JPH02192103A - Manufacture of ferromagnetic metal powder having oxide film - Google Patents

Manufacture of ferromagnetic metal powder having oxide film

Info

Publication number
JPH02192103A
JPH02192103A JP1009893A JP989389A JPH02192103A JP H02192103 A JPH02192103 A JP H02192103A JP 1009893 A JP1009893 A JP 1009893A JP 989389 A JP989389 A JP 989389A JP H02192103 A JPH02192103 A JP H02192103A
Authority
JP
Japan
Prior art keywords
metal powder
temperature
ferromagnetic metal
fluidized bed
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1009893A
Other languages
Japanese (ja)
Inventor
Masahiro Miyauchi
雅弘 宮内
Tadashi Ishiguro
忠 石黒
Fumihiko Hasegawa
史彦 長谷川
Koji Watanabe
渡邊 宏二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1009893A priority Critical patent/JPH02192103A/en
Publication of JPH02192103A publication Critical patent/JPH02192103A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/09Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain ferromagnetic metal powder having uniform and highly densed oxide film and excellent magnetic characteristics by a method wherein the surface of the metal powder is subjected to slow oxidation while the increase in partial pressure of oxygen is being conducted at a fixed speed. CONSTITUTION:Ferromagnetic metal powder mainly composed of iron is fluidized in a fluidized bed at a temperature of 30 deg.C or higher using inert gas. Oxygen gas is mixed therein at an introducing speed with the fixed increment rate of 10ml/nin<2> or less per 1 gram of metal magnetic powder. When an oxide film, which is necessary for stabilization of the ferromagnetic metal powder, is formed by continuously conducting a slow oxidation treatment uniformly, an oxidative reaction is automatically stopped. This oxidative reaction can be traced by monitoring the temperature of the fluidized bed. To be more precise, when the reaction temperature comes down and the oxygen density on the outlet side is detected, the fluidized bed is cooled down to the room temperature, the oxidative reaction is completely stopped, and the stabilization treatment is finished. As a result, an oxide film is formed uniformly and in high density on the grain surface of the ferromagnetic metal powder, and the ferromagnetic metal powder, having no danger of ignition, excellent magnetic characteristics and lesser deterioration with time, can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は鉄を主体とする磁気記録用磁性粉末の安定化
処理に関するもので、特に酸化皮膜を有する強磁性金属
粉末の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a stabilization treatment of magnetic powder for magnetic recording mainly composed of iron, and in particular to a method for producing a ferromagnetic metal powder having an oxide film.

[従来の技術] 近年、磁気記録の動向は8 mmVTRやDATに代表
されるように、小型化、高性能化が進んできている。こ
れに伴い記録媒体にも高密度化、高出力化が要求され、
従来より使用されてきた酸化鉄系のテープに代わりメタ
ル鉄系のテープが主流になりつつある。このメタルテー
プは高保磁力、高残留磁束密度による高密度記録と再生
出力、SN比の向上を特徴としているが、この記録媒体
の性能は磁性体の特性に大きく影響される。この磁性体
として採用されたものが保磁力と飽和磁化の優れた鉄を
主体とする強磁性金属粉末であり、−膜内に針状粒子で
あるゲーサイトを出発原料とし加熱処理をした後に、水
素ガス等で加熱還元することによってつくられる。
[Prior Art] In recent years, the trend in magnetic recording has been toward smaller size and higher performance, as typified by 8 mm VTRs and DATs. Along with this, recording media are also required to have higher density and higher output.
Metal iron-based tapes are becoming mainstream in place of the iron oxide-based tapes that have traditionally been used. This metal tape is characterized by high-density recording and reproduction output due to high coercive force and high residual magnetic flux density, and improved signal-to-noise ratio, but the performance of this recording medium is greatly influenced by the characteristics of the magnetic material. The material adopted as this magnetic material is a ferromagnetic metal powder mainly composed of iron with excellent coercive force and saturation magnetization. It is produced by heating and reducing with hydrogen gas, etc.

