JPH06134455A - Method for coagulating photochemically and ionizing microp articulate impurities in liquid - Google Patents

Method for coagulating photochemically and ionizing microp articulate impurities in liquid

Info

Publication number
JPH06134455A
JPH06134455A JP30627392A JP30627392A JPH06134455A JP H06134455 A JPH06134455 A JP H06134455A JP 30627392 A JP30627392 A JP 30627392A JP 30627392 A JP30627392 A JP 30627392A JP H06134455 A JPH06134455 A JP H06134455A
Authority
JP
Japan
Prior art keywords
liquid
impurities
photochemical
treatment
aggregation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30627392A
Other languages
Japanese (ja)
Other versions
JP3315447B2 (en
Inventor
Koji Nakano
浩二 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON PHOTO SCI KK
Original Assignee
NIPPON PHOTO SCI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON PHOTO SCI KK filed Critical NIPPON PHOTO SCI KK
Priority to JP30627392A priority Critical patent/JP3315447B2/en
Publication of JPH06134455A publication Critical patent/JPH06134455A/en
Application granted granted Critical
Publication of JP3315447B2 publication Critical patent/JP3315447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3223Single elongated lamp located on the central axis of a turbular reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/324Lamp cleaning installations, e.g. brushes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To ensure that the measurement of microparticulate impurities and ion in liquid is facilitated and subsequent countermeasures are taken properly by irrdiating a liquid containing microparticulate impurities with ultraviolet rays or sunlight, and coagulating photochemically and inonizing the microparticulate impurities. CONSTITUTION:A transmission tube 3 of, for example, quartz glass which is a material with high ultraviolet permeability coefficient and an effect to prevent an effluent from flowing out to an object to be irradiated, is arranged in a treatment tube 1 of stainless steel consisting of an inflow tube 5 and an outflow tube 6 of liquid to be treated. In addition, an ultraviolet lamp 2 is arranged in the transmission tube 3. Further, microparticulate impurities are coagulated photochemically and inonized by emitting an infrared beam to the microparticulate impurities in the liquid which flows into the treatment tube 1 from the inflow tube 5. Thus measuring the micorparticulate impurities and ion in the liquid is achieved by the described treatment. The liquid undergoing said treatment is allowed to flow out of the outflow tube 6 and then is treated using an ion exchange device, a superfiltration membrane device, a reverse osmosis membrane device as liquid treaters to remove microparticulate impurities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体中の微粒子状不純
物の光化学凝集、イオン化処理方法に関するもので、液
体に含有されている微量なコロイド物質、バクテリア、
パイロジェン、細菌等の微粒子状不純物、イオンを測定
または除去することに特徴がある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photochemical agglomeration and ionization treatment method for fine particle impurities in a liquid, which contains a trace amount of colloidal substances, bacteria,
It is characterized by measuring or removing particulate impurities and ions such as pyrogens and bacteria.

【0002】[0002]

【従来の技術】最近、半導体、液晶、医薬品業界や原子
力発電所等においては、超純水を始めとする高純度の液
体が使用されている。例えば、LSI等の半導体を製造
する際には、半導体の洗浄水として超純水が使用されて
いるが、通常の場合、この分野で用いられる超純水は、
イオン交換装置、超濾過膜装置、逆浸透膜装置等を適宜
組み合わせた超純水製造システムによって製造されてい
る。
2. Description of the Related Art Recently, high purity liquids such as ultrapure water have been used in the semiconductor, liquid crystal, pharmaceutical industry and nuclear power plants. For example, when manufacturing semiconductors such as LSI, ultrapure water is used as cleaning water for semiconductors, but normally, ultrapure water used in this field is
It is manufactured by an ultrapure water manufacturing system that appropriately combines an ion exchange device, an ultrafiltration membrane device, a reverse osmosis membrane device, and the like.

【0003】しかし、この超純水製造システムは、被処
理対象である原水中に含まれている各種の不純物イオ
ン、有機物、懸濁粒状物等の除去には有効であるが、微
量なコロイド物質(コロイドシリカ、コロイド鉄)、バ
クテリア、パイロジェン(発熱性物質)、細菌等の微粒
子状不純物の除去には不適当であり、処理液である超純
水中にリークすることが多かった。
However, this ultrapure water production system is effective for removing various impurity ions, organic substances, suspended particulate matter, etc. contained in the raw water to be treated, but a trace amount of colloidal substance. It is unsuitable for removing particulate impurities such as (colloidal silica, colloidal iron), bacteria, pyrogens (pyrogenic substances) and bacteria, and often leaks into the ultrapure water which is the treatment liquid.

【0004】そして、これらの微粒子状不純物は微量で
あると、簡単、容易な測定機器では測定できず、見逃さ
れて超純水中に残留したままであることが多く、このよ
うな超純水を半導体の洗浄水として使用すると、これら
の微粒子状不純物が半導体にスケールとして付着し、半
導体の汚染、回路破壊等のトラブルを発生することもあ
った。
If the amount of these fine particulate impurities is very small, they cannot be measured by a simple and easy measuring instrument, and they are often overlooked and remain in the ultrapure water. When used as washing water for semiconductors, these fine particles of impurities may adhere to the semiconductor as a scale, causing troubles such as semiconductor contamination and circuit breakage.

