JP4581291B2 - Specific resistance adjustment water sterilizer - Google Patents

Specific resistance adjustment water sterilizer Download PDF

Info

Publication number
JP4581291B2
JP4581291B2 JP2001151172A JP2001151172A JP4581291B2 JP 4581291 B2 JP4581291 B2 JP 4581291B2 JP 2001151172 A JP2001151172 A JP 2001151172A JP 2001151172 A JP2001151172 A JP 2001151172A JP 4581291 B2 JP4581291 B2 JP 4581291B2
Authority
JP
Japan
Prior art keywords
ozone
water
specific resistance
inspection process
sterilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001151172A
Other languages
Japanese (ja)
Other versions
JP2002346570A (en
Inventor
明和 山本
満 野末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001151172A priority Critical patent/JP4581291B2/en
Publication of JP2002346570A publication Critical patent/JP2002346570A/en
Application granted granted Critical
Publication of JP4581291B2 publication Critical patent/JP4581291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、比抵抗が調整された水を殺菌するための装置に関する。
【0002】
【従来の技術】
比抵抗を所望の値に調整した水は、各種製品の生産工場などで幅広く利用されている。
【0003】
例えば、アルミ缶等の製缶工場においては、缶内部に比抵抗調整水を充填し、充填後の水と缶の導電性を確認することにより、缶の不良品検査を実施することが行われている。このような導電率測定による検査で使用される比抵抗調整水には、その比抵抗値の変動が検査に及ぼす影響が大きいため、比抵抗値の変動を極力低減した水であることが望まれている。
【0004】
従来、このような比抵抗調整水の供給のためには、イオン交換設備等で純水を製造し、該純水に炭酸を溶解させることで比抵抗を安定化させることが行われている(特公昭63−2231号公報)。
【0005】
近年、このような比抵抗調整水に限らず、各種工場で使用される純水等は、環境負荷の低減やコストダウンを目的として、ユースポイントで使用後、回収再利用することが行われている。比抵抗調整水を用いた設備においても、使用済み比抵抗調整水を回収し、必要に応じて純度や比抵抗を調整した後、循環再使用することが行われている。
【0006】
この使用済み比抵抗調整水(以下「回収水」と称す場合がある。)を回収して再使用する場合、TOC(全有機炭素)成分が混入すると、特に循環水系内に微生物が繁殖しやすく、微生物が製品に付着することにより商品価値が低下もしくは不良品化する場合がある。このため、紫外線殺菌装置、熱水殺菌装置、電子線殺菌装置、限外濾過膜除菌装置等を用いて回収水を殺菌ないし除菌することが行われている。
【0007】
【発明が解決しようとする課題】
上記従来の殺菌ないし除菌装置のうち、該殺菌ないし除菌装置の後段の循環配管中に発生する微生物をも殺菌ないし除菌することができるものは、熱水殺菌装置のみであるが、比抵抗調整水の回収、循環系に熱水を循環すると、耐熱性に劣るプラスチック配管やイオン交換樹脂、イオン交換膜等を劣化させる恐れがある。また、劣化の恐れがある部位を耐熱性のものに置き換えると設備コストが高価になる。このため、通常の回収水循環系では、熱水殺菌装置の適用は好ましくない。
【0008】
また、比抵抗調整水の回収、循環系においては、回収水の比抵抗値に影響を与えることなく、系内の微生物の繁殖を抑えることが望まれる。
【0009】
本発明は、比抵抗調整水の回収、循環系において、回収水の比抵抗値に影響を及ぼすことなく、系内を効果的に殺菌することができる比抵抗調整水殺菌装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の比抵抗調整水殺菌装置は、比抵抗値が調整された水を殺菌する装置であって、該比抵抗値が調整された水が缶検査プロセスからの回収水であり、缶検査プロセスからの回収水(被処理水中のオゾンを分解するためのオゾン分解装置と、該オゾン分解装置でオゾン分解処理された被処理水に紫外線を照射して殺菌する紫外線殺菌手段と、該紫外線殺菌手段で殺菌された被処理水にオゾンを添加するオゾン添加手段と、該オゾン添加手段でオゾンが添加された水を缶検査プロセスに循環する手段とを備えたことを特徴とする。
【0011】
本発明において、紫外線殺菌手段は、回収水の比抵抗値に影響を与えることなく、系内の微生物又は芽胞菌を殺菌もしくはその繁殖能力を低減させる。オゾン添加手段は、紫外線照射された回収水の一部もしくは全量にオゾンを溶解させ、オゾンの殺菌力により、以降の循環配管やユースポイント内の微生物の繁殖を抑制する。
【0012】
ところで、オゾン含有水に紫外線を照射すると、著しく強い酸化作用が生じ、水中の有機物が分解してイオン化し、比抵抗値に影響を与える。このため、本発明では、オゾン添加手段を紫外線殺菌手段の後段に設けると共に、紫外線殺菌手段の前段にオゾン分解手段を設ける。
【0013】
請求項2の比抵抗調整水殺菌装置は、更に、缶検査プロセスに循環される水のオゾン濃度を計測するオゾン濃度計測手段と該オゾン濃度計測手段で得られるオゾン濃度に基き、前記オゾン添加手段におけるオゾン添加量を制御する制御手段とを備えたことを特徴とするものであり、回収水中に所定濃度のオゾンを溶解させて確実に殺菌を行うことができる。
【0014】
請求項3の比抵抗調整水殺菌装置は、オゾン添加手段が、被処理水にオゾンを間欠的に添加するオゾン添加手段であり、この間欠添加時間を設定する間欠添加時間設定器を備えたことを特徴とするものであって、オゾンの間欠添加の時間間隔を調節することにより、オゾン使用量を節減した上で効率的な殺菌を行うことができる。
【0015】
【発明の実施の形態】
以下に図面を参照して、本発明の実施の形態を詳細に説明する。
【0016】
図1は本発明の比抵抗調整水殺菌装置の実施の形態を示す系統図である。
【0017】
図1の比抵抗調整水殺菌装置は、缶検査プロセス10からの回収水をポンプPでオゾン分解装置1、微粒子除去装置2及び紫外線殺菌装置3に順次通水して処理し、紫外線殺菌した水の一部をオゾン溶解装置4に通水し、残部はそのままオゾン溶解装置4からの水と合流して缶検査プロセス10に循環するものである。なお、この実施の形態では、オゾン濃度計5により、缶検査プロセス10に循環される水のオゾン濃度を測定し、この測定結果に基いてオゾン溶解装置4のオゾン溶解量を制御するように構成されている。
【0018】
オゾン分解装置1としては、活性炭塔、還元剤添加等を用いることができる。オゾン分解装置1により、回収水中のオゾンを分解除去し、オゾンが紫外線殺菌装置3で紫外線照射されることにより分解、イオン化して比抵抗値に影響を及ぼすことが防止される。即ち、図1に示す如く、回収水を紫外線殺菌装置3及びオゾン溶解装置4に通水して殺菌処理した後これを缶検査プロセス10に循環する場合、缶検査プロセス10からの回収水中には、オゾン溶解装置4で添加されたオゾンが含まれている。従って、図1の装置では、この回収水中のオゾンをオゾン分解装置1で分解して除去する。
【0019】
特に、オゾン分解装置1として活性炭塔を用いた場合には、回収水中のTOC成分をも分解除去してTOC成分が紫外線殺菌装置3で紫外線照射されることにより分解、イオン化することによる比抵抗値の変化も防止することができる。
【0020】
微粒子除去装置2としては、各種のフィルタや、限外濾過膜分離装置等を用いることができる。この微粒子除去装置2により、缶検査プロセス10や活性炭塔等のオゾン分解装置1から流出する微粒子を除去して回収水の純度を高めることができる。
