JPH0612943U - Particle measuring device - Google Patents

Particle measuring device

Info

Publication number
JPH0612943U
JPH0612943U JP5638892U JP5638892U JPH0612943U JP H0612943 U JPH0612943 U JP H0612943U JP 5638892 U JP5638892 U JP 5638892U JP 5638892 U JP5638892 U JP 5638892U JP H0612943 U JPH0612943 U JP H0612943U
Authority
JP
Japan
Prior art keywords
light
optical system
irradiation
cell
flow cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5638892U
Other languages
Japanese (ja)
Inventor
良宏 久保
訓 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP5638892U priority Critical patent/JPH0612943U/en
Publication of JPH0612943U publication Critical patent/JPH0612943U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 試料流体に対する照射光の光強度の密度アッ
プを図り、加えて装置のコストダウンまたは小型化を達
成する。 【構成】 フローセル1内の観測領域Rに照射光を入射
させる照射光学系7と、照射光がセル内の試料流体中の
微粒子に照射されて生じる散乱光の検出光学系15とを備
えると共に、前記照射光学系7を、光源8から照射され
た光を平行光にするコリメータレンズ光学系10と、前記
平行光を更に縮径させるリレーレンズ光学系13とから構
成し、かつ、フローセル1のセル窓2,3を照射光学系
の光軸Qに対して傾斜させると共に、前記リレーレンズ
光学系の集光部Pの近傍に、セル窓からの戻り光を遮光
させるための遮光部材14を設けている。
(57) [Abstract] [Purpose] To increase the density of the light intensity of the irradiation light to the sample fluid and to achieve cost reduction or downsizing of the device. [Arrangement] An irradiation optical system 7 for making irradiation light incident on an observation region R in the flow cell 1, and an optical system 15 for detecting scattered light generated by irradiation of fine particles in a sample fluid in the cell with the irradiation light are provided. The irradiation optical system 7 comprises a collimator lens optical system 10 for converting the light emitted from the light source 8 into parallel light, and a relay lens optical system 13 for further reducing the diameter of the parallel light, and the cell of the flow cell 1 The windows 2 and 3 are tilted with respect to the optical axis Q of the irradiation optical system, and a light blocking member 14 for blocking the return light from the cell window is provided in the vicinity of the condensing part P of the relay lens optical system. There is.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、例えば半導体の製造工程におけるウエハの洗浄などに使用される超 純水や、クリーンルームなどで使用される清浄空気などの流体に含まれた微粒子 の測定装置に関する。 The present invention relates to an apparatus for measuring fine particles contained in a fluid such as ultrapure water used for cleaning wafers in a semiconductor manufacturing process or clean air used in a clean room.

【0002】[0002]

【従来の技術】[Prior art]

上記の微粒子測定装置として、図4に示すように、互いに平行平板のセル窓21 ,22を備えたフローセル23と、このセル23内の観測領域Rに照射光を入射させる 照射光学系24と、前記照射光がセル23内の試料流体中の微粒子に照射されて生じ る散乱光の検出光学系(図示せず)とを備えると共に、前記フローセル23のセル 窓21,22を照射光学系24の光軸Qに対して傾斜させたものが知られている。 そして上記の照射光学系24を、光源25から照射された光を平行光にするコリメ ータレンズ26と、ガウシャン分布を呈する平行光のうち断面強度が強い中心部の 光を透過させるアパーチャcが形成された遮光部材27とから構成している。 As the above-mentioned fine particle measuring device, as shown in FIG. 4, a flow cell 23 having cell windows 21 and 22 of mutually parallel flat plates, an irradiation optical system 24 for making irradiation light incident on an observation region R in the cell 23, An optical system (not shown) for detecting scattered light generated by irradiating the fine particles in the sample fluid in the cell 23 with the irradiation light is provided, and the cell windows 21 and 22 of the flow cell 23 are connected to the irradiation optical system 24. The one tilted with respect to the optical axis Q is known. The irradiation optical system 24 is provided with a collimator lens 26 for collimating the light emitted from the light source 25 and an aperture c for transmitting the central portion of the parallel light having a Gaussian distribution, which has a strong cross-sectional intensity. And a light blocking member 27.