【0005】また、これらの微量な微粒子状不純物は、
かなり高度で、精密な測定機器で慎重に測定すると、測
定が可能であるが、しかし、これらの微量な微粒子状不
純物の除去は非常に難しく、適切な除去手段がないのが
実情であった。
Further, these minute amounts of fine particulate impurities are
Although it is possible to perform the measurement by careful measurement with a highly sophisticated and precise measuring instrument, it is very difficult to remove these minute amounts of particulate impurities, and there is no suitable removal means.

【0006】前述した半導体、液晶、医薬品業界や原子
力発電所等においては、近年の技術革新、技術の高度化
に伴い、この微量なコロイド物質、バクテリア、パイロ
ジェン、細菌等の微粒子状不純物の液体よりの除去を簡
単、容易に、かつ正確に測定することによって、事前に
トラブルを回避したり、適切な対応をとることが求めら
れており、さらに技術課題としては、この微量の微粒子
状不純物を液体より完全に除去することが切望されてい
る。
In the semiconductor, liquid crystal, pharmaceutical industry, nuclear power plant, etc. described above, with the recent technological innovation and sophistication of technology, this minute amount of colloidal substances, liquids of fine particulate impurities such as bacteria, pyrogens and bacteria are used. It is required to avoid troubles and take appropriate measures in advance by measuring the removal of impurities easily, easily and accurately. There is a strong desire for more complete removal.

【0007】[0007]

【発明が解決しようとする課題】本発明は、液体中の微
量なコロイド物質、バクテリア、パイロジェン、細菌等
の微粒子状不純物を、簡単、容易に測定し、これに応じ
て適切に対処することによって、これらの微量な微粒子
状不純物に起因して発生する各種のトラブルを事前に回
避することにある。
DISCLOSURE OF THE INVENTION The present invention provides a simple and easy method for measuring minute amounts of colloidal substances, bacteria, pyrogens, bacteria and other particulate impurities in a liquid, and taking appropriate measures accordingly. In order to avoid various troubles caused by these minute amounts of fine particulate impurities in advance.

【0008】また、本発明は、液体中の微量なコロイド
物質、バクテリア、パイロジェン、細菌等の微粒子状不
純物を、簡単、容易に除去し、この純度の高い処理液体
を各種の産業分野で使用して、高品質の製品を製造する
ことにある。
Further, the present invention can easily and easily remove minute amounts of colloidal substances, fine particles of impurities such as bacteria, pyrogens and bacteria in a liquid, and use the treated liquid with high purity in various industrial fields. To produce high quality products.

【0009】[0009]

【課題を解決するための手段】本発明は、液体中の微粒
子状不純物の光化学凝集、イオン化処理方法に関するも
のであり、微量なコロイド物質、バクテリア、パイロジ
ェン、細菌等の微粒子状不純物を含有する液体に、紫外
線(望ましくは220nmの紫外線)、太陽光線等の光
照射を行い、液体中の微粒子状不純物を光化学凝集、イ
オン化処理することによって、液体中の微粒子状不純
物、イオンの測定を可能にしたことに特徴がある。
The present invention relates to a method for photochemical aggregation and ionization treatment of particulate impurities in a liquid, which contains a trace amount of particulate impurities such as colloidal substances, bacteria, pyrogens and bacteria. Ultraviolet rays (preferably 220 nm ultraviolet rays), sunlight, etc. are irradiated to the particles to perform photochemical aggregation and ionization treatment of fine particle impurities in the liquid, thereby enabling measurement of fine particle impurities and ions in the liquid. It is characterized by this.

【0010】また、本発明は、前述した液体の光化学凝
集、イオン化処理方法に関するもので、光化学凝集、イ
オン化処理した液体中の微量な微粒子状不純物を、イオ
ン交換装置、超濾過膜装置、逆浸透膜装置等の液体処理
装置のいずれか、またはこれらの液体処理装置を組み合
わせたシステムで除去することに特徴がある。
The present invention also relates to the above-described photochemical aggregation and ionization treatment method for a liquid, in which a trace amount of fine particulate impurities in the liquid subjected to the photochemical aggregation and ionization treatment are ion exchange device, ultrafiltration membrane device, reverse osmosis device. It is characterized in that it is removed by any of the liquid treatment devices such as a membrane device or a system in which these liquid treatment devices are combined.

【0011】さらに、本発明は、前述した液体の光化学
凝集、イオン化処理方法に関するもので、液体中の微量
な微粒子状不純物を紫外線、太陽光線等の光照射を行う
について、光照射とともにオゾンを添加して、微粒子状
不純物の光化学凝集、イオン化処理を一段と促進するこ
とに特徴がある。
Further, the present invention relates to the above-mentioned photochemical aggregation and ionization treatment method for a liquid, in which a minute amount of fine particulate impurities in the liquid are irradiated with light such as ultraviolet rays and sun rays, and ozone is added together with the light irradiation. Then, the photochemical aggregation and ionization treatment of the particulate impurities are further promoted.