しかしながらこの磁気記録媒体に用いる鉄を主体とする
強磁性金属粉末は、耐酸化性が劣るという最大の欠点を
有する。即ち、比表面積が人きく化学的に極めて活性で
あり、還元後に大気中に取り出すと急激な酸化反応によ
る発熱や発火が起こり、本来有する保磁力と飽和磁化を
大幅に損なってしまう。さらに、酸化による経時劣化が
大きく、信頼性にも問題が残る。
However, the major drawback of the ferromagnetic metal powder mainly composed of iron used in this magnetic recording medium is that it has poor oxidation resistance. That is, it has a large specific surface area and is chemically extremely active, and when it is taken out into the atmosphere after reduction, heat generation and ignition occur due to a rapid oxidation reaction, and the inherent coercive force and saturation magnetization are significantly lost. Furthermore, deterioration over time due to oxidation is significant, and reliability remains a problem.

そこで、大気中に取り出しても発火せず、また経時劣化
を抑制するために還元後の金属粒子を液相中、あるいは
気相中において酸素含有ガスで金属粒子表面を徐酸化し
、酸化皮膜を形成することで安定化処理する方法が提案
されている。従来の安定化方法としては、金属磁性粉末
を有機溶媒中で徐酸化する液相法(特開昭52−850
54) 、酸素分圧を調節したガスで直接徐酸化する気
相法(特開昭48−79153) 、及び両者を融合し
た方法(特開昭59−170201 )等が知られてい
る。
Therefore, in order to prevent ignition even if taken out into the atmosphere and to suppress deterioration over time, the surface of the metal particles is slowly oxidized with an oxygen-containing gas in the liquid phase or gas phase after reduction to form an oxide film. A method has been proposed in which stabilization treatment is performed by forming. Conventional stabilization methods include the liquid phase method (Japanese Patent Laid-Open No. 52-850) in which metal magnetic powder is slowly oxidized in an organic solvent.
54), a gas phase method in which gradual oxidation is carried out directly with a gas whose oxygen partial pressure is adjusted (Japanese Patent Application Laid-Open No. 48-79153), and a method combining the two (Japanese Patent Application Laid-open No. 170201-1983) are known.

しかしながら、液相法では金属磁性粉末の表面に有機溶
媒の酸化変成物や、その他の不純物が残存し、塗布工程
での分散性に悪影響を及ぼず恐れがあり、現在では有機
溶媒の介在しない気相法が膜内となっている。また気相
法には流動層方式と固定床方式があるが、均一に徐酸化
するためには前者の方が有利である。しかしながら、こ
の方法も流動条件の設定や飽和磁化のコントロールが困
難であり、未だ満足できる方法として完成していない。
However, in the liquid phase method, oxidized products of the organic solvent and other impurities remain on the surface of the metal magnetic powder, which may not have a negative effect on the dispersibility during the coating process. The phase law is inside the membrane. Gas phase methods include a fluidized bed method and a fixed bed method, but the former is more advantageous for uniform gradual oxidation. However, this method is also difficult to set flow conditions and control saturation magnetization, and has not yet been completed as a satisfactory method.

[発明が解決しようとする課題] 流動層を用いた表面徐酸化による強磁性金属粉末の安定
化では、均一に酸化皮膜を生成させるための流動条件や
酸素分圧の設定が極めて困難であり、また流動状態を良
好にすると粒子相互の衝突により、粉化、凝集を起こし
不均一に酸化皮膜が形成されるばかりではなく、磁気特
性までも低下させてしまう。
[Problems to be Solved by the Invention] When stabilizing ferromagnetic metal powder by gradual surface oxidation using a fluidized bed, it is extremely difficult to set the flow conditions and oxygen partial pressure to uniformly generate an oxide film. Furthermore, if the fluidity is improved, particles collide with each other, causing powdering and agglomeration, which not only forms an oxide film non-uniformly, but also deteriorates the magnetic properties.