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

かゝる構成の微粒子測定装置において、アパーチャcが形成された遮光部材27 を設けて平行光の中心部の光を透過させるのは、現状ではコリメータレンズ26の 小径化に限界があって平行光を小径にすることができないにも拘わらず、セル窓 21,22の小径化が要望されることに起因する。 一方、前記フローセル23のセル窓21,22を照射光学系24の光軸Qに対して傾斜 させるのは、セル窓21,22で反射した光の光源25側への戻り光を少なくし、光源 ノイズを低減させてS/N比を改善させるためである。 In the fine particle measuring device having such a structure, it is currently the reason that the collimator lens 26 has a limit in reducing the diameter of the parallel light because the light shielding member 27 having the aperture c is provided to transmit the light in the central portion of the parallel light. This is because the cell windows 21 and 22 are required to have a small diameter even though the diameter cannot be reduced. On the other hand, inclining the cell windows 21 and 22 of the flow cell 23 with respect to the optical axis Q of the irradiation optical system 24 reduces the return light of the light reflected by the cell windows 21 and 22 to the light source 25 side, This is to reduce noise and improve the S / N ratio.

【0004】 しかし、平行光の中心部の光だけを試料流体に照射させる関係上、光強度が低 くなって、S/N比を向上させることが困難な状況となっている。 また、セル窓21,22を照射光学系24の光軸Qに対して傾斜させて戻り光の影響 を完全になくすためには、セル窓21,22の傾斜角を大きくするか、あるいは、フ ローセル23を照射光学系24から大きく離して設置するかの何れかを選択しなけれ ばならず、而して、傾斜角を大きくすると大面積のセル窓21,22を要することか ら装置コストが高くつき、あるいは、フローセル23を照射光学系24から大きく離 すと装置が大型化する点で問題があった。However, since the sample fluid is irradiated with only the light in the central portion of the parallel light, the light intensity becomes low and it is difficult to improve the S / N ratio. Further, in order to completely eliminate the influence of the returning light by inclining the cell windows 21 and 22 with respect to the optical axis Q of the irradiation optical system 24, the inclination angle of the cell windows 21 and 22 should be increased, or Either the low cell 23 should be installed far away from the irradiation optical system 24, and if the tilt angle is increased, the cell windows 21 and 22 of large area are required. There is a problem in that the device becomes large in size if the flow cell 23 is expensive or if the flow cell 23 is far away from the irradiation optical system 24.

【0005】 本考案は、かゝる実情に鑑みて成されたものであって、試料流体に照射される 光強度の密度をアップさせてS/N比の向上を図った上で、更に、セル窓の小径 化あるいはフローセルの光源に対する近接設置を可能にした微粒子測定装置を提 供することを目的としている。The present invention has been made in view of such circumstances, and further improves the S / N ratio by increasing the density of the light intensity with which the sample fluid is irradiated. The objective is to provide a particle measurement device that enables the cell window to be downsized or the flow cell to be installed close to the light source.

【課題を解決するための手段】[Means for Solving the Problems]

上記の目的を達成するために本考案は、冒頭に記載した微粒子測定装置におい て、前記照射光学系を、光源から照射された光を平行光にするコリメータレンズ 光学系と、前記平行光を更に縮径させるリレーレンズ光学系とから構成し、かつ 、前記リレーレンズ光学系の集光部近傍に、セル窓からの戻り光を遮光させるた めの遮光部材を設けた点に特徴がある。 In order to achieve the above object, the present invention provides a particle measuring apparatus described at the beginning, wherein the irradiation optical system further includes a collimator lens optical system that converts light emitted from a light source into parallel light, and the parallel light. It is characterized in that it is composed of a relay lens optical system for reducing the diameter, and a light blocking member for blocking the return light from the cell window is provided in the vicinity of the condensing part of the relay lens optical system.

