JPH06132311A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device

Info

Publication number
JPH06132311A
JPH06132311A JP30772992A JP30772992A JPH06132311A JP H06132311 A JPH06132311 A JP H06132311A JP 30772992 A JP30772992 A JP 30772992A JP 30772992 A JP30772992 A JP 30772992A JP H06132311 A JPH06132311 A JP H06132311A
Authority
JP
Japan
Prior art keywords
gate electrode
layer
operating layer
isolation
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30772992A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Tonami
与之 戸波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP30772992A priority Critical patent/JPH06132311A/en
Publication of JPH06132311A publication Critical patent/JPH06132311A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0891Source or drain regions of field-effect devices of field-effect transistors with Schottky gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To provide the manufacturing method of semiconductor device capable of forming a gate electrode in effective length not exceeding 0.5mum at excellent throughput using an inexpensive device. CONSTITUTION:A gate electrode 2, a source electrode 3 and a drain electrode 4 are formed on the surface of an n type operating layer 1a using ordinary photolithography. Next, the whole surface excluding the exposed n type operating layer 1a and nearby parts only is covered with a photoresist film 5. Next, the n type operating layer 1a is ion-implanted with isolation impurities downward from the gate electrode 2 so that the impurities may be diffused in the parts beneath the ends of the gate electrode 2 to form isolation layers 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に関する。具体的にいうと、本発明は、MESFETの
ような電界効果型の半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device. Specifically, the present invention relates to a method of manufacturing a field effect semiconductor device such as MESFET.

【0002】[0002]

【背景技術】図3は従来のMESFET(ショットキー
型電界効果トランジスタ)30を示す断面図である。こ
のMESFET30は、半絶縁性基板31の表面層にn
型動作層31aを形成し、そのn型動作層31aの表面
にソース電極33及びドレイン電極34をオーミック接
触させて形成し、ゲート電極32をショットキー接触さ
せて形成している。
BACKGROUND ART FIG. 3 is a sectional view showing a conventional MESFET (Schottky type field effect transistor) 30. The MESFET 30 has a semi-insulating substrate 31 with a surface layer
The type operation layer 31a is formed, the source electrode 33 and the drain electrode 34 are formed in ohmic contact with the surface of the n type operation layer 31a, and the gate electrode 32 is formed in Schottky contact.

【0003】[0003]

【発明が解決しようとする課題】このようなMESFE
T30にあっては、一般にゲート長Lgが小さいほど高
周波特性が向上するが、通常のフォトリソグラフィー法
を利用した電極作成方法によっては、ゲート長Lgが0.
5μm以下のゲート電極32を形成するのは困難であ
る。
[Problems to be Solved by the Invention] Such MESFE
In the T30, generally but higher frequency characteristics gate length L g is small to improve, by the electrode forming method using a normal photolithography method, the gate length L g is 0.
It is difficult to form the gate electrode 32 having a thickness of 5 μm or less.

【0004】また、電子ビーム直描露光法を利用すれ
ば、ゲート長Lgが0.5μm以下の微細なゲート電極3
2を形成することができるが、装置が高価になり、且つ
スループットが悪くなる。
If the electron beam direct writing exposure method is used, a fine gate electrode 3 having a gate length L g of 0.5 μm or less is obtained.
2 can be formed, but the device becomes expensive and the throughput becomes poor.

【0005】本発明は、叙上の従来例の欠点に鑑みてな
されたものであり、その目的とするところは、実効ゲー
ト長が0.5μm以下のゲート電極を安価な装置で且つ
スループット良く形成することができる半導体装置の製
造方法を提供することにある。
The present invention has been made in view of the above-mentioned drawbacks of the conventional examples, and an object thereof is to form a gate electrode having an effective gate length of 0.5 μm or less with an inexpensive device and at a high throughput. It is an object of the present invention to provide a method of manufacturing a semiconductor device that can be manufactured.

