JPH0613400A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0613400A
JPH0613400A JP16602492A JP16602492A JPH0613400A JP H0613400 A JPH0613400 A JP H0613400A JP 16602492 A JP16602492 A JP 16602492A JP 16602492 A JP16602492 A JP 16602492A JP H0613400 A JPH0613400 A JP H0613400A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
gate electrode
film
insulating film
sidewall insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16602492A
Other languages
Japanese (ja)
Inventor
Masatoshi Yazaki
正俊 矢▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP16602492A priority Critical patent/JPH0613400A/en
Publication of JPH0613400A publication Critical patent/JPH0613400A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To heighten electric pressure resistance between the source.drain electrodes without forming a polycrystalline silicon film easily to badly affect an electric characteristic by implanting impurity ions on a semiconductor substrate while having a gate electrode consisting of polycrystalline silicon and a sidewall insulating film as masks. CONSTITUTION:After forming a gate oxide film 102, a silicon nitride film 112 and a gate electrode 113 of a polycrystalline silicon, impurity ions 104 are implanted. Next, the surface of the gate electrode 113 of polycrystalline silicon is thermooxidized so as to form a sidewall insulating film 107. Thereafter, impurity ions 108 are implanted for being subjected to heat treatment in a nitrogen atmosphere in order to form a thick impurity diffusion layer 109. Thereby, electric pressure resistance can be heightened between the source.drain electrodes by a simplified process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方
法、特に信頼性の高いLDD(Lightly DopedDorain)
構造の半導体素子の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and particularly to a highly reliable LDD (Lightly Doped Dorain).
The present invention relates to a method of forming a semiconductor device having a structure.

【0002】[0002]

【従来の技術】従来のLDD構造の半導体装置の製造方
法としては特開平2−273933に記載された例が知
られている。以下、この従来例について図面にもとづき
説明する。
2. Description of the Related Art As a conventional method for manufacturing a semiconductor device having an LDD structure, an example described in JP-A-2-273933 is known. Hereinafter, this conventional example will be described with reference to the drawings.

