JPH06130120A - Testing of semiconductor integrated circuit - Google Patents

Testing of semiconductor integrated circuit

Info

Publication number
JPH06130120A
JPH06130120A JP4275664A JP27566492A JPH06130120A JP H06130120 A JPH06130120 A JP H06130120A JP 4275664 A JP4275664 A JP 4275664A JP 27566492 A JP27566492 A JP 27566492A JP H06130120 A JPH06130120 A JP H06130120A
Authority
JP
Japan
Prior art keywords
time
integrated circuit
circuit
semiconductor integrated
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4275664A
Other languages
Japanese (ja)
Inventor
Muneya Yoneshima
領弥 米島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP4275664A priority Critical patent/JPH06130120A/en
Publication of JPH06130120A publication Critical patent/JPH06130120A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the transient state time at the time of the testing of an integrated circuit having a high input time constant by releasing the coupling between an input terminal and the output terminal of a buffer circuit after a predetermined time is elapsed from a point of time when power supply voltage is applied and applying an input signal from the other terminal of a coupling condenser. CONSTITUTION:When cooprative switches 7, 8 are turned, the terminal of a coupling condenser 2 on the side of a signal source is earthed by the switch 8 and, at the same time, the resistor 33 in a semiconductor integrated circuit 3 to be tested becomes a short-circuited state by the switch 7 and the condenser 2 is rapidly charged. Thereafter, the switches 7, 8 are turned OFF to set the arrangement state of a steady measuring circuit. By this constitution, even when inspection is performed on the basis of the same circuit constant as mounting, the charge time at the time of the closing of a power supply can be shortened and AC characteristics can be detected only for a substantial measuring time. Since the condenser 2 is charged within a short time so as to bypass a resistor 33 when the power supply is closed, a steady state not drifting an input signal even in measurement thereafter is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オーディオ用などの低
周波増幅回路を有する半導体集積回路の試験方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for testing a semiconductor integrated circuit having a low frequency amplifier circuit for audio equipment.

【0002】[0002]

【従来の技術】オーディオ機器などに使用される低周波
アナログ信号の増幅回路は、入力信号に対する出力信号
の振幅率,歪率,周波数特性などが製造プロセスの影響
を受けるため集積回路一つづつについての正確な特性試
験が必要である。その試験に際し、集積回路に外部電源
の電圧を直接印加して試験を行った場合、外部電源の影
響を含んだ特性が測定されるため、被測定試料の正確な
特性を評価できるように集積回路自体に基準電圧部を内
蔵している。このような集積回路に試験信号を入力し、
出力端子からの信号の振幅,歪などを測定して外部回路
の影響のない増幅部の性能を評価している。
2. Description of the Related Art Amplification circuits for low-frequency analog signals used in audio equipment, etc. are subject to the influence of the manufacturing process on the amplitude rate, distortion rate, frequency characteristics, etc. of the output signal with respect to the input signal. An accurate characterization test of is required. When performing the test by directly applying the voltage of the external power supply to the integrated circuit, the characteristics including the effect of the external power supply are measured, so that the integrated circuit can be evaluated accurately for the characteristics of the DUT. It has a built-in reference voltage section. Input a test signal to such an integrated circuit,
The amplitude and distortion of the signal from the output terminal are measured to evaluate the performance of the amplifier section without the influence of external circuits.

【0003】従来、この種の基準電圧部を含む低周波増
幅回路の評価に用いられていた測定系の構成を図4のブ
ロック図に示す。信号源1からの試験信号はカップリン
グコンデンサ2を介して被試験半導体集積回路3の入力
端子34に供給され、その信号波形は中心電圧を接地レ
ベルに設定された正弦波である。カップリングコンデン
サ2は直流電圧を阻止し交流信号成分のみを伝達するた
めに設けられており、その容量値は以下の条件で決ま
る。
FIG. 4 is a block diagram showing the configuration of a measuring system that has been conventionally used for evaluating a low frequency amplifier circuit including a reference voltage section of this type. The test signal from the signal source 1 is supplied to the input terminal 34 of the semiconductor integrated circuit 3 under test through the coupling capacitor 2, and its signal waveform is a sine wave whose center voltage is set to the ground level. The coupling capacitor 2 is provided for blocking a DC voltage and transmitting only an AC signal component, and its capacitance value is determined by the following conditions.