本発明は工業的スケールで容易に実施できる実用的な方
法てこれらの問題点を解決し、表面に均で緻密な酸化皮
膜を有し磁気特性、特に飽和磁化(Is)が優れ耐食性
の良好な強磁性金属粉末の製造方法を提供するものであ
る。
The present invention solves these problems using a practical method that can be easily implemented on an industrial scale. A method for producing ferromagnetic metal powder is provided.

[課題を解決するための手段] 本発明は鉄を主体とする強磁性金属粉末を流動層中にお
いて30℃以上の温度で不活性ガスを用いて流動化させ
、これに酸素ガスを、導入速度を金属磁性粉末1g当り
10mA/m1n2以下の一定増加率で混合し、流動層
内の温度がピークに達した時点および/または出側酸素
濃度を検出したところで、これを室温まで低下させるこ
とにより均一・で緻密な酸化皮膜を有する強磁性金属粉
末を製造する方法である。
[Means for Solving the Problems] The present invention involves fluidizing ferromagnetic metal powder mainly composed of iron using an inert gas at a temperature of 30°C or higher in a fluidized bed, and introducing oxygen gas into the powder at a rate of introduction. are mixed at a constant increase rate of 10 mA/m1n2 or less per 1 g of metal magnetic powder, and when the temperature in the fluidized bed reaches its peak and/or when the oxygen concentration on the outlet side is detected, the temperature is lowered to room temperature and the mixture is uniformly mixed.・This is a method for producing ferromagnetic metal powder with a dense oxide film.

流動層で安定化処理を施すに際して良好な流動状態を得
るためには、適切な粒度範囲の造粒物を使用する必要が
ある。本発明において強磁性金属粉末の造粒物の粒度範
囲は望ましくは0.35〜5m[I+が適切である。す
なわち粒度が0.355mm未満では流動層外への飛散
が著しく、逆に5mm起ては流動層の底に流動化しない
粒子が残)てしまう。
In order to obtain a good fluidization state when performing stabilization treatment in a fluidized bed, it is necessary to use granules with an appropriate particle size range. In the present invention, the particle size range of the ferromagnetic metal powder granules is preferably 0.35 to 5 m [I+ is suitable. That is, if the particle size is less than 0.355 mm, scattering outside the fluidized bed will be significant, whereas if the particle size is 5 mm, unfluidized particles will remain at the bottom of the fluidized bed.

次に具体的な安定化処理の方法について述べる。まずこ
の造粒物の粒径が0.355〜5mmである強磁性金属
粉末を不活性ガスで良好な流動状態とする。ここで使用
する不活性ガスはHe、Ne、Ar、110□N2等が
あるが、通常はN2ガスを用いるのが実用的である。次
に流動している強磁性金属粉末の造粒物の温度が30〜
120℃で一定となるように流動層の温度を制御する。
Next, a specific method of stabilization processing will be described. First, this granulated ferromagnetic metal powder having a particle size of 0.355 to 5 mm is brought into a good fluid state with an inert gas. The inert gas used here includes He, Ne, Ar, 110□N2, etc., but it is usually practical to use N2 gas. Next, the temperature of the flowing ferromagnetic metal powder granules is 30~
The temperature of the fluidized bed is controlled to be constant at 120°C.

この時の温度は強磁性金属粉末表面の酸化量を決定し、
飽和磁化をコントロールするトで極めて重要である。こ
の際の温度が30℃未満では表面酸化が充分に行なわれ
ず、大気中に取り出したときに発火してしまう。またこ
の時の温度が120℃超では表面酸化が必要量−Fに進
み高い飽和磁化は得られない。
The temperature at this time determines the amount of oxidation on the surface of the ferromagnetic metal powder,
This is extremely important in controlling saturation magnetization. If the temperature at this time is less than 30°C, the surface oxidation will not be sufficiently performed, and it will catch fire when taken out into the atmosphere. Further, if the temperature at this time exceeds 120° C., the surface oxidation proceeds to the required amount -F, and high saturation magnetization cannot be obtained.