【0003】図2(a)〜(c)は従来例の工程順断面
図である。最初に図2(a)に示すように、半導体基板
101(p型)上にゲート酸化膜102とゲート電極1
03を形成し、不純物イオン(p+)104を約1013 c
m-2 イオン注入法により注入する。次に図2(b)に示
すように、極く薄い多結晶シリコン膜105(約500
Å)と二酸化珪素膜107を約2500ÅCVD法などによ
り被着させた後、異方性ドライエッチングにより全面ド
ライエッチングを行いサイドウォール絶縁膜107を形
成する。さらに、不純物イオン(As+)108を約10
15cm-2イオン注入法により注入し、窒素雰囲気中で熱処
理をし濃い不純物拡散層(n+)109を形成する。次
に図2(c)に示すように、層間絶縁膜110をCVD
法により5000Å程度被着させ、その後周知のフォトリソ
グラフィー法を用いてコンタクト窓の開孔、アルミ配線
111を形成し、半導体装置を完成させる。このような
従来例の製造方法で製造された半導体装置においては、
サイドウォール絶縁膜107にホットキャリヤは捕獲さ
れず、サイドウォール絶縁膜107下の極く薄い多結晶
シリコンはゲート電極に接続されているため、その下の
ゲート酸化膜102に捕獲されたホットキャリアのトラ
ンジスタ特性に与える影響も小さく長時間使用時のトラ
ンジスタ特性の劣化が改善され信頼性が向上する効果を
有する。
2A to 2C are sectional views in the order of steps of a conventional example. First, as shown in FIG. 2A, a gate oxide film 102 and a gate electrode 1 are formed on a semiconductor substrate 101 (p-type).
03 to form impurity ions (p + ) 104 of about 10 13 c
Implant by m −2 ion implantation method. Next, as shown in FIG. 2B, an extremely thin polycrystalline silicon film 105 (about 500
Å) and the silicon dioxide film 107 are deposited by the method of about 2500 Å CVD, and then the entire surface is dry-etched by anisotropic dry etching to form the sidewall insulating film 107. Further, the impurity ions (As + ) 108 are added to about 10
Implantation is performed by a 15 cm −2 ion implantation method, and heat treatment is performed in a nitrogen atmosphere to form a deep impurity diffusion layer (n + ) 109. Next, as shown in FIG. 2C, the interlayer insulating film 110 is formed by CVD.
Then, about 5000Å is deposited by the method, and then a well-known photolithography method is used to form the opening of the contact window and the aluminum wiring 111 to complete the semiconductor device. In the semiconductor device manufactured by such a conventional manufacturing method,
The hot carriers are not captured in the sidewall insulating film 107, and the extremely thin polycrystalline silicon under the sidewall insulating film 107 is connected to the gate electrode. The effect on the transistor characteristics is small, and the deterioration of the transistor characteristics after long-term use is improved and the reliability is improved.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
従来例の製造方法による半導体装置においては、サイド
ウォール絶縁膜7へのホットキャリヤの注入を防ぐため
に極く薄い多結晶シリコン膜105を形成しなければな
らず、図2(c)に見られるような極く薄い多結晶シリ
コン膜105とゲート酸化膜102の界面にトラップ準
位が形成され、その準位に捕獲された固定電荷がトラン
ジスタ特性の閾値を変化させてしまう問題点があった。
また、多結晶シリコン膜105を形成したの後に濃い不
純物の注入と拡散を行うために、動作時において多結晶
シリコン膜105もゲート電極103と同電位を有する
ため、ソース電極とドレイン電極の近傍の電界強度が緩
和されず、LDD構造を実現しているにもかかわらずソ
ース・ドレイン電極間の電気的耐圧が低くなってしまう
問題点をも有している。これらの問題点に加えて、サイ
ドウォール絶縁膜107のドライエッチング時における
エッチング時間の制御が難しく、5インチを越える直径
を有する半導体基板1においては、半導体装置のLDD
領域の長さがばらついてしまい、トランジスタ特性のば
らつきの要因を生む原因となっていた。
However, in the semiconductor device manufactured by the above-described conventional manufacturing method, an extremely thin polycrystalline silicon film 105 must be formed in order to prevent hot carriers from being injected into the sidewall insulating film 7. However, a trap level is formed at the interface between the extremely thin polycrystalline silicon film 105 and the gate oxide film 102 as shown in FIG. 2C, and the fixed charge trapped at the level causes the transistor characteristic. There is a problem that the threshold value is changed.
In addition, since the polycrystalline silicon film 105 has the same potential as the gate electrode 103 during operation in order to inject and diffuse a high concentration of impurities after the polycrystalline silicon film 105 is formed, the vicinity of the source electrode and the drain electrode is There is also a problem that the electric field strength is not relaxed and the electrical breakdown voltage between the source and drain electrodes becomes low even though the LDD structure is realized. In addition to these problems, it is difficult to control the etching time during dry etching of the sidewall insulating film 107, and in the semiconductor substrate 1 having a diameter exceeding 5 inches, the LDD of the semiconductor device is
The length of the region varies, which causes a factor of variation in transistor characteristics.

【0005】そこで、本発明はこのような問題点を解決
するもので、その目的とするところは、電気的特性に悪
影響をおよぼし易い多結晶シリコン膜を形成することな
く、ソース・ドレイン電極間の電気的耐圧が高くかつ高
信頼性でトランジスタ特性のばらつきの少ないLDD構
造の半導体装置を大面積半導体基板上で実現し得る半導
体装置の製造方法を提供することにある。
Therefore, the present invention solves such a problem, and an object of the present invention is to form a polycrystalline silicon film which has a bad influence on electric characteristics without forming a polycrystalline silicon film between the source and drain electrodes. It is an object of the present invention to provide a method of manufacturing a semiconductor device capable of realizing a semiconductor device having an LDD structure, which has a high electrical breakdown voltage, high reliability, and little variation in transistor characteristics, on a large-area semiconductor substrate.