【0004】すなわち、増幅部31の入力端子34には
入力信号とともに増幅回路の動作点の中心電圧になるD
Cバイアス(Vref)が基準電圧部32より抵抗33を
介して供給されるが、本発明が対象にしている低周波増
幅回路やオーディオ増幅回路の試験においては、下限の
周波数として10Hzの交流信号が減衰なしに増幅部3
1に入力される必要がある。したがって、仮に試験信号
の振幅の98%が入力するためには、カップリングコン
デンサ2と抵抗33によるCR積が0.1以上になるよ
うに設定する必要が生ずることになる。
That is, at the input terminal 34 of the amplifying section 31, a central voltage of the operating point of the amplifying circuit together with the input signal D
The C bias (V ref ) is supplied from the reference voltage unit 32 through the resistor 33, but in the test of the low frequency amplifier circuit and the audio amplifier circuit targeted by the present invention, an AC signal of 10 Hz is set as the lower limit frequency. Amplification part 3 without attenuation
Must be entered as 1. Therefore, in order to input 98% of the amplitude of the test signal, it is necessary to set the CR product of the coupling capacitor 2 and the resistor 33 to be 0.1 or more.

【0005】また、被試験半導体集積回路3内で基準電
圧を作り出すにはいろいろな方法があるが、外部直流電
源5からの電圧Vccの抵抗分圧により作り出す方法が一
般的である。基準電圧部32は、この抵抗分圧のための
抵抗321により、その抵抗値のほぼ中点より得た電圧
を供給することになるが、外部電源5の影響を除くこと
を目的にした低インピーダンス化のため、バッファ回路
322が設けられている。バッファ回路322の出力
(Vref)は同時に集積回路の外部端子38にも接続さ
れている。増幅部31の出力は信号測定器4によって、
振幅,歪率,周波数特性などが測定される。外部直流電
源5はスイッチ6を介して集積回路のVcc端子36に接
続されている。
There are various methods for generating the reference voltage in the semiconductor integrated circuit 3 to be tested, but the method for generating the reference voltage by resistance voltage division of the voltage V cc from the external DC power source 5 is general. The reference voltage section 32 supplies the voltage obtained from the resistance value 321 for dividing the resistance value at approximately the midpoint of its resistance value, but has a low impedance for the purpose of eliminating the influence of the external power source 5. A buffer circuit 322 is provided for this purpose. The output (V ref ) of the buffer circuit 322 is simultaneously connected to the external terminal 38 of the integrated circuit. The output of the amplifier 31 is output by the signal measuring device 4,
Amplitude, distortion, frequency characteristics, etc. are measured. The external DC power supply 5 is connected to the Vcc terminal 36 of the integrated circuit via the switch 6.

【0006】測定の工程は、まずスイッチ6を介して被
試験半導体集積回路3のVcc端子36に外部直流電源5
よりVccを印加する。次に、信号源1からの試験信号は
増幅部31により増幅され、その出力信号は出力端子3
5を介して信号測定器4に入力され測定を実行する。一
つの試験項目が終了すればスイッチ6をOFFにし、V
ccを切って次の試験項目の測定を行い、最後に次の被試
験半導体集積回路と交換する。量産試験はこの工程を繰
り返すことにより行われる。
In the measurement process, first, the external DC power supply 5 is applied to the Vcc terminal 36 of the semiconductor integrated circuit 3 under test through the switch 6.
More V cc is applied. Next, the test signal from the signal source 1 is amplified by the amplifier 31, and the output signal thereof is output from the output terminal 3
The signal is input to the signal measuring device 4 via 5 to execute the measurement. When one test item is completed, switch 6 is turned off and V
Turn off cc , measure the next test item, and finally replace with the next semiconductor integrated circuit under test. The mass production test is performed by repeating this process.