【0021】
微粒子除去装置2の流出水は、次いで紫外線殺菌装置3で紫外線照射により殺菌が行われる。図1の装置では、回収水の循環系において、水中の微生物が紫外線殺菌装置3で繰り返し紫外線照射されることにより、死滅するか、少なくとも増殖能力を失う。
【0022】
紫外線殺菌装置3の流出水は一部がオゾン溶解装置4に導入され、残部は直接缶検査プロセス10に循環される。
【0023】
オゾン溶解装置4でオゾンを添加することにより、紫外線殺菌装置3での紫外線殺菌後にも水中に残留する耐性菌の殺菌を行うことができ、また、オゾン溶解装置4以降の循環配管における微生物の増殖も抑制することができる。更には、密閉系の缶検査プロセス10において、比抵抗調整水中から気化したオゾンにより、製造環境における滅菌を行うことができる。
【0024】
このオゾン溶解装置4へは、紫外線殺菌装置3の流出水の全量を導入しても良いが、図1に示す如く、その一部、例えば5〜50%をオゾン溶解装置4に導入し、オゾン添加後、紫外線殺菌装置3の流出水の残部と合流させるようにしてもよい。このようにすれば、オゾン溶解装置4を小型化することができる。
【0025】
図1の装置では、回収水の循環系の缶検査プロセス10の入口に設けたオゾン濃度計5により循環水中のオゾン濃度を測定し、この測定値に基いてオゾン溶解装置4におけるオゾン添加量を制御することにより、オゾン添加量の過不足を防止し、過剰量のオゾンによる缶検査プロセス10への悪影響を引き起こすことなく、殺菌に十分なオゾンを添加して、安定かつ確実な殺菌を行う。
【0026】
このオゾン濃度計5の測定値に基いて、オゾン溶解装置4におけるオゾン添加量を制御するには、例えば、オゾン溶解装置4のオゾン発生器へ供給する酸素量を調節する。即ち、オゾン濃度計5の測定値が設定値よりも少ない場合には、オゾン発生器への酸素供給量を増加してオゾン発生量を増やし、オゾン濃度計5の測定値が設定値よりも多い場合にはオゾン発生器への酸素供給量を低減して、オゾン発生量を減少させ、これによりオゾン添加量を調節する。オゾン発生器への酸素供給量を増減するには、例えば、オゾン発生器に空気を供給するコンプレッサ(空気圧縮器)をインバータ制御したり、オゾン発生器への酸素供給ラインに設けた調節弁(0〜100%の開度調節ができる弁)の開度を調節する。
【0027】
本発明において、このオゾン溶解装置4は、オゾンを間欠的に添加すると共に、このオゾンの間欠添加の時間間隔を任意に制御できるものが好ましい。
【0028】
即ち、夏季は水温が高くなり、微生物が生育し易いが、冬季は水温が低く、微生物が生育しにくい。このような外部環境による微生物の増殖傾向の変化に対応するには、オゾン濃度に基く管理よりも、オゾン添加を間欠的に行い、添加時間(ON時間)と添加停止時間(OFF時間)とを季節等に応じて予め設定しておき、例えば、夏季はON時間を長めに或いはOFF時間を短めに設定し、冬季はON時間を短めに或いはOFF時間を長めに設定し、設定した時間間隔でオゾンを間欠添加するのが好ましい。このように、オゾンの間欠添加の時間間隔を設定することができるオゾン溶解装置であれば、オゾン添加量の調節を容易に行うことができる。
【0029】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0030】
実施例1
図1に示す缶検査プロセス10からの回収水を10m/hrの流量で処理する殺菌循環系において、本発明による殺菌効果を調べた。
【0031】
用いたオゾン分解装置、微粒子除去装置、紫外線殺菌装置及びオゾン溶解装置は、次の通りである。
オゾン分解装置:活性炭塔
通水SV=50hr−1
微粒子除去装置:保安フィルタ(孔径1μm)
紫外線殺菌装置:波長253.7nmの紫外線を照射する装置
滞留時間6秒
オゾン溶解装置:オゾンを間欠添加するオゾン溶解装置
【0032】
オゾン溶解装置へは紫外線殺菌装置の流出水の25%を導入し、残部は直接缶検査プロセスに循環した。また、オゾン溶解装置では、夏季はON時間30分、OFF時間60分とし、冬季はON時間10分、OFF時間120分とし、オゾン濃度計の測定値が夏季は0.5〜1.0ppm、冬季は0.1〜0.5ppmとなるようにオゾン発生器への空気供給量を制御した。
【0033】
その結果、年間を通して、循環系内の生菌数を10個/L以下に抑えることができた。
【0034】
また、缶検査プロセスからの回収水の比抵抗値1.0MΩ・cmに変化はなく、殺菌により比抵抗値に影響を及ぼすことなく、缶検査プロセスに循環することができた。
【0035】
比較例1
実施例1において、活性炭塔を設けなかったこと以外は同様にして、殺菌循環を行ったところ、回収水中に含まれるオゾンが紫外線殺菌装置で分解、イオン化されることにより比抵抗値が0.5〜1.0MΩ・cmに変化した。なお、循環系内の生菌数は10個/L以下で殺菌効果は実施例1と同様であった。
【0036】
比較例2
実施例1において、オゾン溶解装置を設けなかったこと以外は同様にして殺菌循環を行ったところ、回収水の比抵抗に殆ど変化はなかったが、紫外線殺菌装置以降の循環配管内で微生物が増殖して生菌数10個/L以上となり、良好な殺菌効果を得ることができなかった。
【0037】
比較例3
実施例1において紫外線殺菌装置を設けなかったこと以外は同様にして殺菌循環を行ったところ、生菌数が10〜10個/Lと変動があった。
【0038】
【発明の効果】
以上詳述した通り、本発明の比抵抗調整水殺菌装置によれば、比抵抗調整水の回収、循環系において、回収水の比抵抗値に影響を及ぼすことなく、系内を効果的に殺菌することができる。
【図面の簡単な説明】
【図1】本発明の比抵抗調整水殺菌装置の実施の形態を示す系統図である。
【符号の説明】
1 オゾン分解装置
2 微粒子除去装置
3 紫外線殺菌装置
4 オゾン溶解装置
5 オゾン濃度計
10 缶検査プロセス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for sterilizing water with adjusted specific resistance.
[0002]
[Prior art]
Water whose specific resistance is adjusted to a desired value is widely used in production plants for various products.
[0003]
For example, in a can manufacturing plant such as aluminum cans, it is possible to inspect defective products of cans by filling the inside of the can with specific resistance adjustment water and checking the conductivity of the water after filling and the can. ing. The specific resistance adjustment water used in the inspection by the conductivity measurement has a great influence on the inspection due to the fluctuation of the specific resistance value. ing.
[0004]
Conventionally, in order to supply such specific resistance adjustment water, pure water is produced by ion exchange equipment or the like, and the specific resistance is stabilized by dissolving carbonic acid in the pure water ( Japanese Patent Publication No. 63-2231).
[0005]