【0006】[0006]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、動作層の表面にゲート電極、ソース電極及び
ドレイン電極を形成した後、当該ゲート電極をマスクと
して動作層にアイソレーション用の不純物をイオン注入
し、当該不純物をゲート電極の端部の下に拡散させてア
イソレーション層を形成することを特徴としている。
According to a method of manufacturing a semiconductor device of the present invention, a gate electrode, a source electrode and a drain electrode are formed on the surface of an operating layer, and then the gate electrode is used as a mask for isolation of the operating layer. It is characterized in that an impurity is ion-implanted and the impurity is diffused below the end portion of the gate electrode to form an isolation layer.

【0007】また、前記アイソレーション層が形成され
た領域において動作層を他の領域よりも深く形成しても
良い。
Further, the operation layer may be formed deeper in the region where the isolation layer is formed than in other regions.

【0008】[0008]

【作用】本発明の半導体装置の製造方法にあっては、ゲ
ート電極をマスクとして動作層にアイソレーション用の
不純物をイオン注入し、不純物をゲート電極の端部の下
に拡散させてアイソレーション層を形成するので、アイ
ソレーション層がゲート電極の下へ拡散した分だけゲー
ト電極と動作層の接触幅(実効ゲート長)をゲート電極
の幅よりも小さくすることができる。したがって、例え
ばフォトリソグラフィー法を利用して0.5μm幅のゲ
ート電極を形成し、不純物をイオン注入してゲート電極
の端部の下に拡散させれば、実効ゲート長が0.5μm
以下のゲート電極を安価な露光装置で且つスループット
良く形成することができる。
According to the method of manufacturing a semiconductor device of the present invention, isolation impurities are ion-implanted into the operating layer using the gate electrode as a mask, and the impurities are diffused below the end portion of the gate electrode. Therefore, the contact width (effective gate length) between the gate electrode and the operating layer can be made smaller than the width of the gate electrode by the amount of diffusion of the isolation layer below the gate electrode. Therefore, for example, if a gate electrode having a width of 0.5 μm is formed by using a photolithography method and impurities are ion-implanted and diffused below the end portion of the gate electrode, the effective gate length is 0.5 μm.
The following gate electrodes can be formed with a low cost exposure apparatus and high throughput.

【0009】また、アイソレーション層が形成される領
域において動作層を他の領域よりも深く形成しておけ
ば、アイソレーション層によって動作層の厚みが薄くな
り、寄生抵抗が増大することを防止することができる。
Further, if the operating layer is formed deeper in the region where the isolation layer is formed than in the other regions, it is possible to prevent the operating layer from being thinned by the isolation layer and increasing the parasitic resistance. be able to.

【0010】[0010]

【実施例】図1(a)ないし(d)に本発明の一実施例
によるMESFET10の製造方法を示す。このMES
FET10の製造方法にあっては、図1(a)に示すよ
うに、半絶縁性半導体基板1の表層部にイオン注入法も
しくはエピタキシャル成長法によりn型動作層1aを形
成した後、通常のフォトリソグラフィー法によってパタ
ーン形成することにより、電極材料を蒸着してゲート電
極2、ソース電極3及びドレイン電極4を形成する。こ
のときゲート電極の幅Lgは、例えばフォトリソグラフ
ィー法によって再現性良く形成できる下限の0.5μm
としておく。
1 (a) to 1 (d) show a method of manufacturing a MESFET 10 according to an embodiment of the present invention. This MES
In the method of manufacturing the FET 10, as shown in FIG. 1A, after the n-type operating layer 1a is formed on the surface layer portion of the semi-insulating semiconductor substrate 1 by the ion implantation method or the epitaxial growth method, the ordinary photolithography is performed. By pattern formation by a method, an electrode material is vapor-deposited to form the gate electrode 2, the source electrode 3 and the drain electrode 4. At this time, the width L g of the gate electrode is 0.5 μm, which is the lower limit that can be formed with good reproducibility by, for example, the photolithography method.
I will keep it.