【0007】[0007]

【発明が解決しようとする課題】上記従来の低周波特性
の試験方法においては、信号の入力に備えてカップリン
グコンデンサ2の充電期間が必要である。充電が完了す
るまでの過渡状態は図5に示すように電源電圧投入時点
のDCバイアス電圧VINDCはVrefに対して、次式、VI
NDC=Vref(1−e-t/CR)で表わされる時間変化をす
るので、カップリングコンデンサ2の容量値を1μF、
抵抗33の抵抗値を100KΩとすれば、DCバイアス
電圧VINDCが基準電圧Vref95%に到する時間を充電
時間とすると、その充電時間は約0.3秒になる。この
値は電源電圧の投入から安定動作に移行するまでの時間
であり、被測定回路を切り換えるたびに安定動作に移行
するまでの待機時間であって、実質のないロス時間とな
っていた。
In the above-mentioned conventional test method for low frequency characteristics, it is necessary to charge the coupling capacitor 2 in preparation for signal input. As shown in FIG. 5, the DC bias voltage VINDC at the time of turning on the power supply voltage is compared with V ref by the following equation: VI until the charging is completed.
Since it changes with time represented by NDC = V ref (1-e -t / CR ), the capacitance value of the coupling capacitor 2 is 1 μF,
If the resistance value of the resistor 33 is 100 KΩ, the charging time is about 0.3 seconds when the charging time is the time when the DC bias voltage VINDC reaches the reference voltage V ref 95%. This value is the time from the application of the power supply voltage to the stable operation, which is the standby time until the stable operation is switched every time the circuit under measurement is switched, and is a substantial loss time.

【0008】さらに、量産検査の内容は集積回路一個あ
たり10〜100項目あり、測定回路は何回も切り換え
て測定される。検査コストの面からみて、各検査時間を
累計した全体の測定時間を数秒以下とする必要があり、
検査コストの点で問題となり、待機時間0.3秒は無視
できない長い時間である。CR積を小さくすると、前記
のように測定結果の特性保証ができなくなるため問題で
あった。
Further, the content of the mass production inspection is 10 to 100 items per integrated circuit, and the measurement circuit is switched many times for measurement. In terms of inspection cost, it is necessary to set the total measurement time of each inspection time to a few seconds or less,
The inspection cost becomes a problem, and the waiting time of 0.3 seconds is a long time that cannot be ignored. If the CR product is made small, the characteristic of the measurement result cannot be guaranteed as described above, which is a problem.

【0009】本発明は上記の問題を解決するもので、入
力時定数が比較的大きい低周波増幅回路やオーディオ増
幅回路を有する半導体集積回路を試験する際の過渡状態
の時間を飛躍的に短縮できる方法を提供することを目的
とするものである。
The present invention solves the above problem and can dramatically reduce the time of a transient state when testing a semiconductor integrated circuit having a low frequency amplifier circuit or an audio amplifier circuit having a relatively large input time constant. It is intended to provide a method.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明の半導体集積回路の試験方法では、入力信号が
与えられる増幅部の入力端子と、上記入力端子に抵抗を
介して基準電圧のDCバイアスを与えるバッファ回路
と、上記バッファ回路の入力側または出力側に基準電圧
外部端子を備えた半導体集積回路を試験する方法であっ
て、上記入力端子と上記バッファ回路の出力側との間を
短絡し、上記入力端子に一端が接続されたカップリング
コンデンサの他端を接地するとともに、上記半導体集積
回路に電源電圧を与えるステップと、上記電源電圧を投
入して所定時間経過後、上記入力端子と上記バッファ回
路の出力側との間を開放し、上記カップリングコンデン
サの他端から入力信号を与えるステップとを備えてい
る。
In order to achieve the above object, in a semiconductor integrated circuit testing method of the present invention, an input terminal of an amplifying section to which an input signal is applied and a reference voltage of a reference voltage via a resistor are connected to the input terminal. A method for testing a semiconductor integrated circuit comprising a buffer circuit for applying a DC bias and a reference voltage external terminal on the input side or output side of the buffer circuit, the method comprising: connecting between the input terminal and the output side of the buffer circuit. Short-circuiting, grounding the other end of the coupling capacitor, one end of which is connected to the input terminal, and applying a power supply voltage to the semiconductor integrated circuit; and, after a lapse of a predetermined time after turning on the power supply voltage, the input terminal And an output side of the buffer circuit are opened, and an input signal is applied from the other end of the coupling capacitor.