強磁性金属粉末の造粒物を不活性ガスで流動化させ温度
が一定になったところで、不活性ガスに酸素ガスあるい
は空気を一定速度で混合し徐々に酸素分圧を上げていく
。この時の酸素増加率は強磁性金属粉末1g当り10m
l/min2以下でなければならない。ただし酸素増加
率が強磁性金属粉末1g当り0.01mfl/m1n2
未満では、安定化に長時間を要し実用的ではない。逆に
酸素増加率が強磁性金属粉末1g当り毎分10+nQ/
min超では徐酸化にむらが生じて効果的な安定化がて
きず、高い飽和磁化が得られない。このように酸素分圧
をゼロから徐々に上げて行くために、安定化開始直後の
極めて活性な状態では非常に希薄な酸素で緩やかに酸化
され、またある程度の酸化皮膜が形成された時点では更
に酸素分圧の高いガスで酸化され酸化皮膜が強固になっ
ていく。つまり、酸素分圧を一定速度で徐々に上げて行
くことで、安定化処理中のどの時点においても均一に常
に一定な表面酸化を行なうことが可能となる。
Granules of ferromagnetic metal powder are fluidized with an inert gas, and when the temperature becomes constant, oxygen gas or air is mixed with the inert gas at a constant rate to gradually increase the oxygen partial pressure. At this time, the oxygen increase rate is 10m per gram of ferromagnetic metal powder.
It must be less than l/min2. However, the oxygen increase rate is 0.01 mfl/m1n2 per 1 g of ferromagnetic metal powder.
If it is less than that, it will take a long time to stabilize and is not practical. Conversely, the oxygen increase rate is 10+nQ/min per gram of ferromagnetic metal powder.
If it exceeds min, gradual oxidation becomes uneven and effective stabilization cannot be achieved, making it impossible to obtain high saturation magnetization. In this way, as the oxygen partial pressure is gradually raised from zero, in the extremely active state immediately after stabilization begins, the oxygen is slowly oxidized with very dilute oxygen, and once a certain amount of oxide film has been formed, it becomes even more Oxidized by gas with high oxygen partial pressure, the oxide film becomes stronger. In other words, by gradually increasing the oxygen partial pressure at a constant rate, it is possible to uniformly and constantly oxidize the surface at any point during the stabilization process.

このように均一に徐酸化を続けて行くと、その温度にお
いて強磁性金属粉末を安定化するに要する酸化皮膜を形
成したところで、酸化反応は自動的に停止する。この酸
化反応は流動層内の温度をモニターする事で追跡できる
。つまり、時間に対して流動層内の温度をプロットして
いくと、第1図に示すように直線的に温度が上昇してい
くことから、酸化反応が常に一定速度で起こっているこ
とが分かる。また、ある時点から急速に温度が低下し始
め、同時にそれまでゼロを示していた出側の酸素濃度も
検出され始めることからも、酸化反応が停止したことが
分かる。このように本発明によれば温度と出側酸素濃度
をモニターする事で極めて容易に酸化反応の終点を判定
することができる。
If gradual oxidation is continued uniformly in this manner, the oxidation reaction will automatically stop when the oxide film necessary to stabilize the ferromagnetic metal powder at that temperature is formed. This oxidation reaction can be tracked by monitoring the temperature within the fluidized bed. In other words, if you plot the temperature in the fluidized bed against time, the temperature will rise linearly as shown in Figure 1, which shows that the oxidation reaction is always occurring at a constant rate. . It can also be seen that the oxidation reaction has stopped because the temperature begins to drop rapidly at a certain point, and at the same time the oxygen concentration on the outlet side, which had previously been zero, begins to be detected. As described above, according to the present invention, the end point of the oxidation reaction can be determined very easily by monitoring the temperature and the outlet oxygen concentration.