【0012】さらに、本発明は、前述した液体の光化学
凝集、イオン化処理方法に関するもので、液体中の微量
な微粒子状不純物を紫外線、太陽光線等の光照射を行う
について、光照射とともに酸化剤を添加して、微粒子状
不純物の光化学凝集、イオン化処理を一段と促進するこ
とに特徴がある。
Further, the present invention relates to the above-described photochemical aggregation and ionization treatment method for a liquid, in which a minute amount of fine particulate impurities in the liquid are irradiated with light such as ultraviolet rays or sunlight, and an oxidizing agent is added together with the light irradiation. It is characterized by being added to further promote photochemical aggregation and ionization treatment of fine particle impurities.

【0013】[0013]

【作用】以上のように、液体中の微量なコロイド物質、
バクテリア、パイロジェン、細菌等の微粒子状不純物
に、紫外線、太陽光線等の光照射を行うと、微量な微粒
子状不純物は、相互に光化学反応によって凝集して増粒
化することによって、さらに光化学反応によってイオン
化(例えばコロイド状シリカはイオン化する)すること
によって、簡単、容易に測定、除去し易くなる。
[Function] As described above, a minute amount of colloidal substance in the liquid,
When minute particles of impurities such as bacteria, pyrogens, and bacteria are irradiated with light such as ultraviolet rays and sun rays, minute amounts of minute particles of impurities are aggregated by photochemical reaction to increase the particle size. Ionization (for example, colloidal silica is ionized) facilitates easy and easy measurement and removal.

【0014】本発明の液体中の微粒子状不純物の光化学
凝集、イオン化処理方法を実施する装置の一例について
説明すると、図1に示すように、周知の紫外線照射装置
のステンレス製の処理筒1内に紫外線ランプ2を配設す
るが、この紫外線ランプ2は紫外線透過率が高く、かつ
被照射体に溶出物が流出しない材質、たとえば石英ガラ
スよりなる透過筒3に収めることが通常である。以上の
ように、処理筒1を構成することによって、処理筒1内
に流入する液体中の微量な微粒子状不純物に紫外線照射
することによって、微粒子状不純物の光化学凝集、イオ
ン化処理を行う流路4を形成し、さらに処理筒1には、
液体の流入管5と処理液の流出管6を接続し、そして、
この液体の流入管5には、必要に応じて、オゾン発生機
(図示せず)または酸化剤貯槽(図示せず)を接続する
とよい。
An example of an apparatus for carrying out the photochemical coagulation and ionization treatment method of the particulate impurities in the liquid of the present invention will be explained. As shown in FIG. Although the ultraviolet lamp 2 is provided, the ultraviolet lamp 2 is usually housed in a transparent cylinder 3 made of a material such as quartz glass, which has a high ultraviolet transmittance and in which the eluate does not flow out to the irradiated body. As described above, by configuring the processing cylinder 1, by irradiating the minute amount of fine particle impurities in the liquid flowing into the processing cylinder 1 with ultraviolet rays, the flow path 4 for performing photochemical aggregation and ionization processing of the fine particle impurities. Is formed, and further, in the processing cylinder 1,
The liquid inflow pipe 5 and the processing liquid outflow pipe 6 are connected, and
If necessary, an ozone generator (not shown) or an oxidant storage tank (not shown) may be connected to the liquid inflow pipe 5.

【0015】[0015]

【実施例1】公知のイオン交換装置、超濾過膜装置、逆
浸透膜装置等を組み合わせた超純水製造システムによっ
て製造した超純水を、(イ)株式会社堀場製作所製の微
粒子測定装置、PLCA−310(0.07μm以上の
微粒子測定可能)、(ロ)DKK株式会社製のシリカモ
ニター、SLC−1605によって、微粒子とシリカイ
オンを測定したところ、以下のような測定結果になっ
た。
[Example 1] Ultrapure water produced by an ultrapure water production system combining a known ion exchange device, ultrafiltration membrane device, reverse osmosis membrane device, etc. Fine particles and silica ions were measured by PLCA-310 (measuring fine particles of 0.07 μm or more), (b) silica monitor manufactured by DKK Co., Ltd., SLC-1605, and the following measurement results were obtained.