【0011】[0011]

【作用】上記した手段によれば、被試験半導体集積回路
にVccの印加によって、抵抗を迂回してカップリングコ
ンデンサが短絡時間に充電され、その後の測定において
も入力信号がドリフトしない定常状態を得ることができ
る。
According to the above-mentioned means, by applying Vcc to the semiconductor integrated circuit under test, the coupling capacitor is charged by bypassing the resistance during the short-circuit time, and the steady state in which the input signal does not drift even in the subsequent measurement is maintained. Obtainable.

【0012】[0012]

【実施例】【Example】

(実施例1)以下、本発明の第1の実施例を図面を参照
しながら説明する。本発明の第1の実施例における半導
体集積回路の試験装置のブロック図を図1に示す。図1
において、従来例の説明と重複する部分は説明を省略す
る。被試験半導体集積回路3は増幅部31と基準電圧部
32および抵抗33より構成され、増幅部31は入力端
子34および出力端子35に接続されている。バッファ
回路322の出力Vre fは基準電圧部32よりの出力と
なるとともに基準電圧端子38に接続されている。信号
源1からの試験信号は増幅部31により増幅されて出力
端子35を通じて出力され、信号測定器4によって振
幅,歪率,周波数特性などが測定される。
(First Embodiment) A first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a block diagram of a semiconductor integrated circuit testing apparatus according to the first embodiment of the present invention. Figure 1
In the above, the description of the same parts as those of the conventional example will be omitted. The semiconductor integrated circuit 3 under test is composed of an amplifying section 31, a reference voltage section 32 and a resistor 33, and the amplifying section 31 is connected to an input terminal 34 and an output terminal 35. Output V re f of the buffer circuit 322 is connected to the reference voltage terminal 38 with the output of the reference voltage unit 32. The test signal from the signal source 1 is amplified by the amplification unit 31 and output through the output terminal 35, and the signal measuring device 4 measures the amplitude, the distortion rate, the frequency characteristic, and the like.

【0013】本発明ではスイッチ7とスイッチ8が追加
されており、スイッチ7とスイッチ8は連動して動作
し、OFF時は従来例と全く同じ構成となる。ON時に
はスイッチ8によりカップリングコンデンサ2の信号源
側の端子は接地され、同時にスイッチ7によって被試験
半導体集積回路3内の抵抗33が短絡された形となり、
カップリングコンデンサ2が急速に充電される。
In the present invention, the switch 7 and the switch 8 are added, and the switch 7 and the switch 8 operate in conjunction with each other, and when they are turned off, they have exactly the same configuration as the conventional example. When ON, the signal source side terminal of the coupling capacitor 2 is grounded by the switch 8, and at the same time, the resistor 33 in the semiconductor integrated circuit 3 under test is short-circuited by the switch 7,
The coupling capacitor 2 is charged rapidly.

【0014】図2は図1の試験装置の測定手順を示すフ
ローチャートである。まず被試験半導体集積回路3のV
cc端子36に接続したスイッチ6をON状態にすること
によって電源5の電圧Vccを供給する。(ステップ1…
以下S1というように略記する)。次に連動スイッチ
7,8をON状態とすることによって、カップリングコ
ンデンサ2と直列になる抵抗が短絡されて急速充電が行
われる(S2)。この短時間の充電時間待ちによってカ
ップリングコンデンサ2への充電を完結する(S3)。
スイッチ7,8をOFF状態に戻して測定準備が完了す
る(S4)。以降、通常のように各種試験を実行する
(S5)。測定終了後はスイッチ6をOFFとし(S
6)、続いて試験結果の判定(良否判定)を行い(S
7)、最後に次の被試験半導体集積回路と交換して(S
8)、ステップ1に戻る。
FIG. 2 is a flow chart showing the measurement procedure of the test apparatus of FIG. First, V of the semiconductor integrated circuit 3 under test
The voltage V cc of the power source 5 is supplied by turning on the switch 6 connected to the cc terminal 36. (Step 1 ...
Hereinafter, it is abbreviated as S1). Next, the interlocking switches 7 and 8 are turned on to short-circuit the resistor in series with the coupling capacitor 2 and rapid charging is performed (S2). By waiting for this short charging time, the charging of the coupling capacitor 2 is completed (S3).
The switches 7 and 8 are returned to the OFF state, and the preparation for measurement is completed (S4). After that, various tests are executed as usual (S5). After the measurement is completed, switch 6 is turned off (S
6) Then, the test result is judged (good or bad judgment) (S
7) Finally, replace with the next semiconductor integrated circuit under test (S
8) Return to step 1.