In recent years, not only such specific resistance adjustment water but also pure water used in various factories has been collected and reused after being used at point of use for the purpose of reducing environmental burden and cost. Yes. Even in facilities using specific resistance adjustment water, used specific resistance adjustment water is collected, and after being adjusted for purity and specific resistance as necessary, circulation reuse is performed.
[0006]
When this specific resistance adjustment water (hereinafter sometimes referred to as “recovered water”) is recovered and reused, when TOC (total organic carbon) components are mixed, microorganisms are particularly likely to propagate in the circulating water system. In some cases, the value of the product may be reduced or the product may be defective due to microorganisms adhering to the product. For this reason, the recovered water is sterilized or sterilized using an ultraviolet sterilizer, a hot water sterilizer, an electron beam sterilizer, an ultrafiltration membrane sterilizer, or the like.
[0007]
[Problems to be solved by the invention]
Among the above-mentioned conventional sterilization or sterilization apparatuses, only the hot water sterilization apparatus can sterilize or sterilize microorganisms generated in the circulation pipes downstream of the sterilization or sterilization apparatus. If resistance adjustment water is collected and hot water is circulated in the circulation system, plastic piping, ion exchange resin, ion exchange membrane, etc., which are inferior in heat resistance, may be deteriorated. In addition, if a part that may be deteriorated is replaced with a heat-resistant part, the equipment cost becomes high. For this reason, application of a hot water sterilizer is not preferable in a normal recovered water circulation system.
[0008]
Further, in the collection and circulation system of specific resistance adjustment water, it is desired to suppress the growth of microorganisms in the system without affecting the specific resistance value of the recovered water.
[0009]
The present invention provides a specific resistance adjustment water sterilizer that can effectively sterilize the system without affecting the specific resistance value of the recovered water in the recovery and circulation system of the specific resistance adjustment water. Objective.
[0010]
[Means for Solving the Problems]
The specific resistance adjustment water sterilization apparatus of the present invention is an apparatus for sterilizing water whose specific resistance value is adjusted, and the water whose specific resistance value has been adjusted is recovered water from the can inspection process, and the can inspection process An ozone decomposing apparatus for decomposing ozone in recovered water ( treated water ) from the ultraviolet ray, ultraviolet sterilizing means for sterilizing the treated water ozone-decomposed by the ozone decomposing apparatus by irradiating with ultraviolet light, and the ultraviolet light An ozone addition means for adding ozone to the water to be treated sterilized by the sterilization means, and a means for circulating the water added with ozone by the ozone addition means to the can inspection process .
[0011]
In the present invention, the ultraviolet sterilization means sterilizes microorganisms or spore bacteria in the system or reduces their propagation ability without affecting the specific resistance value of the recovered water. The ozone addition means dissolves ozone in a part or all of the recovered water irradiated with ultraviolet rays, and suppresses the growth of microorganisms in the subsequent circulation piping and use points by the sterilizing power of ozone.
[0012]
By the way, when ozone-containing water is irradiated with ultraviolet rays, a remarkably strong oxidizing action is generated, and organic substances in the water are decomposed and ionized to affect the specific resistance value. For this reason, in the present invention, the ozone addition means is provided in the subsequent stage of the ultraviolet sterilization means, and the ozone decomposition means is provided in the previous stage of the ultraviolet sterilization means.