【0016】 超純水中の微粒子とシリカイオンの測定結果 (イ)微粒子量(個/ml) 0 (ロ)微粒子径(μm) 0 (ハ)シリカイオン(μg(Si02 /l)) 0Measurement results of fine particles and silica ions in ultrapure water (a) Fine particle amount (pieces / ml) 0 (b) Fine particle diameter (μm) 0 (c) Silica ions (μg (Si 0 2 / l)) 0

【0017】前述した超純水製造システムによって製造
した超純水を、次の三種類の実験装置に流速2t/hr
で通液して光化学凝集、イオン化処理を行った。 (A)実験装置 ステンレス製の処理筒(1000mm(L) ×2000m
m(W) ×2000mm(H))の内部に、株式会社日本フ
ォトサイエンス製の185nmの波長、65Wの紫外線
ランプ(AY−6)を内蔵した石英ガラス製の透過筒を
20本配置したもの。 (B)実験装置 前述した(A)実験装置に、株式会社日本フォトサイエ
ンス製のオゾン発生装置(NPS−03)を付設し、超
純水にオゾンを10ppm添加したもの。 (C)実験装置 前述した(A)実験装置に、酸化剤貯槽を付設し、超純
水に酸化剤として過酸化水素を7ppm添加したもの。 以上の実験装置によって超純水を処理した結果、半導体
の洗浄水中の微粒子とシリカイオンは、以下に示すよう
な状態になった。
The ultrapure water produced by the above-mentioned ultrapure water production system was flowed into the following three types of experimental equipment at a flow rate of 2 t / hr.
Then, photochemical aggregation and ionization treatment were carried out. (A) Experimental equipment Stainless steel processing cylinder (1000mm (L) x 2000m
m (W) × 2000 mm (H)), in which 20 transmission tubes made of quartz glass having a 185 nm wavelength, 65 W ultraviolet lamp (AY-6) made by Nippon Photoscience Co., Ltd. built therein are arranged. (B) Experimental Device An ozone generator (NPS-03) manufactured by Nippon Photoscience Co., Ltd. was attached to the experimental device (A) described above, and 10 ppm of ozone was added to ultrapure water. (C) Experimental device The above-mentioned (A) experimental device was provided with an oxidant storage tank, and 7 ppm of hydrogen peroxide was added to ultrapure water as an oxidant. As a result of treating the ultrapure water with the above experimental apparatus, the fine particles and silica ions in the semiconductor washing water were in the following states.

【0018】 本発明法で処理した超純水中の微粒子とシリカイオンの測定結果 実験装置 (A) (B) (C) (イ)微粒子量(個/ml) 40 45 60 (ロ)微粒子径(μm) 0.07 以上 0.07以上 0.07 以上 (ハ)シリカイオン 5〜17 6〜18 9〜25 (μg(Si02 /l)) 以上の結果で明なように、本発明の紫外線照射、紫外線
照射とオゾン添加、紫外線照射と酸化剤添加を行うと、
超純水の微量な微粒子は光化学凝集によって増粒(0.
07μm以上の微粒子径に増粒)したため、またシリカ
は光化学イオン化によってイオン化したため、前述した
微粒子測定装置、シリカモニターで簡単、容易に測定で
きた。
Measurement results of fine particles and silica ions in ultrapure water treated by the method of the present invention Experimental apparatus (A) (B) (C) (a) Fine particle amount (pieces / ml) 40 45 60 (b) Fine particle diameter (Μm) 0.07 or more 0.07 or more 0.07 or more (C) Silica ion 5 to 176 to 189 to 25 (μg (Si0 2 / l)) As is clear from the above results, the ultraviolet irradiation and the ultraviolet irradiation of the present invention are When ozone is added, UV irradiation and oxidizer are added,
Trace amount of ultrapure water particles are increased by photochemical aggregation (0.
Since the particle size was increased to 07 μm or more) and the silica was ionized by photochemical ionization, it was possible to easily and easily measure with the above-described particle measuring device and silica monitor.

【0019】[0019]

【実施例2】公知のイオン交換装置、超濾過膜装置、逆
浸透膜装置等を組み合わせた超純水製造システムで製造
した超純水によって半導体を洗浄し、その洗浄水を回収
し、前述した(イ)の微粒子測定装置、(ロ)のシリカ
モニターによって、微粒子とシリカイオンを測定したと
ころ、以下のような結果になった。
Example 2 A semiconductor was washed with ultrapure water produced by an ultrapure water production system combining a known ion exchange device, ultrafiltration membrane device, reverse osmosis membrane device, etc., and the washing water was collected and was used as described above. When the fine particles and silica ions were measured by the fine particle measuring device (a) and the silica monitor (b), the following results were obtained.