反応温度が低下し出側酸素濃度が検出されたところで、
流動層を室温まで冷却し酸化反応を完全に停止させて安
定化処理を終了する。また始めの流動層内の温度によっ
て、酸化反応の終点が変わってくるので、この温度を3
0〜120℃の範囲で制御することで強磁性金属粉末の
飽和磁化を容易にコントロールする事ができる。第2図
にその一例を示すが、この温度と飽和磁化の関係は焼結
防止剤の種類や量などによってシフトする。
When the reaction temperature drops and the outlet oxygen concentration is detected,
The stabilization process is completed by cooling the fluidized bed to room temperature to completely stop the oxidation reaction. Also, the end point of the oxidation reaction changes depending on the initial temperature in the fluidized bed, so this temperature is
By controlling the temperature within the range of 0 to 120°C, the saturation magnetization of the ferromagnetic metal powder can be easily controlled. An example is shown in FIG. 2, and the relationship between temperature and saturation magnetization shifts depending on the type and amount of the sintering inhibitor.

このように酸素分圧を一定速度で上げながら表面を徐酸
化して行くことにより、均一かつ緻密な酸化皮膜を有し
磁気特性に優れ、耐食性の良好な強磁性金属粉末を製造
することができる。また、酸素分圧を一定速度で上げて
行くことにより安定化処理の終点が明確になり、必要以
上の酸化を未然に防ぐことによって高い飽和磁化を得る
ことができる。
By gradually oxidizing the surface while increasing the oxygen partial pressure at a constant rate, it is possible to produce ferromagnetic metal powder with a uniform and dense oxide film, excellent magnetic properties, and good corrosion resistance. . Furthermore, by increasing the oxygen partial pressure at a constant rate, the end point of the stabilization treatment becomes clear, and by preventing unnecessary oxidation, high saturation magnetization can be obtained.

[実施例] 実施例1 安定化に用いた流動層は内径40++++++のパイレ
ックスガ゛ラス製であり、目皿にはガラスフィルターを
使用しである。この流動層は2重管になっており、外側
にジャケットを設は恒温水槽より温水を循環させること
で流動層内の温度制御を行なう。
[Examples] Example 1 The fluidized bed used for stabilization was made of Pyrex glass with an inner diameter of 40++, and a glass filter was used for the perforated plate. This fluidized bed has a double pipe structure, and a jacket is installed on the outside to circulate hot water from a constant temperature water tank to control the temperature inside the fluidized bed.

還元直後の粒度範囲0.355〜1mmの強磁性金属粉
末の造粒物23gを大気に触れさせることなく安定化に
用いる流動層に移送した。ここで使用した強磁性金属粉
末はAQ203を3vit96被着し、460℃て還元
したものである。この強磁性金属粉末の安定化処理前の
磁気特性は、トルエンに浸漬し自然風乾した状態で保磁
力(Hc) 14200e、飽和磁化(Is)145e
mu/g、角型比(SR)0.53であった。流動層内
の温度を40℃に保ち、1017m1nで窒素ガスを吹
き込むことで強磁性金属粉末を良好な流動状態とした。
Immediately after reduction, 23 g of granulated ferromagnetic metal powder with a particle size range of 0.355 to 1 mm was transferred to a fluidized bed used for stabilization without exposing it to the atmosphere. The ferromagnetic metal powder used here was AQ203 coated with 3vit96 and reduced at 460°C. The magnetic properties of this ferromagnetic metal powder before stabilization treatment are: coercive force (Hc) of 14200e and saturation magnetization (Is) of 145e when immersed in toluene and air-dried.
mu/g and squareness ratio (SR) were 0.53. The temperature in the fluidized bed was maintained at 40° C., and nitrogen gas was blown in at 1017 ml to bring the ferromagnetic metal powder into a good fluidized state.