[0013]
The specific resistance adjustment water sterilizer according to claim 2 further comprises an ozone concentration measuring means for measuring an ozone concentration of water circulated in a can inspection process, and the ozone adding means based on the ozone concentration obtained by the ozone concentration measuring means. And a control means for controlling the amount of ozone added to the water, and it is possible to reliably sterilize by dissolving ozone at a predetermined concentration in the recovered water.
[0014]
In the specific resistance adjustment water sterilizer of claim 3, the ozone addition means is an ozone addition means for intermittently adding ozone to the water to be treated, and an intermittent addition time setting device for setting the intermittent addition time is provided. By adjusting the time interval of intermittent ozone addition, efficient sterilization can be performed while reducing the amount of ozone used.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0016]
FIG. 1 is a system diagram showing an embodiment of a specific resistance adjustment water sterilizer according to the present invention.
[0017]
The specific resistance-adjusted water sterilizer of FIG. 1 treats the recovered water from the can inspection process 10 by passing the water through the ozone decomposing apparatus 1, the particulate removing apparatus 2 and the ultraviolet sterilizing apparatus 3 in order with the pump P, and sterilizing the ultraviolet light. A part of the water is passed through the ozone dissolving device 4, and the remaining part is joined with the water from the ozone dissolving device 4 and circulated to the can inspection process 10. In this embodiment, the ozone concentration meter 5 measures the ozone concentration of the water circulated in the can inspection process 10 and controls the ozone dissolution amount of the ozone dissolving device 4 based on the measurement result. Has been.
[0018]
As the ozonolysis apparatus 1, an activated carbon tower, a reducing agent addition, etc. can be used. The ozone decomposition device 1 decomposes and removes ozone in the recovered water, and ozone is prevented from being decomposed and ionized by being irradiated with ultraviolet rays by the ultraviolet sterilization device 3 to affect the specific resistance value. That is, as shown in FIG. 1, when the recovered water is passed through the ultraviolet sterilizer 3 and the ozone dissolving device 4 and sterilized and then circulated to the can inspection process 10, the recovered water from the can inspection process 10 The ozone added by the ozone dissolving device 4 is included. Therefore, in the apparatus of FIG. 1, ozone in the recovered water is decomposed and removed by the ozone decomposition apparatus 1.
[0019]
In particular, when an activated carbon tower is used as the ozone decomposing apparatus 1, the TOC component in the recovered water is also decomposed and removed, and the TOC component is decomposed and ionized by being irradiated with ultraviolet rays by the ultraviolet sterilizing apparatus 3. Can also be prevented.
[0020]
As the particulate removal device 2, various filters, an ultrafiltration membrane separation device, and the like can be used. By this fine particle removing device 2, the fine particles flowing out from the ozone decomposition device 1 such as the can inspection process 10 or the activated carbon tower can be removed to increase the purity of the recovered water.
[0021]