【0020】 洗浄水中の微粒子とシリカイオンの測定結果 (イ)微粒子量(個/ml) 500 (ロ)微粒子径(μm) 0.07以上 (ハ)シリカイオン(μg(Si02 /l)) 3〜6Measurement results of fine particles in washing water and silica ion (a) Fine particle amount (pieces / ml) 500 (b) Fine particle diameter (μm) 0.07 or more (c) Silica ion (μg (Si 0 2 / l)) 3 to 6

【0021】前述した半導体の洗浄水を、次の三種類の
実験装置に流速1t/hrで通液して光化学凝集、イオ
ン化処理をおこなった。 (A)実験装置 ステンレス製の処理筒(1000mm(L) ×1000m
m(W) ×1000mm(H) )の内部に、株式会社日本フ
ォトサイエンス製の220nm以下の波長、780Wの
紫外線ランプ(AV−9)を内蔵した石英ガラス製の透
過筒を2本配置したもの。 (B)実験装置 前述した(A)実験装置に、株式会社日本フォトサイエ
ンス製のオゾン発生装置(NPS−03)を付設し、超
純水にオゾンを11ppm添加したもの。 (C)実験装置 前述した(A)実験装置に、酸化剤貯槽を付設し、超純
水に酸化剤として過酸化水素を8ppm添加したもの。 以上の実験装置によって半導体の洗浄水を処理した結
果、その洗浄水中の微粒子とシリカイオンは、以下に示
すような状態になった。
The above-mentioned semiconductor washing water was passed through the following three types of experimental equipment at a flow rate of 1 t / hr to perform photochemical aggregation and ionization treatment. (A) Experimental equipment Stainless steel processing cylinder (1000mm (L) x 1000m
m (W) × 1000 mm (H)) with two quartz glass transmission tubes with a UV lamp (AV-9) of 780 W and a wavelength of 220 nm or less manufactured by Nihon Photo Science Co., Ltd. . (B) Experimental Device An ozone generator (NPS-03) manufactured by Nippon Photoscience Co., Ltd. was attached to the experimental device (A) described above, and 11 ppm of ozone was added to ultrapure water. (C) Experimental device The above-mentioned (A) experimental device was provided with an oxidant storage tank, and 8 ppm of hydrogen peroxide as an oxidant was added to ultrapure water. As a result of treating the semiconductor washing water with the above experimental apparatus, the fine particles and silica ions in the washing water were in the following states.

【0022】 本発明法で処理した洗浄水中の微粒子とシリカイオンの測定結果 実験装置 (A) (B) (C) (イ)微粒子量(個/ml) 695 815 880 (ロ)微粒子径(μm) 0.07以上 0.07以上 0.07以上 (ハ)イオン状シリカ 8〜17 9〜18 9〜25 (μg(Si02 /l)) 以上の結果で明なように、本発明の紫外線照射、紫外線
照射とオゾン添加、紫外線照射と酸化剤添加を行うと、
洗浄水の微粒子は光化学凝集によって増粒(0.07μ
m以上の微粒子径に増粒)したため、またシリカは光化
学イオン化によってイオン化したため、前述した微粒子
測定装置、シリカモニターで簡単、容易に測定できた。
Measurement Results of Fine Particles and Silica Ions in Wash Water Treated by the Method of the Present Invention Experimental apparatus (A) (B) (C) (a) Fine particle amount (pieces / ml) 695 815 880 (b) Fine particle diameter (μm) ) 0.07 or 0.07 or 0.07 or higher (c) an ion-like silica 8~17 9~18 9~25 (μg (Si0 2 / l)) Ming that as in the above results, the ultraviolet irradiation, ultraviolet irradiation and ozone present invention Addition, UV irradiation and oxidant addition,
Fine particles of washing water are increased by photochemical aggregation (0.07μ
Since the particle size was increased to m or more) and the silica was ionized by photochemical ionization, it was possible to easily and easily measure with the above-described particle measuring device and silica monitor.

【0023】次いで、以上の実験装置(A)、(B)、
(C)で処理した光化学凝集した微粒子とイオン化した
シリカを含む洗浄水を、公知のイオン交換装置と逆浸透
膜装置等を組み合わせた超純水製造システムに流速1t
/hrで通液して処理したところ、その処理結果は、以
下に示す通りであった。
Next, the above experimental devices (A), (B),
The washing water containing the photochemically agglomerated fine particles treated in (C) and the ionized silica was introduced into an ultrapure water production system in which a known ion exchange device and a reverse osmosis membrane device were combined with a flow rate of 1 t.
When the solution was passed through at a rate of / hr for treatment, the treatment results were as shown below.

【0024】 超純水製造システムで処理した洗浄水の微粒子とシリカイオンの除去結果 実験装置 (A) (B) (C) (イ)微粒子量(個/ml) 0〜2 0〜1 0 (ロ)微粒子径(μm) 0.28 〜0.2 0.24〜0.2 0.2〜0.15 (ハ)シリカ(μg(Si02 /l)) 0.4〜0.5 0.35〜0.4 0.3〜0.4 以上の結果で明なように、本発明の紫外線照射、紫外線
照射とオゾン添加、紫外線照射と酸化剤添加を行うと、
超純水の微量な微粒子は光化学凝集によって増粒し、ま
たシリカは光化学イオン化によってイオン化した結果、
超純水製造システムで洗浄水中の微粒子とシリカイオン
を除去することができた。
Results of Removal of Fine Particles and Silica Ions of Wash Water Treated by Ultrapure Water Production System Experimental apparatus (A) (B) (C) (a) Fine particle amount (pieces / ml) 0 to 20 to 10 ( b) fine diameter (μm) 0.28 ~0.2 0.24~0.2 0.2~0.15 (c) silica (μg (Si0 2 / l) ) 0.4~0.5 0.35~0.4 0.3~0.4 Ming that as in the above results, the present invention UV irradiation, UV irradiation and ozone addition, UV irradiation and oxidant addition,
The ultrafine particles of ultrapure water are increased in size by photochemical aggregation, and silica is ionized by photochemical ionization.
The ultrapure water production system was able to remove fine particles and silica ions in the wash water.