この窒素ガスに空気を毎分10mQ/…inで混合し続
け、一定速度で酸素分圧を上げていった。流動層内の温
度は時間とともに上昇し酸化反応が進行していることが
わかる。安定化開始後54分で流動層内の温度は52℃
でピークに達し、出側の酸素濃度が検出された。この時
の入側酸素濃度は0.5*であった。この時点でジャケ
ット水の温度を一気に室温(15℃)まで下げ、入側と
出側の酸素濃度が同じになったことを確認した後、混合
ガス流量を1 (Horn i nに保ちながら毎分1
文/minで空気の流量を増加させ混合ガスの酸素濃度
を21%としたところで安定化処理を終了した。安定化
処理終了後の酸化皮膜を有する強磁性金属粉末の磁気特
性および60℃相対湿度90%1週間の耐食性試験によ
る飽和磁化の劣化率を第1表に示す。
Air was continuously mixed with this nitrogen gas at a rate of 10 mQ/in/min, and the oxygen partial pressure was increased at a constant rate. It can be seen that the temperature within the fluidized bed increases with time, indicating that the oxidation reaction is progressing. 54 minutes after stabilization started, the temperature inside the fluidized bed was 52℃
The oxygen concentration on the outlet side was detected. The inlet oxygen concentration at this time was 0.5*. At this point, the temperature of the jacket water was lowered all at once to room temperature (15℃), and after confirming that the oxygen concentration on the inlet and outlet sides were the same, the mixed gas flow rate was increased at 1 (Horn in) every minute. 1
The stabilization process was completed when the air flow rate was increased to 21% and the oxygen concentration of the mixed gas was 21%. Table 1 shows the magnetic properties of the ferromagnetic metal powder having an oxide film after the stabilization treatment and the deterioration rate of saturation magnetization in a one-week corrosion resistance test at 60° C. and 90% relative humidity.

実施例2 流動層内の温度を60℃とした以外は実施例1と同様の
方法で安定化を行なった。この際、安定化開始後61分
て流動層内の温度は77℃でピークに達した。この時点
での入側酸素濃度は0.6亀であった。安定化処理終了
後の酸化皮膜を有する強磁性金属粉末の磁気特性および
60℃相対湿度90*1週間の耐食性試験による飽和磁
化の劣化率を第1表に示す。
Example 2 Stabilization was carried out in the same manner as in Example 1 except that the temperature in the fluidized bed was 60°C. At this time, the temperature within the fluidized bed reached a peak at 77° C. 61 minutes after the start of stabilization. At this point, the inlet oxygen concentration was 0.6 mm. Table 1 shows the magnetic properties of the ferromagnetic metal powder having an oxide film after the stabilization treatment and the deterioration rate of saturation magnetization in a corrosion resistance test at 60° C. and relative humidity 90*1 week.

実施例3 流動層内の温度を80℃とした以外は実施例1と同様の
方法で安定化を行なった。この際、安定化開始後66分
で流動層内の温度は94℃でピークに達した。この時点
での入側酸素濃度は0.65%であった。安定化処理終
了後の酸化皮膜を有する強磁性金属粉末の磁気特性およ
び60℃相対湿度90%1週間の耐食性試験による飽和
磁化の劣化率を第1表に示す。
Example 3 Stabilization was carried out in the same manner as in Example 1 except that the temperature in the fluidized bed was 80°C. At this time, the temperature within the fluidized bed reached a peak at 94° C. 66 minutes after the start of stabilization. The inlet oxygen concentration at this point was 0.65%. Table 1 shows the magnetic properties of the ferromagnetic metal powder having an oxide film after the stabilization treatment and the deterioration rate of saturation magnetization in a one-week corrosion resistance test at 60° C. and 90% relative humidity.

比較例1 流動層内温度40℃で実施例1と同様の強磁性金属粉末
23gを酸素濃度0.2!6の窒素と酸素の混合ガス中
で200分間安定化を行なった際の磁気特性および60
℃相対湿度90t1週間の耐食性試験による飽和磁化の
劣化率を第1表に示す。
Comparative Example 1 Magnetic properties and 60
Table 1 shows the deterioration rate of saturation magnetization after a one week corrosion resistance test at 90° C. relative humidity.