The effluent from the fine particle removing device 2 is then sterilized by ultraviolet irradiation in the ultraviolet sterilizing device 3. In the apparatus shown in FIG. 1, in the recovered water circulation system, microorganisms in the water are repeatedly irradiated with ultraviolet rays by the ultraviolet sterilizer 3 so that they die or at least lose their growth ability.
[0022]
Part of the effluent from the UV sterilizer 3 is introduced into the ozone dissolver 4, and the remainder is directly circulated to the can inspection process 10.
[0023]
By adding ozone with the ozone lysis device 4, it is possible to sterilize resistant bacteria remaining in the water even after the ultraviolet sterilization with the ultraviolet sterilization device 3, and the growth of microorganisms in the circulation pipe after the ozone lysis device 4 Can also be suppressed. Further, in the sealed can inspection process 10, sterilization in the manufacturing environment can be performed by ozone vaporized from the specific resistance adjustment water.
[0024]
The total amount of the effluent water from the ultraviolet sterilizer 3 may be introduced into the ozone dissolver 4, but as shown in FIG. You may make it make it merge with the remainder of the effluent of the ultraviolet sterilizer 3 after addition. If it does in this way, the ozone dissolution apparatus 4 can be reduced in size.
[0025]
In the apparatus of FIG. 1, the ozone concentration in the circulating water is measured by an ozone concentration meter 5 provided at the inlet of the can inspection process 10 of the recovered water circulation system, and the ozone addition amount in the ozone dissolving device 4 is determined based on this measured value. By controlling, the ozone addition amount is prevented from being excessive or insufficient, and sufficient ozone is added for sterilization without causing an adverse effect on the can inspection process 10 due to the excessive amount of ozone, thereby performing stable and reliable sterilization.
[0026]
In order to control the amount of ozone added in the ozone dissolving device 4 based on the measured value of the ozone concentration meter 5, for example, the amount of oxygen supplied to the ozone generator of the ozone dissolving device 4 is adjusted. That is, when the measured value of the ozone concentration meter 5 is less than the set value, the amount of ozone generation is increased by increasing the oxygen supply amount to the ozone generator, and the measured value of the ozone concentration meter 5 is larger than the set value. In some cases, the amount of oxygen supplied to the ozone generator is reduced to reduce the amount of ozone generated, thereby adjusting the amount of ozone added. In order to increase or decrease the amount of oxygen supplied to the ozone generator, for example, a compressor (air compressor) that supplies air to the ozone generator is inverter-controlled, or a control valve provided in the oxygen supply line to the ozone generator ( Adjust the opening of a valve that can be adjusted from 0 to 100%.
[0027]
In the present invention, it is preferable that the ozone dissolving device 4 is capable of adding ozone intermittently and arbitrarily controlling the time interval of the intermittent addition of ozone.
[0028]
That is, the water temperature is high in the summer and the microorganisms are easy to grow, but the water temperature is low in the winter and the microorganisms are difficult to grow. In order to cope with such changes in the growth tendency of microorganisms due to the external environment, ozone addition is intermittently performed rather than management based on ozone concentration, and the addition time (ON time) and addition stop time (OFF time) are set. Set in advance according to the season, for example, set a longer ON time or a shorter OFF time in the summer, and set a shorter ON time or a longer OFF time in the winter. It is preferable to intermittently add ozone. In this way, the ozone addition amount can be easily adjusted with an ozone dissolving apparatus that can set the time interval for intermittent addition of ozone.