【0015】利得が一倍の低出力インピーダンス(0.
1〜10Ω程度)で動作するバッファ回路は、比較的大
きな内部インピーダンスを有する電圧源を用いて、それ
と同等の出力電圧を出力する低インピーダンスのバイア
ス用電源回路として半導体集積回路によく用いられる。
また、同一セット内の他の半導体集積回路と連結して、
連動させることがあり、バッファ回路の出力電圧を外部
端子38と接続することが多い。この場合、本実施例に
よる外部端子38からのスイッチ7、入力端子34を介
して抵抗33を短絡し、同時にスイッチ8を接地するこ
とにより、カップリングコンデンサ2と直列回路をなす
実質的な抵抗成分はバッファ回路の出力インピーダンス
のみとなる。その値は、従来例の100KΩに対し、本
発明では10Ω以下(バッファ回路の出力インピーダン
ス)にでき、理論的には1万分の1の充電時間に短縮可
能である。実際には、コンデンサ内部の直列抵抗成分
(たとえば1μFの電解コンデンサの場合、100Ω前
後)を有しているため、理論通りの比率で充電時間の短
縮は図れないが、1/100程度に短縮される。また、
交流特性の測定には経験的に交流信号の最低で2周期分
の時間を必要とし、10Hzの入力周波数の場合には最
低0.2秒の測定時間を必要とする。したがって、本実
施例の(S3)の充電時間は実質の測定時間に比べて無
視できる値となる。
Low output impedance (0.
A buffer circuit that operates at about 1 to 10 Ω) is often used in a semiconductor integrated circuit as a low-impedance bias power supply circuit that uses a voltage source having a relatively large internal impedance and outputs an output voltage equivalent to that.
Also, by connecting to other semiconductor integrated circuits in the same set,
The output voltage of the buffer circuit is often connected to the external terminal 38 in some cases. In this case, the resistor 33 is short-circuited via the switch 7 and the input terminal 34 from the external terminal 38 according to the present embodiment, and the switch 8 is grounded at the same time, so that a substantial resistance component forming a series circuit with the coupling capacitor 2 is formed. Is only the output impedance of the buffer circuit. The value can be set to 10Ω or less (output impedance of the buffer circuit) in the present invention, compared to 100KΩ in the conventional example, and theoretically can be shortened to a charging time of 1/10000. In reality, since it has a series resistance component inside the capacitor (for example, in the case of an electrolytic capacitor of 1 μF, around 100Ω), the charging time cannot be shortened at the theoretical ratio, but it is shortened to about 1/100. It Also,
Empirically, the measurement of the AC characteristics requires a time of at least two cycles of the AC signal, and a measurement time of at least 0.2 seconds in the case of an input frequency of 10 Hz. Therefore, the charging time in (S3) of this embodiment is a value that can be ignored compared to the actual measurement time.

【0016】この第1の実施例を要約すると、(S2)
でスイッチ7,8をONさせて、カップリングコンデン
サ2と直列に介在する抵抗成分をゼロにし、バッファ回
路322と接地間にカップリングコンデンサ2の両端を
接地するから、カップリングコンデンサ2に定常のバイ
アス電圧が短時間で充電され、その後(S4)でスイッ
チ7,8をOFFさせて定常の測定回路の接地状態に切
り換えるから、実装と同じ回路定数で検査しても、電源
投入時の充電時間が極めて小さくでき、実質的な測定時
間のみで交流特性が検査できる。
To summarize this first embodiment, (S2)
Then, the switches 7 and 8 are turned on to zero the resistance component interposed in series with the coupling capacitor 2 and both ends of the coupling capacitor 2 are grounded between the buffer circuit 322 and the ground. The bias voltage is charged in a short time, and then the switches 7 and 8 are turned off in (S4) to switch to the steady ground state of the measurement circuit. Can be made extremely small, and the AC characteristics can be inspected with only a substantial measurement time.