【0011】次に、図1(b)に示すように、ゲート電
極2及びその近傍のn型動作層1aだけを露出させてそ
の他の領域をフォトレジスト膜5で覆い、アイソレーシ
ョン不純物〔例えば、半絶縁性半導体基板1がGaAs
で形成されている場合は、硼素(B)、酸素(O)等〕
をゲート電極2の上方から所定の注入エネルギー及びド
ーズ量で注入する。
Next, as shown in FIG. 1B, only the gate electrode 2 and the n-type operating layer 1a in the vicinity thereof are exposed, and the other regions are covered with a photoresist film 5, and isolation impurities [eg, Semi-insulating semiconductor substrate 1 is GaAs
In the case of being formed of, boron (B), oxygen (O), etc.]
Is implanted from above the gate electrode 2 with a predetermined implantation energy and a predetermined dose amount.

【0012】このときアイソレーション不純物は、図1
(c)に示すように、フォトレジスト膜5から露出して
いる部分のn型動作層1aにその表面から深さdiにわ
たって注入されると共に、横方向すなわちゲート電極2
の端からゲート電極2の下にかけて、及びフォトレジス
ト膜5の開口端からフォトレジスト膜5の下にかけてΔ
Lだけ拡散する。
At this time, the isolation impurities are as shown in FIG.
As shown in (c), the n-type operating layer 1a in the portion exposed from the photoresist film 5 is implanted from the surface thereof to a depth d i , and is also laterally formed, that is, the gate electrode 2 is formed.
Δ from the end of the gate electrode 2 to the bottom of the gate electrode 2 and from the opening end of the photoresist film 5 to the bottom of the photoresist film 5.
Spread L only.

【0013】これにより、ゲート電極2の両端部の下か
らフォトレジスト膜5の開口端の下にかけてアイソレー
ション層6が形成され、このアイソレーション層6によ
ってゲート電極2とn型動作層1aの接触幅(実効ゲー
ト長)Leはゲート電極2の幅LgよりもΔLの2倍だけ
縮小され、実効ゲート長Leは式Le=Lg−2ΔLで表
される。ここで、ゲート電極の幅Lgは0.5μmに設定
してあるから、実効ゲート長Leは0.5μm以下にな
る。最後に、レジスト膜5を除去してMESFET10
を完成する〔図1(d)〕。
As a result, the isolation layer 6 is formed from below both end portions of the gate electrode 2 to below the opening end of the photoresist film 5, and the isolation layer 6 makes contact between the gate electrode 2 and the n-type operating layer 1a. The width (effective gate length) L e is reduced by twice the width L g of the gate electrode 2 by ΔL, and the effective gate length L e is represented by the formula L e = L g −2ΔL. Since the width L g of the gate electrode is set to 0.5 μm, the effective gate length L e is 0.5 μm or less. Finally, the resist film 5 is removed to remove the MESFET 10
Is completed [Fig. 1 (d)].

【0014】このように本実施例においては、平易な露
光装置を用いたフォトリソグラフィー法を利用して0.
5μm幅のゲート電極2を形成した後、アイソレーショ
ン不純物をイオン注入し、当該アイソレーション不純物
を横方向に拡散させてゲート電極2とn型動作層1aの
接触幅(実効ゲート長)Leを0.5μm以下に縮小させ
る。したがって、実効ゲート長Leが0.5μm以下のゲ
ート電極2を安価な露光装置で且つスループット良く形
成することができる。
As described above, in this embodiment, the photolithography method using a simple exposure apparatus is used to reduce
After forming the gate electrode 2 of 5μm wide, isolation impurity ions are implanted, the isolation impurity is diffused laterally gate electrode 2 and the n-type active layer 1a of the contact width (effective gate length) L e Reduce to 0.5 μm or less. Therefore, the gate electrode 2 having an effective gate length L e of 0.5 μm or less can be formed with a low-cost exposure apparatus and high throughput.

【0015】なお、アイソレーション用の不純物を動作
層と逆導電型の不純物、つまりp型の不純物とし、p型
のアイソレーション層を形成しても良い。
Incidentally, the p-type isolation layer may be formed by using the impurity for isolation as an impurity having a conductivity type opposite to that of the operating layer, that is, a p-type impurity.