[0029]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0030]
Example 1
The sterilization effect according to the present invention was examined in a sterilization circulation system in which the recovered water from the can inspection process 10 shown in FIG. 1 was processed at a flow rate of 10 m 3 / hr.
[0031]
The ozonolysis apparatus, fine particle removal apparatus, ultraviolet sterilization apparatus, and ozone dissolution apparatus used are as follows.
Ozonizer: activated carbon tower water flow SV = 50 hr −1
Particulate removal device: Safety filter (pore size 1μm)
Ultraviolet sterilizer: A device that irradiates ultraviolet rays having a wavelength of 253.7 nm. Residence time: 6 seconds. Ozone dissolver: An ozone dissolver that intermittently adds ozone.
25% of the effluent from the UV sterilizer was introduced into the ozone dissolver, and the remainder was directly circulated into the can inspection process. In the ozone dissolution apparatus, the ON time is 30 minutes and the OFF time is 60 minutes in summer, the ON time is 10 minutes and OFF time is 120 minutes in winter, and the measured value of the ozone concentration meter is 0.5 to 1.0 ppm in summer. In winter, the amount of air supplied to the ozone generator was controlled to be 0.1 to 0.5 ppm.
[0033]
As a result, the number of viable bacteria in the circulatory system could be suppressed to 10 / L or less throughout the year.
[0034]
Moreover, there was no change in the specific resistance value of 1.0 MΩ · cm of the recovered water from the can inspection process, and it could be circulated to the can inspection process without affecting the specific resistance value by sterilization.
[0035]
Comparative Example 1
In Example 1, except that the activated carbon tower was not provided, sterilization circulation was performed in the same manner. As a result, ozone contained in the recovered water was decomposed and ionized by the ultraviolet sterilizer, so that the specific resistance value was 0.5. It changed to ˜1.0 MΩ · cm. The number of viable bacteria in the circulatory system was 10 / L or less, and the bactericidal effect was the same as in Example 1.
[0036]
Comparative Example 2
In Example 1, when the sterilization circulation was performed in the same manner except that the ozone dissolution apparatus was not provided, there was almost no change in the specific resistance of the recovered water, but the microorganisms grew in the circulation pipe after the ultraviolet sterilization apparatus. to become a viable cell number 10 3 / L or more, it was not possible to obtain a satisfactory sterilizing effect.
[0037]
Comparative Example 3
Where except that no provided a UV sterilizer in Example 1 was subjected to sterilizing circulation in the same manner, the number of viable bacteria was a change and 10 to 10 three / L.
[0038]
【The invention's effect】
As described above in detail, according to the specific resistance adjusted water sterilization apparatus of the present invention, the specific resistance adjusted water can be effectively sterilized in the recovery and circulation system without affecting the specific resistance value of the recovered water. can do.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a specific resistance adjustment water sterilizer according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ozone decomposition apparatus 2 Fine particle removal apparatus 3 Ultraviolet sterilization apparatus 4 Ozone dissolution apparatus 5 Ozone concentration meter 10 Can inspection process