【0017】なお、本実施例では(S1)の電源投入か
ら(S2)のスイッチ7,8を切り換える(ON状態と
する)までの時間は短時間で自動的に行われ、(S1)
と(S2)の順序を入れ換えても同様の結果が得られる
ことはいうまでもない。
In this embodiment, the time from turning on the power source in (S1) to switching the switches 7 and 8 (in ON state) in (S2) is automatically performed in a short time (S1).
Needless to say, the same result can be obtained by exchanging the order of (S2).

【0018】(実施例2)本発明の第2の実施例におけ
る半導体集積回路の試験装置のブロック図を図3に示
す。これは内蔵の基準電圧部のバッファ回路322が高
インピーダンスの場合であって、その場合はバッファ回
路9を追加することによって被試験半導体集積回路3に
悪影響を与えることなく第1の実施例と全く同様の効果
を得るものである。
(Embodiment 2) FIG. 3 shows a block diagram of a semiconductor integrated circuit testing apparatus according to a second embodiment of the present invention. This is the case where the buffer circuit 322 of the built-in reference voltage section has a high impedance. In that case, the addition of the buffer circuit 9 does not adversely affect the semiconductor integrated circuit 3 to be tested and is completely different from that of the first embodiment. The same effect is obtained.

【0019】上記実施例の半導体集積回路の試験方法に
よれば、被試験半導体集積回路へのVccの印加とスイッ
チ動作による出力端子38とカップリングコンデンサ2
の入力側との接続により急速充電を行うので、入力の時
定数が大きくても過渡状態の時間(待機時間)が短縮で
き、低周波増幅回路やオーディオ増幅回路を有する半導
体集積回路の試験コストを低減できるものである。
According to the method for testing a semiconductor integrated circuit of the above embodiment, the output terminal 38 and the coupling capacitor 2 by applying V cc to the semiconductor integrated circuit under test and switching operation.
Since the quick charge is performed by connecting to the input side of, the transient state time (standby time) can be shortened even if the input time constant is large, and the test cost of the semiconductor integrated circuit having the low frequency amplifier circuit and the audio amplifier circuit can be reduced. It can be reduced.

【0020】[0020]

【発明の効果】本発明の半導体集積回路の試験方法は、
被試験半導体集積回路に外部電源からのVccを印加した
後の過渡状態の待機時間が短縮でき、さらに実装状態と
同等の回路定数で測定できるので、低周波増幅回路やオ
ーディオ増幅回路を有する半導体集積回路の量産自動試
験を高い検査品質を維持しつつ、かつ生産性を向上する
ことができるものである。
The test method of the semiconductor integrated circuit of the present invention is
The semiconductor integrated circuit under test has a low-frequency amplifier circuit and an audio amplifier circuit because it can shorten the waiting time in the transient state after applying V cc from an external power supply and can measure with the same circuit constant as the mounted state. It is possible to improve productivity while maintaining high inspection quality in mass production automatic testing of integrated circuits.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の半導体集積回路の試験
方法を実施するための試験装置のブロック図
FIG. 1 is a block diagram of a test apparatus for carrying out a method for testing a semiconductor integrated circuit according to a first embodiment of the present invention.

【図2】図1の試験方法の動作順序を説明するフローチ
ャート
FIG. 2 is a flowchart for explaining the operation sequence of the test method of FIG.

【図3】本発明の第2の実施例の半導体集積回路の試験
方法を実施するための試験装置のブロック図
FIG. 3 is a block diagram of a test apparatus for carrying out a semiconductor integrated circuit test method according to a second embodiment of the present invention.

【図4】従来の半導体集積回路の試験方法を実施した試
験装置のブロック図
FIG. 4 is a block diagram of a test apparatus that implements a conventional semiconductor integrated circuit test method.

【図5】過渡状態における入力端子の電圧波形の時間変
化を説明する図
FIG. 5 is a diagram for explaining a time change of a voltage waveform of an input terminal in a transient state.