【0016】次に、本発明の別な実施例によるMESF
ET20の製造方法を説明する。まず、図1の実施例と
同様にして、ゲート電極2、ソース電極3及びドレイン
電極4を形成し、ゲート電極2及びその近傍を露出させ
てフォトレジスト膜5で覆う〔図1(b)参照〕。次
に、半絶縁性半導体基板1のアイソレーション層6を形
成しようとする領域にn型不純物を深く注入し、その部
分のn型動作層1aの底を他の領域よりも深く形成す
る。その後、同じ領域に中性不純物をイオン注入してア
イソレーション層6を形成する。
Next, a MESF according to another embodiment of the present invention will be described.
A method for manufacturing the ET20 will be described. First, similarly to the embodiment of FIG. 1, a gate electrode 2, a source electrode 3 and a drain electrode 4 are formed, the gate electrode 2 and its vicinity are exposed and covered with a photoresist film 5 [see FIG. 1 (b)]. ]. Next, n-type impurities are deeply implanted into the region of the semi-insulating semiconductor substrate 1 where the isolation layer 6 is to be formed, and the bottom of the n-type operating layer 1a in that region is formed deeper than the other regions. After that, neutral impurities are ion-implanted into the same region to form the isolation layer 6.

【0017】本実施例においては、図2に示すように、
アイソレーション層6の下においてn型動作層1aの底
を他の領域よりも深く形成しているので、アイソレーシ
ョン層6によってn型動作層1aの厚みが薄くなり、ソ
ース・ドレイン電極3,4間を流れる電流の寄生抵抗が
増大することを防止することができる。
In this embodiment, as shown in FIG.
Since the bottom of the n-type operating layer 1a is formed deeper than the other regions under the isolation layer 6, the thickness of the n-type operating layer 1a is reduced by the isolation layer 6, and the source / drain electrodes 3, 4 are formed. It is possible to prevent the parasitic resistance of the current flowing between them from increasing.

【0018】[0018]

【発明の効果】本発明の半導体装置の製造方法によれ
ば、ゲート電極をマスクとして動作層にアイソレーショ
ン用の不純物をイオン注入し、不純物をゲート電極の端
部の下に拡散させてゲート電極と動作層の接触幅(実効
ゲート長)をゲート電極の幅よりも小さくすることがで
きる。したがって、例えばフォトリソグラフィー法を利
用して0.5μm幅のゲート電極を形成し、不純物をイ
オン注入してゲート電極と動作層の接触幅を縮小させれ
ば、実効ゲート長が0.5μm以下のゲート電極を安価
且つ平易な露光装置で、スループット良く形成すること
ができる。
According to the method of manufacturing a semiconductor device of the present invention, an impurity for isolation is ion-implanted into the operating layer by using the gate electrode as a mask, and the impurity is diffused below the end portion of the gate electrode. The contact width (effective gate length) of the operating layer can be smaller than the width of the gate electrode. Therefore, for example, if a gate electrode having a width of 0.5 μm is formed by using a photolithography method and impurities are ion-implanted to reduce the contact width between the gate electrode and the operating layer, the effective gate length is 0.5 μm or less. The gate electrode can be formed with good throughput by an inexpensive and simple exposure apparatus.

【0019】また、アイソレーション層が形成される領
域において動作層を他の領域よりも深く形成しておけ
ば、アイソレーション膜によって動作層の厚みが薄くな
り、寄生抵抗が増大することを防止することができ、高
周波特性を向上させることができる。
Further, if the operating layer is formed deeper in the region where the isolation layer is formed than in the other regions, it is possible to prevent the operating layer from being thinned by the isolation film and increasing the parasitic resistance. Therefore, the high frequency characteristics can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)(b)(c)(d)は本発明の一実施例
によるMESFETの製造方法を示す断面図である。
1A, 1B, 1C and 1D are cross-sectional views showing a method for manufacturing a MESFET according to an embodiment of the present invention.