Claims (5)

比抵抗値が調整された水を殺菌する装置であって、
該比抵抗値が調整された水が缶検査プロセスからの回収水であり、
缶検査プロセスからの回収水(被処理水中のオゾンを分解するためのオゾン分解装置と、
該オゾン分解装置でオゾン分解処理された被処理水に紫外線を照射して殺菌する紫外線殺菌手段と、
該紫外線殺菌手段で殺菌された被処理水にオゾンを添加するオゾン添加手段と、
該オゾン添加手段でオゾンが添加された水を缶検査プロセスに循環する手段と
を備えたことを特徴とする比抵抗調整水殺菌装置。
A device for sterilizing water with a specific resistance value adjusted,
The water whose specific resistance value is adjusted is recovered water from the can inspection process,
An ozonolysis device for decomposing ozone in the recovered water ( treated water ) from the can inspection process ;
UV sterilization means for sterilizing the water to be treated which has been subjected to ozonolysis with the ozonolysis apparatus by irradiating with ultraviolet rays;
Ozone addition means for adding ozone to the water to be sterilized by the ultraviolet sterilization means;
And a means for circulating water added with ozone by the ozone adding means to a can inspection process .
請求項1において、前記缶検査プロセスに循環される水のオゾン濃度を計測するオゾン濃度計測手段と
該オゾン濃度計測手段で得られるオゾン濃度に基き、前記オゾン添加手段におけるオゾン添加量を制御する制御手段とを備えたことを特徴とする比抵抗調整水殺菌装置。
The control for controlling the amount of ozone added in the ozone adding means according to claim 1, wherein the ozone concentration measuring means for measuring the ozone concentration of water circulated in the can inspection process and the ozone concentration obtained by the ozone concentration measuring means are controlled. And a specific resistance adjustment water sterilizer.
請求項1又は2において、前記オゾン添加手段が、被処理水にオゾンを間欠的に添加するオゾン添加手段であり、該間欠添加時間を設定する間欠添加時間設定器を備えたことを特徴とする比抵抗調整水殺菌装置。  3. The ozone addition means according to claim 1, wherein the ozone addition means is ozone addition means for intermittently adding ozone to the water to be treated, and includes an intermittent addition time setting device for setting the intermittent addition time. Specific resistance adjustment water sterilizer. 請求項1ないし3のいずれか1項において、前記オゾン分解装置が活性炭塔であることを特徴とする比抵抗調整水殺菌装置。The specific resistance-adjusted water sterilizer according to any one of claims 1 to 3, wherein the ozonolysis apparatus is an activated carbon tower. 請求項1ないし4のいずれか1項において、前記紫外線殺菌手段で殺菌された被処理水は、一部が前記オゾン添加手段に導入され、残部は直接前記缶検査プロセスに循環されることを特徴とする比抵抗調整水殺菌装置。5. The water to be treated sterilized by the ultraviolet sterilization unit according to claim 1, wherein a part of the water to be treated is introduced into the ozone addition unit and the remaining part is directly circulated to the can inspection process. Specific resistance adjustment water sterilizer.
JP2001151172A 2001-05-21 2001-05-21 Specific resistance adjustment water sterilizer Expired - Fee Related JP4581291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001151172A JP4581291B2 (en) 2001-05-21 2001-05-21 Specific resistance adjustment water sterilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001151172A JP4581291B2 (en) 2001-05-21 2001-05-21 Specific resistance adjustment water sterilizer