【0006】[0006]

【作用】[Action]

上記の特徴構成によれば、コリメータレンズ光学系で平行光にした照射光を更 に縮径させることでセル窓の小径化に対応でき、かつ同時に、試料流体に対する 照射光の光強度の密度アップが達成される。 また、平行光を更に縮径させる上で必要なリレーレンズ光学系での集光部近傍 に遮光部材を設けているので、この遮光部材にセル窓からの戻り光を照射させる ようにすることによって、換言すれば、戻り光を集光部から僅かに外すように、 照射光学系の光軸に対してセル窓をやゝ傾斜させることによって、セル窓で反射 した光の光源側への戻りを確実に防止することができ、ひいては、セル窓の小径 化あるいは光源に対するフローセルの近接設置が可能となる。 According to the above characteristic configuration, it is possible to reduce the diameter of the cell window by further reducing the diameter of the irradiation light that is collimated by the collimator lens optical system, and at the same time increase the density of the irradiation light intensity for the sample fluid. Is achieved. In addition, since a light blocking member is provided near the condensing part in the relay lens optical system that is necessary for further reducing the diameter of the parallel light, it is possible to irradiate the light returning from the cell window to this light blocking member. In other words, by slightly tilting the cell window with respect to the optical axis of the irradiation optical system so that the return light is slightly removed from the condensing part, the light reflected by the cell window is returned to the light source side. This can surely be prevented, and eventually, the cell window can be downsized or the flow cell can be installed close to the light source.

【0007】[0007]

【実施例】 以下、本考案の実施例を図面に基づいて説明する。図1,2は微粒子測定装置 の原理図を示し、1は互いに平行平板のセル窓2,3を備えたフローセルで、セ ル窓2,3が相対する方向と直交する方向の側部には散乱光検出窓4が設けられ ている。 5はフローセル1の下部に形成された試料流体の導入口、6はフローセル1の 上部に形成された試料流体の導出口である。 7はフローセル1内の観測領域Rに照射光を入射させる照射光学系で、例えば 半導体レーザーからなる光源8と、この光源8から照射された光をコリメータレ ンズ9によって平行光にするコリメータレンズ光学系10と、上記の平行光を2個 のリレーレンズ11,12によって更に縮径させるリレーレンズ光学系13とから構成 されている。Embodiment An embodiment of the present invention will be described below with reference to the drawings. Figures 1 and 2 show the principle of the particle measuring device. Reference numeral 1 is a flow cell equipped with parallel flat cell windows 2 and 3, and the cell windows 2 and 3 are provided on the side in the direction orthogonal to the facing direction. A scattered light detection window 4 is provided. Reference numeral 5 is a sample fluid inlet formed in the lower portion of the flow cell 1, and 6 is a sample fluid outlet formed in the upper portion of the flow cell 1. Reference numeral 7 denotes an irradiation optical system that makes irradiation light incident on an observation region R in the flow cell 1, and includes, for example, a light source 8 made of a semiconductor laser, and collimator lens optics for collimating the light emitted from this light source 8 by a collimator lens 9. It is composed of a system 10 and a relay lens optical system 13 which further reduces the diameter of the parallel light by two relay lenses 11 and 12.