【0006】[0006]

【課題を解決するための手段】半導体基板上にゲート酸
化膜と窒化シリコン膜を形成した後多結晶シリコンから
なるゲート電極を形成する工程と、前記多結晶シリコン
からなるゲート電極を熱酸化してサイドウォール絶縁膜
を形成する工程と、前記多結晶シリコンからなるゲート
電極と前記サイドウォール絶縁膜をマスクにして前記半
導体基板上に不純物イオンを注入する工程を含むことを
特徴とする。
A step of forming a gate oxide film and a silicon nitride film on a semiconductor substrate and then forming a gate electrode made of polycrystalline silicon, and thermally oxidizing the gate electrode made of polycrystalline silicon. The method is characterized by including a step of forming a sidewall insulating film and a step of implanting impurity ions on the semiconductor substrate by using the gate electrode made of the polycrystalline silicon and the sidewall insulating film as a mask.

【0007】[0007]

【実施例】以下本発明に係る半導体装置の製造方法つい
て、実施例にもとづき詳細に説明する。
EXAMPLES A method for manufacturing a semiconductor device according to the present invention will be described in detail below with reference to examples.

【0008】図1(a)に示すように、半導体基板(p
型Si)101上にゲート酸化膜102と窒化珪素膜1
12と多結晶シリコンのゲート電極113を形成した
後、不純物イオン(p+)104を約1013 cm-2 イオ
ン注入法により注入する。次に図1(b)に示すように
多結晶シリコンのゲート電極113の表面を熱酸化して
サイドウォール絶縁膜107を約3000Å形成する。この
熱酸化時に半導体基板101中に注入された不純物イオ
ンは活性化され、薄い不純物拡散層(n-)106が形
成される。このように、サイドウォール絶縁膜7の成膜
は熱酸化法によるため、CVD法とドライエッチング法
による従来の形成方法による場合に比べ膜厚のばらつき
が少なくかつその膜質も良質でトラップ準位も少ない。
このためこのようなサイドウォール絶縁膜107を用い
たLDD構造の半導体装置においては、そのLDD領域
の長さのばらつきも少なく大面積半導体基板上のトラン
ジスタ特性も均一でサイドウォール絶縁膜107内への
ホットキャリヤの注入も少なく高信頼性である。また、
従来例のようにゲート電極に接続する多結晶シリコン膜
を形成する必要がないため、工程が簡略化されるばかり
か、ソース・ドレイン両電極近傍の電界強度が緩和され
るためソース・ドレイン電極間の電気的耐圧も向上し、
半導体装置の微細化も可能となる。サイドウォール絶縁
膜107を形成した後、図1(c)に示すように不純物
イオン(As+)108を約1015cm-2イオン注入法によ
り注入し、窒素雰囲気中で熱処理をし濃い不純物拡散層
(n+)109 形成する。次に図2(d)に示すよう
に、層間絶縁膜110をCVD法により500Å程度被着
させ、その後周知のフォトリソグラフィー法を用いてコ
ンタクト窓の開孔、アルミ配線111を形成し、半導体
装置を完成させる。このように、ゲート電極を多結晶シ
リコンで構成し、その一部を熱酸化することによってサ
イドウォール絶縁膜107を形成すれば、従来の製造方
法のようにサイドウォール絶縁膜を異方性のドライエッ
チングにより形成する必要もなく、サイドウォール絶縁
膜107の膜厚の制御も容易で工程の簡略化が可能であ
る。
As shown in FIG. 1A, the semiconductor substrate (p
Type Si) 101 on the gate oxide film 102 and the silicon nitride film 1
After forming 12 and the gate electrode 113 of polycrystalline silicon, impurity ions (p + ) 104 are implanted by about 10 13 cm -2 ion implantation method. Next, as shown in FIG. 1B, the surface of the gate electrode 113 of polycrystalline silicon is thermally oxidized to form a sidewall insulating film 107 of about 3000 liters. Impurity ions implanted into the semiconductor substrate 101 during this thermal oxidation are activated, and a thin impurity diffusion layer (n ) 106 is formed. As described above, since the sidewall insulating film 7 is formed by the thermal oxidation method, there is less variation in the film thickness as compared with the conventional forming method by the CVD method and the dry etching method, the film quality is good, and the trap level is also high. Few.
Therefore, in the semiconductor device having the LDD structure using such a sidewall insulating film 107, the variation in the length of the LDD region is small, and the transistor characteristics on the large-area semiconductor substrate are uniform, so that the inside of the sidewall insulating film 107 is formed. Highly reliable with little hot carrier injection. Also,
Unlike the conventional example, it is not necessary to form a polycrystalline silicon film to be connected to the gate electrode, which not only simplifies the process but also relaxes the electric field strength near both the source and drain electrodes, so The electrical withstand voltage of
It is also possible to miniaturize the semiconductor device. After forming the side wall insulating film 107, as shown in FIG. 1C, impurity ions (As + ) 108 are implanted by an ion implantation method of about 10 15 cm -2 , and heat treatment is performed in a nitrogen atmosphere to diffuse a deep impurity. A layer (n + ) 109 is formed. Next, as shown in FIG. 2D, an interlayer insulating film 110 is deposited by a CVD method to a thickness of about 500 Å, and then a well-known photolithography method is used to form an opening of a contact window and an aluminum wiring 111 to form a semiconductor device. To complete. As described above, when the gate electrode is made of polycrystalline silicon and the side wall insulating film 107 is formed by thermally oxidizing a part of the gate electrode, the side wall insulating film is anisotropically dried as in the conventional manufacturing method. It is not necessary to form it by etching, the thickness of the sidewall insulating film 107 can be easily controlled, and the process can be simplified.

【0009】なお、本実施例においては不純物イオンの
注入を二回に分けて行ったが、図1(a)によって示し
たLDD領域構成のための低濃度の不純物注入を行わず
に、図1(c)に示す高濃度の不純物注入を一回だけ行
うだけでもLDD構造の半導体装置を構成することは可
能である。それは、熱酸化法によって形成されたサイド
ウォール絶縁膜107がイオン注入の際のマスクとして
働き、サイドウォール絶縁膜107下に注入されるイオ
ン濃度を低減する効果があるためで、このような製造方
法によれば工程がより簡略化されうる。
Although the impurity ion implantation is performed twice in this embodiment, the impurity ion implantation is not performed for the LDD region structure shown in FIG. It is possible to construct the LDD structure semiconductor device by only performing the high-concentration impurity implantation shown in FIG. This is because the sidewall insulating film 107 formed by the thermal oxidation method acts as a mask at the time of ion implantation, and has the effect of reducing the concentration of ions implanted under the sidewall insulating film 107. According to the method, the process can be further simplified.

【0010】[0010]

【発明の効果】以上説明したように本発明の半導体装置
の製造方法は、電気的特性に悪影響をおよぼし易い多結
晶シリコンのサイドウォール膜を形成しない簡略化され
た工程で、ソース・ドレイン電極間の電気的耐圧の高い
高信頼性で優れた均一の電気的特性を有するLDD構造
の半導体装置を大面積の半導体基板上に実現できるとい
う効果を有する。
As described above, according to the method of manufacturing a semiconductor device of the present invention, the source-drain electrode between the source and drain electrodes can be formed by a simplified process in which the side wall film of polycrystalline silicon, which easily adversely affects the electrical characteristics, is not formed. The semiconductor device having the LDD structure having a high electric breakdown voltage, high reliability, and excellent and uniform electric characteristics can be realized on a large-area semiconductor substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(d)は本発明の半導体装置の製造方
法の一実施例を示す工程順断面図。
1A to 1D are cross-sectional views in order of the processes, showing an embodiment of a method for manufacturing a semiconductor device of the present invention.

【図2】(a)〜(c)は従来の半導体装置の製造方法
の一実施例を示す工程順断面図。
2A to 2C are cross-sectional views in order of the processes, showing an example of a conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

101 半導体基板 102 ゲート酸化膜 103 ゲート電極 104 不純物イオン(p+) 105 極く薄い多結晶シリコン 106 薄い不純物拡散層(n-) 107 サイドウォール絶縁膜 108 不純物イオン(As+) 109 濃い不純物拡散層(n+) 110 層間絶縁膜 111 アルミ電極 112 窒化珪素膜 113 多結晶シリコンのゲート電極101 Semiconductor Substrate 102 Gate Oxide Film 103 Gate Electrode 104 Impurity Ion (p + ) 105 Extremely Thin Polycrystalline Silicon 106 Thin Impurity Diffusion Layer (n ) 107 Sidewall Insulation Film 108 Impurity Ion (As + ) 109 Concentration Impurity Diffusion Layer (N + ) 110 Interlayer insulating film 111 Aluminum electrode 112 Silicon nitride film 113 Polycrystalline silicon gate electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上にゲート酸化膜と窒化シリコ
ン膜を形成した後多結晶シリコンからなるゲート電極を
形成する工程と、前記多結晶シリコンからなるゲート電
極を熱酸化してサイドウォール絶縁膜を形成する工程
と、前記多結晶シリコンからなるゲート電極と前記サイ
ドウォール絶縁膜をマスクにして前記半導体基板上に不
純物イオンを注入する工程を含むことを特徴とする半導
体装置の製造方法。
1. A step of forming a gate oxide film and a silicon nitride film on a semiconductor substrate and then forming a gate electrode made of polycrystalline silicon; and a step of thermally oxidizing the gate electrode made of polycrystalline silicon to form a sidewall insulating film. And a step of implanting impurity ions on the semiconductor substrate using the gate electrode made of polycrystalline silicon and the sidewall insulating film as a mask.
JP16602492A 1992-06-24 1992-06-24 Manufacture of semiconductor device Pending JPH0613400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16602492A JPH0613400A (en) 1992-06-24 1992-06-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16602492A JPH0613400A (en) 1992-06-24 1992-06-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0613400A true JPH0613400A (en) 1994-01-21

Family

ID=15823523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16602492A Pending JPH0613400A (en) 1992-06-24 1992-06-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0613400A (en)

Similar Documents

Publication Publication Date Title
JP2652108B2 (en) Field effect transistor and method of manufacturing the same
US6136674A (en) Mosfet with gate plug using differential oxide growth
US20020000628A1 (en) Semiconductor device and production method thereof
JPH11274489A (en) Field-effect transistor and its manufacture
US6162687A (en) Method of manufacturing semiconductor device having oxide-nitride gate insulating layer
JPH11103050A (en) Semiconductor device and manufacture thereof
JP2002151684A (en) Semiconductor device and manufacturing method thereof
JP3681525B2 (en) Manufacturing method of semiconductor device
KR100281135B1 (en) Method for forming gate oxide film of semiconductor device
JP2004207560A (en) Semiconductor device and its manufacturing method
JP3057792B2 (en) Method for manufacturing thin film transistor
JPH1197683A (en) Semiconductor device and manufacture thereof
JP2623902B2 (en) Semiconductor device and manufacturing method thereof
JPH0613400A (en) Manufacture of semiconductor device
US7005393B2 (en) Method of fabricating a semiconductor device containing nitrogen in an oxide film
JPH05206454A (en) Manufacture of mis-type semiconductor device
JP2004200595A (en) Mis transistor and manufacturing method therefor
JP3376305B2 (en) Method for manufacturing semiconductor device
JP2000232170A (en) Semiconductor device and its manufacture
KR100486825B1 (en) Method of manufacturing a semiconductor device
JPH0348428A (en) Semiconductor device
KR930009479B1 (en) Manufacturing method of insulated gate type fet
KR100266635B1 (en) Method for fabricating semiconductor oxide
KR910009042B1 (en) Method of manufacturing a semiconductor device
JP3141520B2 (en) Method for manufacturing nonvolatile memory element