Publications (2)

Publication Number Publication Date
JP2002346570A JP2002346570A (en) 2002-12-03
JP4581291B2 true JP4581291B2 (en) 2010-11-17

Family

ID=18996067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001151172A Expired - Fee Related JP4581291B2 (en) 2001-05-21 2001-05-21 Specific resistance adjustment water sterilizer

Country Status (1)

Country Link
JP (1) JP4581291B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5573605B2 (en) * 2010-11-04 2014-08-20 住友金属鉱山株式会社 Ultrapure water production system and cleaning method thereof, and ultrapure water production method using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716582A (en) * 1993-06-30 1995-01-20 Permelec Electrode Ltd Process for ozone water treatment and device therefor
JP3604245B2 (en) * 1996-12-03 2004-12-22 三菱電機株式会社 Intermittent ozone supply device
JP3771684B2 (en) * 1997-08-20 2006-04-26 旭化成ケミカルズ株式会社 Ultrapure water production method

Also Published As

Publication number Publication date
JP2002346570A (en) 2002-12-03

Similar Documents

Publication Publication Date Title
US6991733B2 (en) Process for removing organics from ultrapure water
JP3919259B2 (en) Ultrapure water production equipment
JP5717203B2 (en) Purification method and apparatus for removing xenobiotics in water
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
JP4581291B2 (en) Specific resistance adjustment water sterilizer
JP2016005829A (en) Method and apparatus for producing ultrapure water
JPS6125688A (en) Sterilizing method in germfree water manufacturing apparatus
CN103420527A (en) Purifying disinfection apparatus and method for drinking water
JP3771684B2 (en) Ultrapure water production method
JP3998997B2 (en) Disinfection method of ultrapure water supply pipe
TW202210423A (en) Water production apparatus and water production method
JPH01284385A (en) Process and apparatus for producing pure water and superpure water
KR101910483B1 (en) Advanced water purification system using ultraviolet and activated carbon and advanced water purification method for using the same
JP2003145148A (en) Ultrapure water supply apparatus and ultrapure water supply method
JP3315447B2 (en) Photochemical agglomeration and ionization treatment method for particulate impurities in liquid
JP5017767B2 (en) Sterilization method for pure water production apparatus and pure water production apparatus
TWI240701B (en) Process for removing organics from ultrapure water
JP2000117274A (en) Water treatment and device therefor
JPH0639366A (en) Method and equipment for producing ultrapure water
JP4264681B2 (en) Production equipment for ozone water for wet cleaning process of electronic materials
JP6796300B1 (en) Water generator and water generation method
JP7441066B2 (en) Pretreatment method, pretreatment device, urea concentration measurement method, urea concentration measurement device, ultrapure water production method, and ultrapure water production system
JP2000107778A (en) Method and apparatus for treating water
JP2957900B2 (en) Seawater purification method and apparatus
JPS6359388A (en) Method for making pure water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140910

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees