHを押し出し造粒により重量平均粒子径
3mmの造粒物としたものを用いた。これを実施例2に
示した製造装置(図1〜3及び図5参照)により、以下
の条件で工程(a)、(b)、(c)の処理を順次行っ
た。
Example 4 (Production Example) As a raw material, needle-like α-FOOH containing Si in an amount of 3% by weight with respect to Fe and having a primary particle size having a major axis length of 0.25 μm and an axial ratio of 10. A granulated product having a weight average particle diameter of 3 mm by extrusion granulation was used. By using the manufacturing apparatus shown in Example 2 (see FIGS. 1 to 3 and 5), the steps (a), (b), and (c) were sequentially performed under the following conditions.

【0054】〔工程(a)〕窒素ガスのガス線速度を8
cm/secとし、上記造粒物の供給速度を6.5kg
/hrとし、造粒物の層厚みを10cmとした以外は、
実施例3と同様の条件で工程(a)を行った。この結
果、処理物貯槽56内に5.8kg/hrの加熱脱水物
を得た。この加熱脱水物は粉体供給弁63を自動開閉し
て、被処理物貯槽57内に連続的に供給された。
[Step (a)] The gas linear velocity of nitrogen gas is set to 8
cm / sec, and the feed rate of the above granules is 6.5 kg
/ Hr and the layer thickness of the granulated product was 10 cm,
The step (a) was performed under the same conditions as in Example 3. As a result, 5.8 kg / hr of heated dehydrated product was obtained in the treated product storage tank 56. The heated dehydrated product was continuously supplied into the object storage tank 57 by automatically opening and closing the powder supply valve 63.

【0055】〔工程(b)〕加熱還元温度を500℃と
し、水素ガスのガス線速度を40cm/secとし、上
記加熱脱水物の供給速度を5.8kg/hrとし、加熱
脱水物の層厚みを9cmとした以外は、実施例3と同様
の条件で工程(b)を行った。この結果、処理物貯槽5
9内に4.1kg/hrの還元物を得た。この還元物は
粉体供給弁64を自動開閉して、被処理物貯槽60内に
連続的に供給された。なお、この還元物の磁気特性は実
施例3と同様に測定したところ、保磁力(Hc):15
80[Oe]、飽和磁化(σs):146[emu/
g]、角形比(σr/σs):0.51[−]であっ
た。
[Step (b)] The heating reduction temperature is 500 ° C., the gas linear velocity of hydrogen gas is 40 cm / sec, the supply rate of the heated dehydration product is 5.8 kg / hr, and the layer thickness of the heated dehydration product is The step (b) was performed under the same conditions as in Example 3 except that was set to 9 cm. As a result, the processed material storage tank 5
4.1 kg / hr of the reduced product was obtained in 9. The reduced material was continuously supplied into the object storage tank 60 by automatically opening and closing the powder supply valve 64. The magnetic properties of this reduced product were measured in the same manner as in Example 3, and the coercive force (Hc): 15
80 [Oe], saturation magnetization (σs): 146 [emu /
g] and the squareness ratio (σr / σs): 0.51 [−].

【0056】〔工程(c)〕上記還元物の供給速度を
4.1kg/hrとし、還元物の層厚みを9cmとし、
還元物の反応炉本体内滞留時間を6.0hrとした以外
は、実施例3と同様の条件で工程(c)を行った。この
結果、処理物貯槽62内に4.5kg/hrの金属磁性
粉末を得ることができた。この金属磁性粉末の磁気特性
は、保磁力(Hc):1545[Oe]、飽和磁化(σ
s):131[emu/g]、角形比(σr/σs):
0.51[−]、飽和磁化保持率:82[%]、X線結
晶粒径:161[A]であり、優れた磁気特性を有する
ものであった。
[Step (c)] The feed rate of the reduced product is 4.1 kg / hr, the layer thickness of the reduced product is 9 cm,
The step (c) was performed under the same conditions as in Example 3 except that the residence time of the reduced product in the reaction furnace body was set to 6.0 hr. As a result, 4.5 kg / hr of metallic magnetic powder could be obtained in the treated material storage tank 62. The magnetic properties of this metal magnetic powder are as follows: coercive force (Hc): 1545 [Oe], saturation magnetization (σ
s): 131 [emu / g], squareness ratio (σr / σs):
The magnetic properties were 0.51 [-], the saturation magnetization retention rate: 82 [%], and the X-ray crystal grain size: 161 [A], which had excellent magnetic properties.

【0057】[0057]

【発明の効果】本発明の製造方法および製造装置を用い
れば、被処理物をベルト上で実質的に静置状態で加熱脱
水、加熱還元、加熱気相酸化処理できるため、粒子同士
の衝突や微粉の発生がなく、また、被処理物とガスの接
触が良好であり、均一で優れた磁気特性を有する金属磁
性粉末を製造することができる。また、この様な高品質
金属磁性粉末を工業的に有利に連続して製造することが
可能となる。
EFFECTS OF THE INVENTION By using the production method and production apparatus of the present invention, the object to be treated can be subjected to heat dehydration, heat reduction, and heat vapor oxidation in a substantially stationary state on the belt. It is possible to produce a metallic magnetic powder that does not generate fine powder, has good contact between the object to be treated and gas, and has uniform magnetic properties. Further, it becomes possible to continuously produce such a high-quality metal magnetic powder industrially advantageously.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明におけるガス流通型反応炉を縦断
面図により示したものである。
FIG. 1 is a longitudinal sectional view showing a gas flow type reaction furnace according to the present invention.

【図2】図2は図1のガス流通型反応炉のII−II線断面
図である。
FIG. 2 is a sectional view taken along line II-II of the gas flow reactor of FIG.

【図3】図3は図1のガス流通型反応炉のI−I線断面
図である。
3 is a cross-sectional view of the gas flow reactor of FIG. 1 taken along the line I-I.

【図4】図4は本発明におけるガス流通型反応炉の概略
説明図である。
FIG. 4 is a schematic explanatory view of a gas flow type reaction furnace according to the present invention.

【図5】図5は本発明の製造装置の一例の概略説明図で
ある。
FIG. 5 is a schematic explanatory view of an example of a manufacturing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 反応炉本体 2 ガス分散板 3 ベルト 4 加熱用電気ヒーター 5 保温材 6 ガスの入口 7 ガスの排出口 8 被処理物の供給口 9 処理物の排出口 10 厚み調整板 11 ベルト駆動ローラー 12 ローラー駆動軸 13 粉体フィーダー 14 被処理物貯槽 15 処理物貯槽 16 窒素パージガス入口 17 窒素パージガス出口 18 窒素パージガス入口 19 窒素パージガス出口 20 軸シール 21 駆動用モーター 22 ガスシール壁 40 反応炉本体 41 ベルトコンベア 42 ガス分散板 43 加熱手段 44 ガスの入口 45 ガスの排出口 46 被処理物の供給口 47 処理物の排出口 51 加熱脱水反応炉 52 加熱還元反応炉 53 加熱気相酸化反応炉 54 被処理物(原料造粒物)貯槽 55 粉体フィーダー 56 処理物(加熱脱水物)貯槽 57 被処理物(加熱脱水物)貯槽 58 粉体フィーダー 59 処理物(還元物)貯槽 60 被処理物(還元物)貯槽 61 粉体フィーダー 62 処理物(製品)貯槽 63 粉体供給弁 64 粉体供給弁 65 非還元性ガスの入口 66 非還元性ガスの出口 67 還元性ガスの入口 68 還元性ガスの出口 69 酸素含有ガスの入口 70 酸素含有ガスの出口 71 被処理物(原料造粒物)の供給口 72 処理物(加熱脱水物)の排出口 73 被処理物(加熱脱水物)の供給口 74 処理物(還元物)の排出口 75 被処理物(還元物)の供給口 76 処理物(製品)の排出口 77 窒素パージガス入口 78 窒素パージガス出口 1 Reactor Main Body 2 Gas Dispersion Plate 3 Belt 4 Electric Heater 5 Heat Insulating Material 6 Gas Inlet 7 Gas Outlet 8 Gas Supply Port 9 Treated Product Discharge Port 9 Treated Product Discharge Port 10 Thickness Adjustment Plate 11 Belt Drive Roller 12 Roller Drive shaft 13 Powder feeder 14 Treated material storage tank 15 Treated material storage tank 16 Nitrogen purge gas inlet 17 Nitrogen purge gas outlet 18 Nitrogen purge gas inlet 19 Nitrogen purge gas outlet 20 Shaft seal 21 Drive motor 22 Gas seal wall 40 Reactor body 41 Belt conveyor 42 Gas Dispersion Plate 43 Heating Means 44 Gas Inlet 45 Gas Outlet 46 Supply Port for Treated Product 47 Discharge Port for Treated Product 51 Heated Dehydration Reactor 52 Heated Reduction Reactor 53 Heated Gas Phase Oxidation Reactor 54 Treated Object ( Raw material granulated product) Storage tank 55 Powder feeder 56 Treated product (heated dehydrated product) storage tank 5 Treated (heated dehydrated) storage tank 58 Powder feeder 59 Treated (reduced) storage tank 60 Treated (reduced) storage tank 61 Powder feeder 62 Treated (product) storage tank 63 Powder supply valve 64 Powder supply Valve 65 Inlet for non-reducing gas 66 Outlet for non-reducing gas 67 Inlet for reducing gas 68 Outlet for reducing gas 69 Inlet for oxygen-containing gas 70 Outlet for oxygen-containing gas 71 For processed material (raw granules) Supply port 72 Treatment product (heating dehydration product) discharge port 73 Treatment target (heating dehydration product) supply port 74 Treatment product (reducing product) discharge port 75 Treatment target (reducing product) supply port 76 Treatment product ( Product) outlet 77 Nitrogen purge gas inlet 78 Nitrogen purge gas outlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 含水酸化鉄を主体として含む鉄化合物粉
末を造粒して重量平均粒子径1〜20mmの造粒物と
し、該造粒物を原料としてガス流通可能なベルトを有す
るガス流通型反応炉を用いて、以下の(a)〜(c)の
工程からなる処理をすることを特徴とする金属鉄を主成
分とする金属磁性粉末の製造方法。(a)前記造粒物を
ベルト上に連続的に供給して載置し、該造粒物を移送し
ながら、非還元性ガスにより加熱脱水処理を行い、加熱
脱水物を連続的に得る工程、(b)工程(a)で得られ
た加熱脱水物をベルト上に連続的に供給して載置し、該
加熱脱水物を移送しながら、還元性ガスにより加熱還元
処理を行い、還元物を連続的に得る工程、および(c)
工程(b)で得られた還元物をベルト上に連続的に供給
して載置し、該還元物を移送しながら、酸素含有ガスに
より加熱気相酸化処理を行い、金属鉄を主成分とする金
属磁性粉末を連続的に得る工程、
1. A gas flow type having an iron compound powder mainly containing hydrous iron oxide as a granulation product having a weight average particle size of 1 to 20 mm, and having a belt through which the granulation product can flow as a gas. A method for producing a magnetic metal powder containing metallic iron as a main component, which comprises performing the following processes (a) to (c) using a reaction furnace. (A) A step of continuously supplying and placing the granulated product on a belt and carrying out a heat dehydration treatment with a non-reducing gas while transferring the granulated product to obtain a heated dehydrated product continuously. , (B) the heated dehydrated product obtained in step (a) is continuously supplied and placed on a belt, and while the heated dehydrated product is being transferred, a heating reduction treatment is performed with a reducing gas to obtain a reduced product. Continuously, and (c)
The reduced product obtained in the step (b) is continuously supplied and placed on a belt, and while the reduced product is being transferred, a heating vapor phase oxidation treatment is performed with an oxygen-containing gas to make metallic iron the main component. A step of continuously obtaining a magnetic metal powder,
【請求項2】 含水酸化鉄を主体として含む鉄化合物粉
末の造粒物を加熱脱水する加熱脱水反応炉と、該反応炉
より得られる加熱脱水物を加熱還元する加熱還元反応炉
と、該反応炉より得られる還元物を加熱気相酸化する加
熱気相酸化反応炉とにより構成される金属磁性粉末の製
造装置であって、これらの反応炉が少なくとも粉体輸送
手段を介して加熱脱水反応炉、加熱還元反応炉、加熱気
相酸化反応炉の順に直列に接続され、各反応炉がガスの
入口および排出口、並びに被処理物の供給口および処理
物の排出口を有するガス流通型反応炉本体と、該反応炉
本体内に設けられたガス流通可能なベルトを有する処理
物移送用ベルトコンベアと、前記ガスの入口より導入さ
れたガスを被処理物の載置された該ベルト面に均一に分
散供給させるガス分散板と、前記反応炉本体内を加熱す
るよう配設された加熱手段を備えてなるガス流通型反応
炉であることを特徴とする金属磁性粉末の製造装置。
2. A heating dehydration reaction furnace for heating and dehydrating a granulated product of an iron compound powder mainly containing iron oxide hydroxide, a heating reduction reaction furnace for heating and reducing the heated dehydration product obtained from the reaction furnace, and the reaction. An apparatus for producing a magnetic metal powder, comprising a heating vapor-phase oxidation reaction furnace for heating a gas-phase oxidation of a reduction product obtained from the furnace, wherein these reaction furnaces are heated and dehydrated at least through a powder transport means. , A heating reduction reaction furnace, and a heating gas-phase oxidation reaction furnace are connected in series in this order, and each reaction furnace has a gas inlet and a gas outlet, and a supply port and a discharge port for the object to be treated. A main body, a belt conveyor for transferring a processed material having a belt through which a gas can flow provided in the main body of the reaction furnace, and a gas introduced from an inlet of the gas is uniformly applied to the belt surface on which the processed object is placed. Gas to be distributed and supplied to An apparatus for producing metal magnetic powder, which is a gas flow type reaction furnace comprising a dispersion plate and a heating means arranged to heat the inside of the reaction furnace body.
JP4350604A 1992-12-03 1992-12-03 Method and device for producing magnetic metal powder Pending JPH06172821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4350604A JPH06172821A (en) 1992-12-03 1992-12-03 Method and device for producing magnetic metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4350604A JPH06172821A (en) 1992-12-03 1992-12-03 Method and device for producing magnetic metal powder

Publications (1)

Publication Number Publication Date
JPH06172821A true JPH06172821A (en) 1994-06-21

Family

ID=18411601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4350604A Pending JPH06172821A (en) 1992-12-03 1992-12-03 Method and device for producing magnetic metal powder

Country Status (1)

Country Link
JP (1) JPH06172821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045073A1 (en) * 1997-04-10 1998-10-15 Kao Corporation Method of producing magnetic metal powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045073A1 (en) * 1997-04-10 1998-10-15 Kao Corporation Method of producing magnetic metal powder

Similar Documents

Publication Publication Date Title
US5116437A (en) Method for stabilization treatment of ferromagnetic metal powder
US4629500A (en) Use of novel rotary tubular kiln
US4729846A (en) Method for manufacturing lepidocrocite
US5470374A (en) Method for production of magnetic metal particles and apparatus therefor
DE69321531T2 (en) Granular particles for magnetic particles for magnetic recording and process for their production
JPH0693312A (en) Method and device for production magnetic metal powder
JPH06172821A (en) Method and device for producing magnetic metal powder
JPH0873907A (en) Production of magnetic metal powder and apparatus therefor
JPH10280013A (en) Production of metal magnetic powder and producing device therefor
US4378240A (en) Preparation of acicular ferromagnetic metal particles consisting essentially of iron
JPH08157911A (en) Production of magnetic metallic powder and production apparatus therefor
EP0857693B1 (en) Processes for producing hydrated iron oxide and ferromagnetic iron oxide
JPH06136402A (en) Method and device for producing magnetic metal powder
JP2731603B2 (en) Stabilization method of metal magnetic powder
JPH0123402B2 (en)
JP3412676B2 (en) Spindle-shaped goethite particle powder and method for producing the same
JPH0545642B2 (en)
US4948422A (en) Method of manufacturing superfine magnetic metal powder
JPS6258604A (en) Manufacture of magnetic iron powder for magnetic recording
JPH0159724B2 (en)
JP2000302445A (en) Fusiform goethite particle powder, fusiform hematite particle powder, and fusiform metallic magnetic particle powder consisting mainly of iron, and their production
JPH06136401A (en) Production of magnetic metal powder
JPH0461302A (en) Metal magnetic particle powder mainly made of spindle type iron
JPS58161711A (en) Production of magnetic metallic powder
JPH0456709A (en) Manufacture of metallic magnetic particle powder containing iron showing spindle shape as essential component