【0025】前述した実施例においては、被処理対象液
に含まれている微粒子状不純物のうち、微粒子とコロイ
ド物質について言及したが、バクテリア、パイロジェ
ン、細菌等の微粒子状不純物微粒子の測定、除去につい
ても同様である。
Although the fine particles and colloidal substances among the fine particle impurities contained in the liquid to be treated are mentioned in the above-mentioned embodiments, the measurement and removal of fine particle impurities such as bacteria, pyrogens and bacteria are described. Is also the same.

【0026】光照射手段としては紫外線照射が一般的あ
り、この場合に使用される紫外線ランプとしては、波長
185nmの低圧ランプ、波長220nm以下の中・高
圧ランプが最適であり、これ以外の主波長254nmの
低圧殺菌ランプ、主波長365nmの中・高圧ランプ
は、光化学凝集、イオン化処理効果が落ちる。またが紫
外線ランプ以外にも、光化学凝集、イオン化処理の目的
に応じて、太陽光ランプ、ケミカルランプ、ブラックラ
イトランプ、メタルライトランプ、ナトリウムランプ等
の各種ランプを使用してもよい。
Ultraviolet irradiation is generally used as the light irradiation means. As the ultraviolet lamp used in this case, a low pressure lamp with a wavelength of 185 nm and a medium / high pressure lamp with a wavelength of 220 nm or less are optimal, and other main wavelengths. The low pressure sterilization lamp of 254 nm and the medium / high pressure lamp of the main wavelength of 365 nm have poor photochemical coagulation and ionization treatment effects. In addition to the ultraviolet lamp, various lamps such as a solar lamp, a chemical lamp, a black light lamp, a metal light lamp, and a sodium lamp may be used depending on the purpose of photochemical aggregation and ionization treatment.

【0027】光化学凝集、イオン化処理を促進するため
に液体に添加するオゾンとしては、オゾン発生機によっ
て発生したオゾンを用いることが一般的であり、オゾン
の添加量は3〜20ppmの範囲であればよく、3pp
m未満であると所期の処理効果があがらず、また20p
pmを超えても、オゾン添加量の増加に応じた処理効果
があがらない。
Ozone generated by an ozone generator is generally used as ozone to be added to the liquid in order to promote photochemical coagulation and ionization treatment, and the amount of ozone added is in the range of 3 to 20 ppm. Well, 3pp
If it is less than m, the desired treatment effect will not be obtained, and it will be 20p.
Even if it exceeds pm, the treatment effect corresponding to the increase in the amount of ozone added does not increase.

【0028】光化学凝集、イオン化処理を促進するため
に液体に添加する酸化剤としては、H22 以外にBr
3 、O2 、O3 等を用いるとよく、これらの一種また
は二種以上を光化学凝集、イオン化処理目的に応じて適
宜選択して使用する。酸化剤の添加量は5〜10ppm
の範囲であればよく、5ppm未満であると所期の処理
効果があがらず、また10ppmを超えると、これに応
じた処理効果があがらず、酸化剤の添加量が過剰とな
り、かえって不純物が増加する結果にもなるので不都合
である。なお酸化剤を併用する場合には、酸化剤の濃度
により紫外線等の光吸収係数が異なるために、酸化剤の
濃度と光吸収係数との関係を考慮して液体の光化学凝
集、イオン化処理を行う必要がある。
In addition to H 2 O 2 , Br is used as an oxidizing agent added to the liquid for promoting photochemical aggregation and ionization treatment.
It is preferable to use O 3 , O 2 , O 3 and the like, and one or more of these are appropriately selected and used according to the purpose of photochemical aggregation or ionization treatment. Addition amount of oxidizer is 5-10ppm
If it is less than 5 ppm, the desired treatment effect will not be obtained, and if it exceeds 10 ppm, the treatment effect corresponding to this will not be obtained, and the amount of oxidant added will be excessive, which will rather increase impurities. This is also inconvenient because it will result in When an oxidant is used in combination, the optical absorption coefficient of ultraviolet rays and the like varies depending on the concentration of the oxidant, so photochemical aggregation and ionization of the liquid are performed in consideration of the relationship between the concentration of the oxidant and the optical absorption coefficient. There is a need.

【0029】[0029]

【考案の効果】本発明によると、液体中の微量なコロイ
ド物質(コロイドシリカ、コロイド鉄)、バクテリア、
パイロジェン(発熱性物質)、細菌等の微粒子状不純物
を、簡単、容易な測定機器で測定して、除去することが
可能であり、これらの微粒子状不純物を含有しない高純
度の処理液を得ることができる。
According to the present invention, a trace amount of colloidal substances (colloidal silica, colloidal iron), bacteria,
It is possible to measure and remove fine particle impurities such as pyrogens (pyrogenic substances) and bacteria with a simple and easy measuring device, and obtain a high-purity treatment liquid that does not contain these fine particle impurities. You can

【0030】したがって、処理液である超純水中に微粒
子状不純物が残留することがないために、たとえば半導
体の洗浄水として使用しても、微粒子状不純物が半導体
にスケールとして付着し、半導体の汚染、回路破壊等の
トラブルを発生することはなく、高品質の半導体を歩留
りよく製造することができる。
Therefore, since the fine particle impurities do not remain in the ultrapure water as the processing liquid, the fine particle impurities adhere to the semiconductor as a scale even when it is used as cleaning water for the semiconductor. Problems such as contamination and circuit destruction do not occur, and high quality semiconductors can be manufactured with high yield.

【0031】特に、光照射とともにオゾンまたは酸化剤
を併用添加した場合は、液体中微粒子状不純物の光化学
凝集、イオン化処理が促進して処理効率が一段と向上
し、より純度の高い処理液体を得ることができる。
In particular, when ozone or an oxidant is added together with light irradiation, photochemical aggregation and ionization treatment of fine particle impurities in the liquid are promoted, the treatment efficiency is further improved, and a treated liquid having a higher purity is obtained. You can

【0032】本発明は、半導体、液晶、医薬品の製造工
程や原子力発電所等において使用する用水の処理の他
に、飲料水の浄化等にも活用することができる。
The present invention can be utilized not only for the treatment of water used in the manufacturing process of semiconductors, liquid crystals, pharmaceuticals and nuclear power plants, but also for the purification of drinking water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光化学凝集、イオン化処理を行う紫外
線ランプを円筒状の透過筒に内蔵させて配設した処理筒
の断面図である。
FIG. 1 is a cross-sectional view of a processing tube in which an ultraviolet lamp for performing photochemical coagulation and ionization processing of the present invention is installed in a cylindrical transmission tube.

【符号の説明】[Explanation of symbols]

1 処理筒 2 紫外線ランプ 3 透過筒 4 流路 1 treatment cylinder 2 ultraviolet lamp 3 transmission cylinder 4 flow path

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/52 ZAB Z 7824−4D 1/72 ZAB 9045−4D 101 9045−4D 1/78 ZAB 9045−4D 9/00 ZAB Z 7446−4D // G01N 15/00 C 2107−2J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication C02F 1/52 ZAB Z 7824-4D 1/72 ZAB 9045-4D 101 9045-4D 1/78 ZAB 9045 -4D 9/00 ZAB Z 7446-4D // G01N 15/00 C 2107-2J

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 微量なコロイド物質、バクテリア、パイ
ロジェン、細菌等の微粒子状不純物を含有する液体に、
紫外線、太陽光線等の光照射を行い、液体中の微粒子状
不純物を光化学凝集、イオン化処理することによって、
液体中の微粒子状不純物、イオンの測定を可能にした液
体中の微粒子状不純物の光化学凝集、イオン化処理方
法。
1. A liquid containing a trace amount of colloidal substances, particulate impurities such as bacteria, pyrogens and bacteria,
By irradiating light such as ultraviolet rays and sun rays, and photochemical aggregation and ionization treatment of fine particle impurities in the liquid,
A method for photochemical aggregation and ionization of fine particle impurities in a liquid, which enables measurement of fine particle impurities and ions in the liquid.
【請求項2】 請求項1の液体中の光化学凝集、イオン
化処理した微粒子状不純物を、イオン交換装置、超濾過
膜装置、逆浸透膜装置等の液体処理装置のいずれか、ま
たはこれらの液体処理装置を組み合わせたシステムで除
去して処理液体を製造する液体の光化学凝集、イオン化
処理方法。
2. A liquid treatment device such as an ion exchange device, an ultrafiltration membrane device, or a reverse osmosis membrane device, or the liquid treatment of the fine particle impurities obtained by photochemical aggregation and ionization treatment in the liquid according to claim 1. A photochemical coagulation and ionization treatment method for a liquid, which is produced by removing a treated liquid by a system including a combination of devices.
【請求項3】 請求項1または請求項2の液体中の微粒
子状不純物を光化学凝集、イオン化処理するについて、
光照射とともにオゾンを添加する液体の光化学凝集、イ
オン化処理方法。
3. Regarding the photochemical aggregation and ionization treatment of the particulate impurities in the liquid according to claim 1 or 2,
A photochemical aggregation and ionization treatment method of a liquid in which ozone is added together with light irradiation.
【請求項4】 請求項1または請求項2の液体中の微粒
子状不純物を光化学凝集、イオン化処理するについて、
光照射とともに酸化剤を添加する液体の光化学凝集、イ
オン化処理方法。
4. Regarding photochemical aggregation and ionization treatment of fine particle impurities in the liquid according to claim 1 or 2,
A photochemical aggregation and ionization treatment method of a liquid in which an oxidizing agent is added together with light irradiation.
【請求項5】 請求項1または請求項2の液体中の微粒
子状不純物を光化学凝集、イオン化処理するについて、
光照射として、220nm以下の紫外線の照射を行う液
体の光化学凝集、イオン化処理方法。
5. The photochemical coagulation and ionization treatment of the particulate impurities in the liquid according to claim 1 or 2,
A method of photochemical aggregation and ionization treatment of a liquid, which comprises irradiating ultraviolet rays of 220 nm or less as light irradiation.
JP30627392A 1992-10-20 1992-10-20 Photochemical agglomeration and ionization treatment method for particulate impurities in liquid Expired - Fee Related JP3315447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30627392A JP3315447B2 (en) 1992-10-20 1992-10-20 Photochemical agglomeration and ionization treatment method for particulate impurities in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30627392A JP3315447B2 (en) 1992-10-20 1992-10-20 Photochemical agglomeration and ionization treatment method for particulate impurities in liquid