【0008】 そして、この照射光学系7の2個のリレーレンズ11,12による集光部Pの近傍 に、集光された照射光を透過させるアパーチャaが形成された遮光部材14を設け る一方、前記フローセル1のセル窓2,3を照射光学系7の光軸Qに対して例え ば下方にやゝ傾斜させて、この遮光部材14にセル窓2,3からの戻り光を照射さ せるようにしている。 15は前記散乱光検出窓4と相対してフローセル1外に設けられた検出光学系で 、試料流体の微粒子から生じた散乱光を集光する集光レンズ16と、散乱光を検出 する光検出器17とから成る。In the vicinity of the condensing part P formed by the two relay lenses 11 and 12 of the irradiation optical system 7, a light shielding member 14 having an aperture a for transmitting the condensed irradiation light is provided. The cell windows 2 and 3 of the flow cell 1 are tilted, for example, slightly downward with respect to the optical axis Q of the irradiation optical system 7 so that the light shielding member 14 is irradiated with the return light from the cell windows 2 and 3. I am trying. Reference numeral 15 denotes a detection optical system provided outside the flow cell 1 opposite to the scattered light detection window 4, and includes a condenser lens 16 for condensing scattered light generated from fine particles of the sample fluid, and a light detection for detecting scattered light. It consists of vessel 17 and.

【0009】 上記構成の微粒子測定装置において、前記導入口5を通してフローセル1内の 観測領域Rに試料流体を導入させると共に、コリメータレンズ光学系10によって 平行光にし且つリレーレンズ光学系13によって更に縮径させたレーザ光を、前記 観測領域Rを流れる試料流体に向けて照射させるのであり、このとき、試料流体 に微粒子が含まれていると、その微粒子によって散乱された光が集光レンズ16で 集光され、これが光検出器17によって検出されるもので、この光検出器17からの 出力信号に基づいて微粒子数がカウントされ且つその粒度分布が測定される。In the fine particle measuring device having the above-described configuration, the sample fluid is introduced into the observation region R in the flow cell 1 through the inlet 5, the collimator lens optical system 10 collimates the parallel light, and the relay lens optical system 13 further reduces the diameter. The laser light thus generated is directed toward the sample fluid flowing through the observation region R. At this time, if the sample fluid contains fine particles, the light scattered by the fine particles is collected by the condenser lens 16. The light is emitted and detected by the photodetector 17, and the number of fine particles is counted and the particle size distribution is measured based on the output signal from the photodetector 17.

【0010】 そして、更に縮径された平行光がセル窓2,3で反射した際の戻り光は、前記 リレーレンズ光学系13の集光部P近傍に設けた遮光部材14に照射されて遮光され るもので、これによって戻り光の光源8側への戻りが確実に防止されることから S/N比の改善が達成される。 なる。 而して、前記遮光部材14に戻り光を照射させて光源8側への戻り光の照射を防 止させる上で、前記セル窓2,3を照射光学系7の光軸Qに対してやゝ傾斜させ るだけでよいので、図2,4に照らして明らかなように、セル窓2,3の小径化 ならびに光源8に対するフローセル1の近接設置が可能となる。 あるいは、セル窓2,3の緩傾斜化だけを選択するならば、集光レンズ10に対 するフローセル1の近接設置ひいては装置の小型化が達成されるのであり、勿論 、セル窓2,3の適度な緩傾斜化によって、セル窓2,3の小径化と装置の小型 化を図る折衷形態をとることも可能である。Then, the return light when the further reduced parallel light is reflected by the cell windows 2 and 3 is radiated to the light shielding member 14 provided in the vicinity of the condensing portion P of the relay lens optical system 13 to shield the light. However, since the return light is surely prevented from returning to the light source 8 side, the S / N ratio is improved. Become. In order to prevent the return light from irradiating the light source 8 side by irradiating the light shielding member 14 with the return light, the cell windows 2 and 3 are slightly moved with respect to the optical axis Q of the irradiation optical system 7. Since it is only necessary to incline, it is possible to reduce the diameters of the cell windows 2 and 3 and to install the flow cell 1 close to the light source 8 as is apparent from FIGS. Alternatively, if only the gentle inclination of the cell windows 2 and 3 is selected, it is possible to install the flow cell 1 close to the condenser lens 10 and thus to downsize the device. It is also possible to take an eclectic form in which the diameters of the cell windows 2 and 3 are reduced and the device is downsized by moderately sloping.

【0011】 尚、実施例では、遮光部材14にアパーチャaを形成して、このアパーチャaに 集光された照射光を透過させるように構成しているが、図3に示すように、照射 光学系7の光軸Qに対してフローセル1の傾斜方向側に遮光部材14を設けると共 に、当該遮光部材14の遮光縁部bを集光部Pに近接させるように位置設定して、 集光部Pの近傍においてセル窓2,3からの戻り光を遮光させる形態での実施が 可能である。In the embodiment, the aperture a is formed in the light shielding member 14 so that the irradiation light focused on the aperture a is transmitted. However, as shown in FIG. The light-shielding member 14 is provided on the side of the optical axis Q of the system 7 in the direction of inclination of the flow cell 1, and the light-shielding edge b of the light-shielding member 14 is positioned so as to be close to the light converging portion P. It is possible to implement the mode in which the return light from the cell windows 2 and 3 is shielded in the vicinity of the light section P.

【0012】[0012]

【考案の効果】[Effect of device]

以上説明したように本考案は、光源から照射された光を平行光にした上で、更 にこの平行光を縮径させるようにしたことで、フローセルのセル窓の小径化に対 応できるようになり、かつ同時に、試料流体に対する照射光の光強度の密度アッ プも図ることができる。 しかも、上記の平行光を更に縮径させるリレーレンズ光学系の集光部を特定し て、この集光部の近傍に遮光部材を設ける構成としたので、セル窓を照射光学系 の光軸に対してやゝ傾斜させるだけでセル窓からの戻り光の光源側への戻りを確 実に防止できるようになり、これによって光源ノイズの低減によるS/N比の改 善を図りながら、セル窓の緩傾斜化による小径化あるいは光源に対するフローセ ルの近接設置が可能となり、ひいては、装置のコストダウンまたは小型化が達成 されるに至ったのである。 As described above, the present invention can reduce the diameter of the cell window of the flow cell by collimating the light emitted from the light source and further reducing the diameter of the collimated light. At the same time, it is possible to increase the density of the light intensity of the irradiation light on the sample fluid. Moreover, since the light condensing part of the relay lens optical system that further reduces the diameter of the parallel light is specified and the light shielding member is provided in the vicinity of this light condensing part, the cell window is set as the optical axis of the irradiation optical system. On the other hand, it is possible to surely prevent the return light from the cell window from returning to the light source side simply by tilting the cell window. This makes it possible to improve the S / N ratio by reducing the light source noise and to reduce the cell window It became possible to reduce the diameter by sloping or to install the flow cell close to the light source, which eventually led to cost reduction and downsizing of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】微粒子測定装置の原理的な平面図である。FIG. 1 is a principle plan view of a particle measuring device.

【図2】微粒子測定装置の原理的な側面図である。FIG. 2 is a side view showing the principle of a particle measuring device.

【図3】別実施例の遮光形態を示す説明図である。FIG. 3 is an explanatory diagram showing a light shielding form of another embodiment.

【図4】従来例の微粒子測定装置の原理的な側面図であ
る。
FIG. 4 is a principle side view of a conventional particle measuring device.

【符号の説明】[Explanation of symbols]

1…フローセル、2,3…セル窓、7…照射光学系、8
…光源、10…コリメータレンズ光学系、13…リレーレン
ズ光学系、14…遮光部材、15…検出光学系、P…集光
部、Q…光軸、R…観測領域。
1 ... Flow cell, 2, 3 ... Cell window, 7 ... Irradiation optical system, 8
... light source, 10 ... collimator lens optical system, 13 ... relay lens optical system, 14 ... light blocking member, 15 ... detection optical system, P ... condensing part, Q ... optical axis, R ... observation area.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 平行平板のセル窓を備えたフローセル
と、このセル内の観測領域に照射光を入射させる照射光
学系と、前記照射光がセル内の試料流体中の微粒子に照
射されて生じる散乱光の検出光学系とを備えると共に、
前記フローセルのセル窓を照射光学系の光軸に対して傾
斜させて成る微粒子測定装置において、前記照射光学系
を、光源から照射された光を平行光にするコリメータレ
ンズ光学系と、前記平行光を更に縮径させるリレーレン
ズ光学系とから構成し、かつ、前記リレーレンズ光学系
の集光部近傍に、セル窓からの戻り光を遮光させるため
の遮光部材を設けてあることを特徴とする微粒子測定装
置。
1. A flow cell having a parallel-plate cell window, an irradiation optical system for making irradiation light incident on an observation region in the cell, and the irradiation light being generated by irradiation of fine particles in a sample fluid in the cell. With an optical system for detecting scattered light,
In a fine particle measuring apparatus in which a cell window of the flow cell is tilted with respect to an optical axis of an irradiation optical system, the irradiation optical system includes a collimator lens optical system that converts light emitted from a light source into parallel light, and the parallel light. And a relay lens optical system for further reducing the diameter, and a light blocking member for blocking the return light from the cell window is provided in the vicinity of the condensing part of the relay lens optical system. Particle measuring device.
JP5638892U 1992-07-18 1992-07-18 Particle measuring device Pending JPH0612943U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5638892U JPH0612943U (en) 1992-07-18 1992-07-18 Particle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5638892U JPH0612943U (en) 1992-07-18 1992-07-18 Particle measuring device

Publications (1)

Publication Number Publication Date
JPH0612943U true JPH0612943U (en) 1994-02-18

Family

ID=13025863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5638892U Pending JPH0612943U (en) 1992-07-18 1992-07-18 Particle measuring device

Country Status (1)

Country Link
JP (1) JPH0612943U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105185A (en) * 1998-08-22 2000-04-11 Malvern Instruments Ltd Device and method for measuring distribution of particle size
JP2003329570A (en) * 2002-05-10 2003-11-19 Horiba Ltd Apparatus for measuring distribution of particle size
KR100807433B1 (en) * 2002-10-30 2008-02-25 니혼 덴산 산쿄 가부시키가이샤 Particle counter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105185A (en) * 1998-08-22 2000-04-11 Malvern Instruments Ltd Device and method for measuring distribution of particle size
JP2003329570A (en) * 2002-05-10 2003-11-19 Horiba Ltd Apparatus for measuring distribution of particle size
KR100807433B1 (en) * 2002-10-30 2008-02-25 니혼 덴산 산쿄 가부시키가이샤 Particle counter

Similar Documents

Publication Publication Date Title
KR101451983B1 (en) Smoke sensor
FI98662C (en) Portable particle analyzers
EP3761008B1 (en) Micro object detection apparatus
US4402607A (en) Automatic detector for microscopic dust on large-area, optically unpolished surfaces
CA1135971A (en) Radiant energy reradiating flow cell system and method
JP2002502490A (en) Concave angle irradiation system for particle measuring device
US5262841A (en) Vacuum particle detector
JPH0612943U (en) Particle measuring device
CN110823786A (en) Device and method for detecting tiny particles in liquid
JPH05172732A (en) Method and apparatus for detecting particle in liquid
JP2552940Y2 (en) Particle measurement device
JP3530078B2 (en) Flow cell and particle measuring apparatus using the flow cell
JPS6335395Y2 (en)
JPH0737937B2 (en) Particle detector by light scattering method
US20020030815A1 (en) Light scattering type particle detector
JPH02168138A (en) Measuring apparatus for particulate
JP2003004625A (en) Flow sight meter
JPH0277636A (en) Particle measuring device
JPH01232235A (en) Flow cell for fine-particle measuring instrument
CN211206179U (en) Detection apparatus for tiny granule in liquid
JPH05240769A (en) Particle counter
JP2595315B2 (en) Light scattering measuring device
JPS6093944A (en) Light-scattering particle measuring apparatus
AU2011218748B2 (en) Smoke detector
JPH0136109Y2 (en)