【符号の説明】[Explanation of symbols]

2 カップリングコンデンサ 3 被試験半導体集積回路 31 増幅部 32 基準電圧部 33 抵抗 34 入力端子 38 基準電圧端子 322 バッファ回路 2 Coupling Capacitor 3 Semiconductor Integrated Circuit Under Test 31 Amplifying Section 32 Reference Voltage Section 33 Resistor 34 Input Terminal 38 Reference Voltage Terminal 322 Buffer Circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 増幅部への信号入力端子と、この入力端
子に抵抗を介して基準電圧のDCバイアスを与えるバッ
ファ回路と、このバッファ回路の入力側または出力側を
外部端子に接続した半導体集積回路を試験する方法にお
いて、前記入力端子と前記バッファ回路の出力側との間
を短絡し、前記入力端子に接続されたカップリングコン
デンサの他端を接地するとともに、前記半導体集積回路
に電源電圧を印加するステップと、前記電源電圧を印加
して所定時間経過後、前記入力端子と前記バッファ回路
の出力側との間を開放し、前記カップリングコンデンサ
の他端から入力信号を供給するステップとを備えた半導
体集積回路の試験方法。
1. A semiconductor integrated circuit in which a signal input terminal to an amplification section, a buffer circuit for applying a DC bias of a reference voltage to the input terminal via a resistor, and an input side or an output side of the buffer circuit are connected to an external terminal. In a method of testing a circuit, a short circuit is made between the input terminal and an output side of the buffer circuit, the other end of a coupling capacitor connected to the input terminal is grounded, and a power supply voltage is supplied to the semiconductor integrated circuit. Applying the power supply voltage and, after a predetermined time has elapsed after applying the power supply voltage, opening between the input terminal and the output side of the buffer circuit and supplying an input signal from the other end of the coupling capacitor. Test method for semiconductor integrated circuit provided.
JP4275664A 1992-10-14 1992-10-14 Testing of semiconductor integrated circuit Pending JPH06130120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4275664A JPH06130120A (en) 1992-10-14 1992-10-14 Testing of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4275664A JPH06130120A (en) 1992-10-14 1992-10-14 Testing of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH06130120A true JPH06130120A (en) 1994-05-13

Family

ID=17558633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4275664A Pending JPH06130120A (en) 1992-10-14 1992-10-14 Testing of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH06130120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026839A1 (en) * 2021-08-26 2023-03-02 日置電機株式会社 Impedance measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026839A1 (en) * 2021-08-26 2023-03-02 日置電機株式会社 Impedance measuring device

Similar Documents

Publication Publication Date Title
US6856138B2 (en) Time-domain reflectometer for testing terminated network cable
US4216424A (en) Method and apparatus for testing electrolytic capacitors
US20040119488A1 (en) Pin driver for AC and DC semiconductor device testing
GB2451314A (en) An input amplifier for a digital multimeter
US5272445A (en) Resistance tester utilizing regulator circuits
JPH06130120A (en) Testing of semiconductor integrated circuit
CN211860547U (en) Sound performance test circuit and device
CN210155255U (en) Test unit and test device of temperature compensation crystal oscillator
US5166625A (en) Automatic device for measuring the noise level of electronic components
JP2982236B2 (en) Test circuit for semiconductor integrated circuits
US4733173A (en) Electronic component measurement apparatus
JP4674005B2 (en) Power supply device and test device
JPH01292269A (en) Incircuit function testing apparatus and method
JPH0371073B2 (en)
KR100231649B1 (en) A test board having a capacitor charging circuit and a test method using the test board
RU2080609C1 (en) Method for determining complex impedance of two-pole network in frequency band
KR940006602B1 (en) Hybrid ic tester of cell nearing fuse
JPH10293154A (en) Bias power source circuit for semiconductor testing device
JP3469160B2 (en) Contact inspection sensitivity improvement device
JP2959174B2 (en) Integrated circuit
CN113030572A (en) Magnetic core impedance characteristic analysis method and magnetic core impedance test system applying same
JP3198493B2 (en) IC tester
JPH01129174A (en) Integrated circuit testing apparatus
JPH0533977Y2 (en)
JP2527604Y2 (en) Integrator integration time constant switch connected to detector