【図2】本発明の別な実施例によるMESFETの製造
方法を説明する断面図である。
FIG. 2 is a cross-sectional view illustrating a method of manufacturing a MESFET according to another embodiment of the present invention.

【図3】従来例によるMESFETの製造方法を説明す
る断面図である。
FIG. 3 is a cross-sectional view illustrating a method of manufacturing a MESFET according to a conventional example.

【符号の説明】[Explanation of symbols]

1 半絶縁性半導体基板 1a n型動作層 2 ゲート電極 3 ソース電極 4 ドレイン電極 5 フォトレジスト膜 6 アイソレーション層 1 semi-insulating semiconductor substrate 1a n-type operating layer 2 gate electrode 3 source electrode 4 drain electrode 5 photoresist film 6 isolation layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 動作層の表面にゲート電極、ソース電極
及びドレイン電極を形成した後、当該ゲート電極をマス
クとして動作層にアイソレーション用の不純物をイオン
注入し、当該不純物をゲート電極の端部の下に拡散させ
てアイソレーション層を形成することを特徴とする半導
体装置の製造方法。
1. A gate electrode, a source electrode and a drain electrode are formed on the surface of the operating layer, and then an impurity for isolation is ion-implanted into the operating layer using the gate electrode as a mask, and the impurity is applied to an end portion of the gate electrode. A method for manufacturing a semiconductor device, comprising: forming an isolation layer by diffusing underneath.
【請求項2】 前記アイソレーション層が形成された領
域において動作層の底を他の領域よりも深く形成するこ
とを特徴とする請求項1に記載の半導体装置の製造方
法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the bottom of the operating layer is formed deeper in the region where the isolation layer is formed than in the other regions.
JP30772992A 1992-10-20 1992-10-20 Method of manufacturing semiconductor device Pending JPH06132311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30772992A JPH06132311A (en) 1992-10-20 1992-10-20 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30772992A JPH06132311A (en) 1992-10-20 1992-10-20 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPH06132311A true JPH06132311A (en) 1994-05-13

Family

ID=17972559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30772992A Pending JPH06132311A (en) 1992-10-20 1992-10-20 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH06132311A (en)

Similar Documents

Publication Publication Date Title
JPH06204484A (en) High-speed and low-gate/drain capacitance p-mos device
JP3651964B2 (en) Manufacturing method of semiconductor device
JPH04260337A (en) Field effect transistor and its manufacture
US5877047A (en) Lateral gate, vertical drift region transistor
US6215153B1 (en) MOSFET and method for fabricating the same
JPH06132311A (en) Method of manufacturing semiconductor device
JP2892415B2 (en) Method for manufacturing semiconductor device
JP3394562B2 (en) MOSFET manufacturing method
KR100249194B1 (en) Fabricating method of a self aligned mesfet
KR100309136B1 (en) Method for manufacturing transistor of semiconductor device
JP3035969B2 (en) Method for manufacturing compound semiconductor device
KR940002776B1 (en) Producting method for mosfet with cmos and soi complex structure
JPH0774184A (en) Manufacture of schottky gate field-effect transistor
KR100362933B1 (en) Metal oxide semiconductor field effect transistor and method for manufacturing the same
JPS6261370A (en) Gaas field effect semiconductor device
JPH10135491A (en) Manufacture of diode and manufacture of field-effect transistor with protective diode
JPS622665A (en) Semiconductor device and manufacture thereof
JPS6070772A (en) Manufacture of field-effect transistor
JPH06232168A (en) Field effect transistor and its manufacture
EP0157780A1 (en) High density mosfet with field oxide aligned channel stops and method of fabricating the same.
JPH01144684A (en) Manufacture of schottky barrier junction gate type field-effect transistor
JPH01241181A (en) Manufacture of semiconductor device
JPH02191344A (en) Manufacture of field-effect transistor
KR19980046615A (en) Semiconductor device and manufacturing method thereof
JPS6037176A (en) Manufacture of field effect transistor