比較例2 流動層内の温度を20℃とした以外は実施例1と同様の
方法で安定化を行なった。この際、安定化開始後47分
で流動層内の温度は33℃でピークに達した。この時点
での入側酸素濃度は0.38!lliであった。しかし
ながら、流動層から取り出してから数分後に発火してし
まった。
Comparative Example 2 Stabilization was carried out in the same manner as in Example 1 except that the temperature in the fluidized bed was 20°C. At this time, the temperature within the fluidized bed reached a peak at 33° C. 47 minutes after the start of stabilization. The inlet oxygen concentration at this point is 0.38! It was lli. However, it caught fire several minutes after being removed from the fluidized bed.

第1表に各実施例および比較例の方法で得られた酸化皮
膜を有する強磁性金属粉末のVSMによる最大印加磁場
10キロエルステツドての磁気特性および60℃、相対
湿度90%、1週間での飽和磁化の劣化率を示した。ま
たこの結果から比較例1において温度を40℃超で安定
化を行なった場合は飽和磁化が120emu/g未満に
なることが容易に予想され好ましくない。
Table 1 shows the magnetic properties of ferromagnetic metal powders with oxide films obtained by the method of each example and comparative example at a maximum applied magnetic field of 10 kiloersteds by VSM and saturation at 60°C, relative humidity 90%, and one week. The deterioration rate of magnetization is shown. Furthermore, from this result, if the temperature is stabilized at a temperature higher than 40° C. in Comparative Example 1, it is easily predicted that the saturation magnetization will become less than 120 emu/g, which is not preferable.

第1表 [発明の効果] 本発明の方法により強磁性金属粉末の粒子表面に均一か
つ緻密に酸化皮膜が形成され、発火の危険性がなく磁気
特性が優れ経時劣化の少ない酸化皮膜を有する強磁性金
属粉末粒子が得られる。また本発明による方法は安定化
処理の終点判定が極めて容易であり、しかも短時間て処
理を終了できるために工業的スケールでの実施において
も実用的な方法である。
Table 1 [Effects of the Invention] By the method of the present invention, a uniform and dense oxide film is formed on the particle surface of the ferromagnetic metal powder. Magnetic metal powder particles are obtained. Furthermore, the method according to the present invention is extremely easy to determine the end point of the stabilization treatment, and moreover, the treatment can be completed in a short time, making it a practical method even when implemented on an industrial scale.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の最大の特徴である酸素分圧を定速度で
上げていったときの流動層内の温度と出側酸素濃度の変
化の関係を示すグラフであり、流動層内の温度は上昇を
続け、ある時点でピークに達するが、これと同時に出側
酸素濃度が検出され始め、安定化処理の終点であること
が分かる。 また、第2図は実施例1.2.3における処理温度と飽
和磁化の関係を示すグラフであり、これより処理温度で
飽和磁化を制御することが可能であることが分る。 第1図 晴陽
Figure 1 is a graph showing the relationship between the temperature in the fluidized bed and the change in the oxygen concentration on the outlet side when the oxygen partial pressure is increased at a constant rate, which is the greatest feature of the present invention. continues to rise and reaches a peak at a certain point, but at the same time the outlet oxygen concentration begins to be detected, indicating that this is the end point of the stabilization process. Further, FIG. 2 is a graph showing the relationship between processing temperature and saturation magnetization in Example 1.2.3, and it can be seen from this that the saturation magnetization can be controlled by the processing temperature. Figure 1 sunny day

Claims (2)

【特許請求の範囲】[Claims] 1.鉄を主体とする強磁性金属粉末の表面を流動層中で
酸素含有ガスにより徐酸化する際に、流動層内温度が3
0℃以上でかつ酸素分圧ゼロの流動層中に酸素を導入す
るとともに、導入速度を強磁性金属粉末1g当り10m
l/min^2以下の一定増加率で増加し、流動層内の
温度がピークに達した時点および/または出側酸素濃度
を検出した時点で流動層内温度を室温まで低下させるこ
とを特徴とする酸化皮膜を有する強磁性金属粉末の製造
方法。
1. When the surface of ferromagnetic metal powder mainly composed of iron is slowly oxidized with oxygen-containing gas in a fluidized bed, the temperature inside the fluidized bed is 3.
Oxygen is introduced into the fluidized bed at a temperature of 0°C or higher and with zero oxygen partial pressure, and the introduction speed is set at 10 m/g of ferromagnetic metal powder.
The temperature increases at a constant rate of increase of l/min^2 or less, and the temperature inside the fluidized bed is lowered to room temperature when the temperature within the fluidized bed reaches a peak and/or when the outlet oxygen concentration is detected. A method for producing a ferromagnetic metal powder having an oxide film.
2.前記徐酸化の際の流動層内温度を30〜120℃の
任意の温度に設定することにより、飽和磁化を制御する
ことを特徴とする請求項1記載の酸化皮膜を有する強磁
性金属粉末の製造方法。
2. The production of ferromagnetic metal powder having an oxide film according to claim 1, wherein saturation magnetization is controlled by setting the temperature in the fluidized bed at an arbitrary temperature of 30 to 120°C during the gradual oxidation. Method.
JP1009893A 1989-01-20 1989-01-20 Manufacture of ferromagnetic metal powder having oxide film Pending JPH02192103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1009893A JPH02192103A (en) 1989-01-20 1989-01-20 Manufacture of ferromagnetic metal powder having oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1009893A JPH02192103A (en) 1989-01-20 1989-01-20 Manufacture of ferromagnetic metal powder having oxide film

Publications (1)

Publication Number Publication Date
JPH02192103A true JPH02192103A (en) 1990-07-27

Family

ID=11732810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1009893A Pending JPH02192103A (en) 1989-01-20 1989-01-20 Manufacture of ferromagnetic metal powder having oxide film

Country Status (1)

Country Link
JP (1) JPH02192103A (en)

Similar Documents

Publication Publication Date Title
US4155748A (en) Manufacture of ferromagnetic metal particles consisting essentially of iron
US4344791A (en) Manufacture of acicular ferromagnetic iron particles
US4295879A (en) Manufacture of acicular ferromagnetic iron particles
JPH02192103A (en) Manufacture of ferromagnetic metal powder having oxide film
JP2731603B2 (en) Stabilization method of metal magnetic powder
JPH01172501A (en) Manufacture of metal magnetic powder
JPH0270003A (en) Method for treating ferromagnetic iron powder
JPH03169001A (en) Dry-process stabilization of metal powder
JPH08153613A (en) Stabilizing method for metal magnetic powder
JP2003263720A (en) Ferromagnetic iron alloy powder for magnetic recording medium and method for manufacturing the same
JP3428197B2 (en) Acicular magnetic iron oxide particles and method for producing the same
JPS6136684B2 (en)
JPS6349722B2 (en)
JP2735910B2 (en) Method for producing metal magnetic powder for magnetic recording
JPH05234734A (en) Method for stabilizing metal magnetic powder
JPS6187302A (en) Manufacture of magnetic recording medium
JPH01294810A (en) Production of magnetic metal powder for magnetic recording
JPH0834145B2 (en) Method for producing metal magnetic powder for magnetic recording
JPH0669011A (en) Manufacture of metal magnetic powder
JPS639734B2 (en)
JPH01241801A (en) Manufacture of ferromagnetic iron powder
JPH02119104A (en) Manufacture of magnetic powder for magnetic recording subjected to sintering protection treatment by using aluminum compound
JPH0696922A (en) Manufacture of metallic magnetic powder and film for magnetic recording medium
JPH01309903A (en) Method for stabilizing ferromagnetic iron powder
JPS6116024A (en) Magnetic recording medium