Publications (2)

Publication Number Publication Date
JPH06134455A true JPH06134455A (en) 1994-05-17
JP3315447B2 JP3315447B2 (en) 2002-08-19

Family

ID=17955102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30627392A Expired - Fee Related JP3315447B2 (en) 1992-10-20 1992-10-20 Photochemical agglomeration and ionization treatment method for particulate impurities in liquid

Country Status (1)

Country Link
JP (1) JP3315447B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1112965A3 (en) * 1999-12-28 2002-03-13 Sociedad Espanola De Carburos Metalicos S.A. Process for the degradation of organic compounds in aqueous solution by means of ozonisation and sunlight irradiation
JP2007209856A (en) * 2006-02-07 2007-08-23 Toshiba Corp Agglomerator and its flocculation process of particle
CN108097648A (en) * 2016-11-25 2018-06-01 宁德市凯欣电池材料有限公司 Material wash mill

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1112965A3 (en) * 1999-12-28 2002-03-13 Sociedad Espanola De Carburos Metalicos S.A. Process for the degradation of organic compounds in aqueous solution by means of ozonisation and sunlight irradiation
ES2170626A1 (en) * 1999-12-28 2002-08-01 Soc Es Carburos Metalicos Sa Process for the degradation of organic compounds in aqueous solution by means of ozonisation and sunlight irradiation
JP2007209856A (en) * 2006-02-07 2007-08-23 Toshiba Corp Agglomerator and its flocculation process of particle
JP4660390B2 (en) * 2006-02-07 2011-03-30 株式会社東芝 Fine particle aggregating apparatus and aggregating method thereof
CN108097648A (en) * 2016-11-25 2018-06-01 宁德市凯欣电池材料有限公司 Material wash mill
CN108097648B (en) * 2016-11-25 2021-02-12 宁德市凯欣电池材料有限公司 Material washing device

Also Published As

Publication number Publication date
JP3315447B2 (en) 2002-08-19

Similar Documents

Publication Publication Date Title
TW522177B (en) System and process for recycling of spent fluid from plating bath
WO1991006848A1 (en) Method of measuring total quantity of organic substances in ultrapure water and ultrapure water treating system utilizing said method in preparation of ultrapure water
TW201922623A (en) Washing water treatment device and washing water treatment method
JP3954647B2 (en) Method and apparatus for purifying gas and liquid
JP4538604B2 (en) Photoreaction tube built-in photoreaction apparatus and water quality monitoring apparatus using the same
JP3315447B2 (en) Photochemical agglomeration and ionization treatment method for particulate impurities in liquid
JP2567273Y2 (en) UV irradiation device for photochemical reaction treatment
US20050133458A1 (en) Perchlorate removal apparatus
JPS63104696A (en) Device and method for conditioning water
JPH10216721A (en) Ultrapure water producing device
JPH10151450A (en) Method for decomposingly removing toc component in liquid
JP3332323B2 (en) Cleaning method and cleaning device for electronic component members
JPS58220000A (en) System for preparing extremely pure water
JPS608759B2 (en) Method for removing organic compounds from radioactive waste liquid
JPH09253638A (en) Ultrapure water making apparatus
JP3906684B2 (en) Ultrapure water supply device
JPH06285464A (en) Method and apparatus for treating recovered water to obtain recycled water
JPH06163480A (en) Surface treating method and surface treater
CN109879500A (en) A kind of Ultrapure water treatment technology
JP2888957B2 (en) Water evaluation method, pure water production method and its apparatus
JPH01284385A (en) Process and apparatus for producing pure water and superpure water
JP3452897B2 (en) Impurity detection device and impurity detection method
JP2002018431A (en) Device for irradiating ultraviolet ray and device for producing ultrapure water
JP4581291B2 (en) Specific resistance adjustment water sterilizer
JPH09192657A (en) Production of ultrapure water

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020521

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees