JP2003329570A - Apparatus for measuring distribution of particle size - Google Patents

Apparatus for measuring distribution of particle size

Info

Publication number
JP2003329570A
JP2003329570A JP2002135232A JP2002135232A JP2003329570A JP 2003329570 A JP2003329570 A JP 2003329570A JP 2002135232 A JP2002135232 A JP 2002135232A JP 2002135232 A JP2002135232 A JP 2002135232A JP 2003329570 A JP2003329570 A JP 2003329570A
Authority
JP
Japan
Prior art keywords
light
sample cell
particle size
angle
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002135232A
Other languages
Japanese (ja)
Other versions
JP3822840B2 (en
Inventor
Hideyuki Ikeda
英幸 池田
Tatsuo Igushi
達夫 伊串
Takuji Kurozumi
拓司 黒住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2002135232A priority Critical patent/JP3822840B2/en
Publication of JP2003329570A publication Critical patent/JP2003329570A/en
Application granted granted Critical
Publication of JP3822840B2 publication Critical patent/JP3822840B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for measuring a distribution of particle size, which can surely detect scattering light with a scattering angle of about 90 degrees, surely detect scattering light through a wide angular range from zero to about 180 degrees and reproducibly measure the distribution of particle size over a wide range of particles. <P>SOLUTION: The apparatus for measuring the distribution of particle size has a light source 1, a sample cell 6 on which light from the light source 1 is projected, a condensing lens 3 which is disposed on optical axes 4a, 4b of the light, and a forward detector 5 which detects transmitting light and prescribed scattering light generated at the sample cell 6. In the apparatus, the sample cell 6 is set so as to incline in relation to the optical axis 4a of the light from the light source 1, and groups of wide angular scattering light detector 8, 9 composed of a plurality of detectors 10 are arranged on both sides of the sample cell 6. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、分散している粒
子群にレーザ光を照射することによって生じる回折/散
乱光を検出し、その検出によって得られる散乱光強度信
号に基づいて粒子群の粒子径分布を測定する粒子径分布
測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects diffracted / scattered light generated by irradiating a dispersed particle group with laser light, and based on a scattered light intensity signal obtained by the detection, particles of the particle group are detected. The present invention relates to a particle size distribution measuring device for measuring a size distribution.

【0002】[0002]

【従来の技術】試料粒子による光の回折現象および/ま
たは散乱現象を利用した粒子径分布測定装置では、回折
光および/または散乱光の強度分布、つまり、回折角お
よび/または散乱角と光強度との関係を測定し、これに
フラウンホーファ回折理論および/またはミー散乱理論
に基づく演算処理を施すことによって、試料粒子の粒子
径分布が算出される。
2. Description of the Related Art In a particle size distribution measuring device utilizing the diffraction phenomenon and / or scattering phenomenon of light by a sample particle, the intensity distribution of diffracted light and / or scattered light, that is, the diffraction angle and / or the scattering angle and the light intensity The particle diameter distribution of the sample particles is calculated by measuring the relationship between the particle diameter distribution of the sample particles and the calculation processing based on the Fraunhofer diffraction theory and / or the Mie scattering theory.

【0003】図9は、従来の粒子径分布測定装置におけ
る光学系の要部を概略的に示すもので、この図におい
て、81は例えば分散媒中に粒子を分散させた液体(以
下、試料液という)を収容する試料セルである。そし
て、82,83は試料セル81の厚み方向(照射光透過
方向)の一方の側、すなわち、試料セル81の後方側に
設けられる光源および集光レンズであり、84は試料セ
ル81の厚み方向の他方の側、すなわち、試料セル81
の前方側の集光レンズ83の焦点位置に設けられるフォ
トダイオードアレイよりなる前方検出器で、透過光と散
乱角が比較的小さい(例えば0°〜30°)散乱光を検
出するものであり、集光レンズ83が光源82側に位置
する所謂逆フーリエ光学系に形成されている。そして、
85は散乱角が比較的大きい(30°以上)散乱光(広
角散乱光)を検出する広角散乱光検出器群で、試料セル
81の一側に、その前方から後方にわたって設けられる
複数のフォトダイオード(シングルチャンネル型検出
器)86よりなる。87は複数のシングルチャンネル型
検出器86を所定の状態で支持する基板である。
FIG. 9 schematically shows a main part of an optical system in a conventional particle size distribution measuring apparatus. In this figure, reference numeral 81 indicates, for example, a liquid in which particles are dispersed in a dispersion medium (hereinafter referred to as a sample liquid). It is a sample cell that houses Reference numerals 82 and 83 denote a light source and a condenser lens provided on one side of the sample cell 81 in the thickness direction (irradiation light transmission direction), that is, on the rear side of the sample cell 81, and 84 denotes the thickness direction of the sample cell 81. The other side of the sample cell 81
Is a front detector composed of a photodiode array provided at the focal position of the condenser lens 83 on the front side of, and detects scattered light having a relatively small transmitted angle (for example, 0 ° to 30 °). The condenser lens 83 is formed in a so-called inverse Fourier optical system located on the light source 82 side. And
Reference numeral 85 denotes a wide-angle scattered light detector group for detecting scattered light (wide-angle scattered light) having a relatively large scattering angle (30 ° or more), and a plurality of photodiodes provided on one side of the sample cell 81 from front to back thereof. (Single channel detector) 86. Reference numeral 87 is a substrate that supports a plurality of single channel type detectors 86 in a predetermined state.

【0004】[0004]

【発明が解決しようとする課題】上記粒子径分布測定装
置においては、試料セル81に対して光源82からの照
射光(例えばレーザ光)88を垂直に入射するようにし
ていたので、散乱角が90°の側方散乱光89を受光す
る場合、試料セル81の真横方向(照射光透過方向と直
交する方向)に検出器86aを設ける必要があるが、図
示例のように試料セル81が幅広である(光88の入射
する方向と直交する方向において長い)場合、前記散乱
光89が試料セル81内を通過する際に減衰し、そのた
め、検出器86aから出力される信号が弱くなるといっ
た不都合がある。また、符号90で示すように、散乱角
が90°前後の散乱光が、試料セル81表面における全
反射のために広角散乱光検出器群85の検出器86のい
ずれによっても検出できないことがある。つまり、従来
の粒子径分布測定装置においては、散乱角が90°また
は90°前後(以下、単に90°近傍という)の側方散
乱光を確実に検出することができないことがあり、この
ため、直径が例えば1μm以下の微小粒子の測定精度や
データ再現性が悪いといった課題があった。
In the above particle size distribution measuring apparatus, since the irradiation light (for example, laser light) 88 from the light source 82 is vertically incident on the sample cell 81, the scattering angle is When receiving the 90 ° side scattered light 89, it is necessary to provide the detector 86a in the lateral direction (direction orthogonal to the irradiation light transmitting direction) of the sample cell 81, but the sample cell 81 is wide as in the illustrated example. (Longer in the direction orthogonal to the incident direction of the light 88), the scattered light 89 is attenuated when passing through the sample cell 81, so that the signal output from the detector 86a is weakened. There is. Further, as indicated by reference numeral 90, scattered light with a scattering angle of about 90 ° may not be detected by any of the detectors 86 of the wide-angle scattered light detector group 85 due to total reflection on the surface of the sample cell 81. . That is, the conventional particle size distribution measuring device may not be able to reliably detect the side scattered light having a scattering angle of 90 ° or around 90 ° (hereinafter, simply referred to as 90 °). There is a problem that the measurement accuracy and data reproducibility of fine particles having a diameter of, for example, 1 μm or less are poor.

【0005】ところで、前記図9に示すように構成され
た粒子径分布測定装置においては、試料セル81を透過
した光が前方検出器84の透過光検出部に入射し、そこ
で反射して試料セル81に向かい、この反射光が試料セ
ル81の前面において反射して再度前方検出器84に向
かうといったことを防ぐため、前記試料セル81を光軸
88に対してごく小さな角度、例えば5°程度傾けて配
置することが試みられている。しかしながら、このよう
にした場合においても、前記図9に示した場合と同様
に、散乱角が90°近傍の側方散乱光を確実に検出する
ことができないことに起因して生ずる上述した課題があ
った。
By the way, in the particle size distribution measuring apparatus constructed as shown in FIG. 9, the light transmitted through the sample cell 81 enters the transmitted light detecting portion of the front detector 84, is reflected there, and is reflected there. 81, the sample cell 81 is tilted at a very small angle with respect to the optical axis 88, for example, about 5 ° in order to prevent the reflected light from being reflected on the front surface of the sample cell 81 and heading again to the front detector 84. Have been attempted to be placed. However, even in such a case, as in the case shown in FIG. 9, the above-mentioned problems caused by the inability to reliably detect the side scattered light having a scattering angle of about 90 ° are encountered. there were.

【0006】そこで、このような課題を解決する手法と
して、直方体形状の試料セル81に代えて、側方(図9
における符号81aで示す部分)を曲面加工して、取り
出したい散乱光の光軸と試料セル81における空気との
境界面とができるだけ垂直になるようにして前記全反射
を防ぐことが考えられるが、このような特殊な形状の試
料セルは、その加工精度が要求され、それだけコストア
ップするといった不都合がある。
Therefore, as a method for solving such a problem, instead of the rectangular parallelepiped sample cell 81, a lateral (see FIG.
It is conceivable that the portion indicated by the reference numeral 81a in FIG. 2) is curved so that the optical axis of the scattered light to be taken out and the boundary surface between the air in the sample cell 81 are as perpendicular as possible to prevent the total reflection. The sample cell having such a special shape is required to have high processing accuracy, which causes a problem of cost increase.

【0007】上述の課題は、所謂逆フーリエ光学系の粒
子径分布測定装置のみならず、試料セルの前方側に集光
レンズを設け、この集光レンズの焦点位置に前方検出器
を配置した所謂フーリエ光学系の粒子径分布測定装置
(図示してない)においても同様に生じているところで
ある。
The above-mentioned problems are not limited to the so-called inverse Fourier optical system particle size distribution measuring apparatus, but a so-called concentrating lens is provided on the front side of the sample cell, and a so-called front detector is arranged at the focal position of this condensing lens. The same is occurring in the particle size distribution measuring device (not shown) of the Fourier optical system.

【0008】この発明は、上述の事柄に留意してなされ
たもので、その目的は、散乱角が90°近傍の散乱光を
も確実に検出することができ、0°〜180°付近まで
の広い角度範囲の散乱光を確実に検出することができ、
広い粒子範囲にわたる粒径分布を再現性よく測定するこ
とのできる粒子径分布測定装置を提供することである。
The present invention has been made in consideration of the above matters, and an object thereof is to be able to reliably detect scattered light with a scattering angle of about 90 °, and to obtain a scattered light of about 0 ° to 180 °. It is possible to reliably detect scattered light in a wide angle range,
An object of the present invention is to provide a particle size distribution measuring device capable of measuring the particle size distribution over a wide particle range with good reproducibility.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、この発明は、光源と、この光源からの光が照射され
る試料セルと、前記光の光軸上に配置される集光レンズ
と、前記試料セルにおいて生ずる透過光および所定の散
乱光を検出する前方検出器を備えた粒子径分布測定装
置において、前記試料セルを、前記光源を発した光の光
軸に対して傾けた状態で設けるとともに、前記試料セル
の両側に複数の検出器よりなる広角散乱光検出器群を設
けたことを特徴としている(請求項1)。
To achieve the above object, the present invention provides a light source, a sample cell irradiated with light from the light source, and a condenser lens arranged on the optical axis of the light. in the particle size distribution measuring apparatus equipped with a front detector for detecting the transmitted light and a predetermined scattered light generated in the sample cell, the sample cell was tilted with respect to the optical axis of the light emitted from the light source state And a wide-angle scattered light detector group composed of a plurality of detectors is provided on both sides of the sample cell (claim 1).

【0010】そして、上記請求項1に記載の粒子径分布
測定装置において、集光レンズを光源と試料セルとの間
に設けるとともに、前方検出器を前記集光レンズの焦点
位置に設けてもよく(請求項2)、あるいは、集光レン
ズを試料セルと前方検出器との間に設けるとともに、こ
の前方検出器を前記集光レンズの焦点位置に設けてもよ
い(請求項4)。そして、前記請求項2のように構成す
る場合、集光レンズと前方検出器との間の光軸上のいず
れかの位置に、透過光または散乱光を前記前方検出器の
受光面上に収斂させるための光学的コンペンセータを設
けるのが好ましい(請求項3)。このように構成した場
合、逆フーリエ光学系を採用した粒子径分布測定装置に
おいて、試料セルに照射光が斜め方向に入射することに
よって生ずる非点収差が解消され、測定データへの悪影
響を除去することができる。
In the particle size distribution measuring apparatus according to the first aspect, the condenser lens may be provided between the light source and the sample cell, and the front detector may be provided at the focal position of the condenser lens. (Claim 2) Alternatively, a condenser lens may be provided between the sample cell and the front detector, and the front detector may be provided at the focal position of the condenser lens (claim 4). And when comprised like said Claim 2, the transmitted light or the scattered light is converged on the light-receiving surface of the said front detector in any position on the optical axis between a condensing lens and a front detector. It is preferable to provide an optical compensator for the purpose (claim 3). When configured in this way, in the particle size distribution measuring device that employs the inverse Fourier optical system, the astigmatism caused by the oblique incidence of the irradiation light on the sample cell is eliminated, and the adverse effect on the measurement data is eliminated. be able to.

【0011】[0011]

【発明の実施の形態】以下、発明の詳細を、図を参照し
ながら説明する。図1および図2は、第1発明の一つの
実施の形態を示すもので、図1は、この発明の粒子径分
布測定装置の構成の一例を概略的に示し、図2はその要
部の構成を示すものである。そして、図1に示す粒子径
分布測定装置は、その光学系が逆フーリエ光学系に構成
されている。すなわち、図1および図2において、1は
例えばレーザ光2を発する光源、3はこのレーザ光源1
の前方に設けられる集光レンズで、後述する試料セル6
に集光レーザ光4を照射する。5は集光レンズ3の焦点
位置に設けられる前方検出器で、その受光面5aは、例
えば、公知のリングディテクタのように、透過光を検出
する透過光検出部と、この透過光検出部を中心に複数の
円弧状のフォトダイオードをアレイ状に配置した散乱光
検出部とからなるもので、試料セル6において生ずる透
過光および散乱角が例えば0°〜30°程度といった比
較的小さい前方散乱光を検出するように構成されてい
る。
DETAILED DESCRIPTION OF THE INVENTION The details of the invention will be described below with reference to the drawings. 1 and 2 show one embodiment of the first invention, FIG. 1 schematically shows an example of the configuration of a particle size distribution measuring apparatus of the present invention, and FIG. It shows a configuration. The optical system of the particle size distribution measuring device shown in FIG. 1 is an inverse Fourier optical system. That is, in FIGS. 1 and 2, 1 is a light source that emits laser light 2, for example, and 3 is this laser light source 1.
Is a condenser lens provided in front of the sample cell 6 described later.
The focused laser beam 4 is irradiated on the surface. Reference numeral 5 denotes a front detector provided at the focal position of the condenser lens 3, and the light receiving surface 5a thereof has a transmitted light detecting portion for detecting transmitted light and a transmitted light detecting portion such as a known ring detector. The scattered light detection unit has a plurality of arc-shaped photodiodes arranged in an array at the center, and the transmitted light generated in the sample cell 6 and the scattered angle are relatively small forward scattered light such as about 0 ° to 30 °. Is configured to detect.

【0012】6は集光レンズ3と前方検出器5の間に設
けられる試料セルで、分散媒に測定対象の粒子群を分散
させた試料液7を収容するためのもので、例えば、透明
なガラスなどよりなり、直方体形状に形成されており、
その照射光透過方向の厚みtは、この照射光透過方向に
直交する幅方向の長さwに比べてかなり小さくしてあ
る。そして、この試料セル6は、集光レーザ光4の光軸
4aに対して角度θだけ後方に傾けて配置されており、
図示例ではθは45°である。すなわち、厚み方向にお
ける試料セル6の中心線CLと光軸4aとの成す角度θ
が45°となるように傾いた状態で配置されている。こ
のような試料セル6に、レーザ光源1側からの集光レー
ザ光4が入射すると、その中心光軸4aは、図2に示す
ように、試料セル6の厚み部分および試料液7を通過す
るごとに屈折し、試料セル6の出射側における光軸4b
は、前記光軸4aのとは多少ずれるがこれと平行とな
り、前方検出器5の透過光検出部に焦点を結ぶ。なお、
前記試料セル6は、試料液7が流通的に供給される流通
型試料セルであってもよい。
Reference numeral 6 denotes a sample cell provided between the condenser lens 3 and the front detector 5 for containing a sample solution 7 in which a group of particles to be measured is dispersed in a dispersion medium, which is, for example, transparent. It is made of glass and has a rectangular parallelepiped shape.
The thickness t in the irradiation light transmission direction is considerably smaller than the length w in the width direction orthogonal to the irradiation light transmission direction. The sample cell 6 is arranged so as to be tilted backward by an angle θ with respect to the optical axis 4a of the condensed laser beam 4,
In the illustrated example, θ is 45 °. That is, the angle θ formed by the center line CL of the sample cell 6 and the optical axis 4a in the thickness direction.
Are arranged in an inclined state so that the angle is 45 °. When the condensed laser light 4 from the laser light source 1 side is incident on such a sample cell 6, its central optical axis 4a passes through the thickness portion of the sample cell 6 and the sample liquid 7 as shown in FIG. Optical axis 4b on the exit side of the sample cell 6
Is parallel to the optical axis 4a, although slightly displaced from it, and focuses on the transmitted light detecting portion of the front detector 5. In addition,
The sample cell 6 may be a flow-through type sample cell to which the sample liquid 7 is supplied in a flowable manner.

【0013】8,9は試料セル6の両側(集光レーザ光
4の入射面6aと出射面6bにそれぞれ対向する側)に
それぞれ設けられる広角散乱光検出器群で、試料セル6
内の粒子によって回折または散乱した照射光のうち、例
えば30°〜180°といった比較的大きな角度で散乱
/回折した広角散乱光を、各散乱角ごとに個別に検出す
るもので、この広角散乱光用光検出群8,9は、前方検
出器5と異なる角度で列状に設けられる複数のフォトダ
イオード10からなり、それぞれの配設角度に応じて、
試料セル1内の粒子による所定角度の散乱光を検出する
ことができ、図示例では、一方の広角散乱光検出器群8
が30°〜90°までの散乱光(散乱角が比較的大きい
前方散乱光および90°側方散乱光)を検出し、他方の
広角散乱光検出器群9が90°〜180°までの散乱光
(側方散乱光および後方散乱光)をそれぞれ検出する。
11はフォトダイオード10を、その受光面に前記散乱
光が直角に入射するように保持する電気回路基板で、プ
リアンプ(図示していない)を備えている。
Reference numerals 8 and 9 denote wide-angle scattered light detector groups provided on both sides of the sample cell 6 (sides facing the entrance surface 6a and the exit surface 6b of the focused laser beam 4).
The wide-angle scattered light scattered / diffracted at a relatively large angle of, for example, 30 ° to 180 ° among the irradiation light diffracted or scattered by the particles inside is detected individually for each scattering angle. The light detection groups 8 and 9 are each composed of a plurality of photodiodes 10 arranged in a row at an angle different from that of the front detector 5, and depending on the respective arrangement angles,
It is possible to detect scattered light at a predetermined angle due to particles in the sample cell 1. In the illustrated example, one wide-angle scattered light detector group 8 is used.
Detects scattered light from 30 ° to 90 ° (forward scattered light and 90 ° side scattered light having a relatively large scattering angle), and the other wide-angle scattered light detector group 9 scatters from 90 ° to 180 °. The light (side scattered light and back scattered light) is detected.
Reference numeral 11 denotes an electric circuit board that holds the photodiode 10 so that the scattered light enters the light receiving surface of the photodiode 10 at a right angle and includes a preamplifier (not shown).

【0014】そして、図1において、12は前方検出器
5および電気回路基板11からの出力を順次取り込み、
AD変換器13に順次送出するマルチプレクサ、14は
AD変換器13の出力が入力される演算処理装置として
のコンピュータである。このコンピュータ14は、ディ
ジタル信号に変換された前方検出器5およびフォトダイ
オード10の出力を、フラウンホーファ回折理論やミー
散乱理論に基づいて処理し、粒子群における粒子径分布
を求めるプログラムが格納されている。15は演算結果
などを表示するカラーディスプレイなどの表示装置であ
る。
In FIG. 1, reference numeral 12 sequentially takes in the outputs from the front detector 5 and the electric circuit board 11,
A multiplexer that sequentially sends the signals to the AD converter 13, and a computer 14 as an arithmetic processing unit to which the output of the AD converter 13 is input. This computer 14 stores a program for processing the outputs of the front detector 5 and the photodiode 10 converted into digital signals based on the Fraunhofer diffraction theory and the Mie scattering theory to obtain the particle size distribution in the particle group. . Reference numeral 15 is a display device such as a color display for displaying a calculation result and the like.

【0015】上述のように構成された粒子径分布測定装
置においては、試料セル6に試料液7を収容した状態
で、レーザ光源1からレーザ光2を発すると、このレー
ザ光2は、集光レンズ3において収斂され、照射光4と
なって試料セル6内の試料液7を照射する。そして、こ
の照射光4は、試料セル6中の粒子によって回折または
散乱する。その回折光または散乱光のうち、0°〜30
°といった散乱角の比較的小さい前方散乱光は、前方検
出器5の散乱光検出部において検出される。なお、前記
粒子による散乱を受けない照射光4は、透過光となり、
前方検出器5の透過光検出部において検出される。この
前方検出器5が検出した光強度はアナログ電気信号に変
換され、さらに、プリアンプ(図示していない)を経て
マルチプレクサ12に入力される。
In the particle size distribution measuring apparatus constructed as described above, when the laser light 2 is emitted from the laser light source 1 with the sample liquid 7 contained in the sample cell 6, the laser light 2 is condensed. The light is converged by the lens 3 and becomes the irradiation light 4, which irradiates the sample liquid 7 in the sample cell 6. The irradiation light 4 is diffracted or scattered by the particles in the sample cell 6. Of the diffracted light or scattered light, 0 ° to 30
Forward scattered light having a relatively small scattering angle such as ° is detected by the scattered light detecting section of the front detector 5. The irradiation light 4 which is not scattered by the particles becomes transmitted light,
It is detected by the transmitted light detecting portion of the front detector 5. The light intensity detected by the front detector 5 is converted into an analog electric signal, and further inputted to the multiplexer 12 via a preamplifier (not shown).

【0016】一方、前記粒子によって回折または散乱し
た照射光4のうち、散乱角が30°を超える散乱光は、
広角散乱光検出器群8,9によって検出される。より具
体的には、前記散乱光のうち、散乱角が30°〜90°
までの前方散乱光および90°側方散乱光の一部は、一
方の広角散乱光検出器群8を構成する複数のフォトダイ
オード10によって散乱角度ごとに検出され、散乱角が
90°〜180°までの後方散乱光および90°側方散
乱光の一部は、他方の広角散乱光検出器群9を構成する
複数のフォトダイオード10によって散乱角度ごとに検
出される。前記フォトダイオード10が検出した光強度
はアナログ電気信号に変換され、さらに、電気回路基板
11に設けられたプリアンプ(図示していない)を経て
マルチプレクサ12に入力される。
On the other hand, of the irradiation light 4 diffracted or scattered by the particles, the scattered light having a scattering angle exceeding 30 ° is
It is detected by the wide-angle scattered light detector groups 8 and 9. More specifically, the scattering angle of the scattered light is 30 ° to 90 °.
Part of the forward scattered light and the 90 ° side scattered light up to is detected for each scattering angle by the plurality of photodiodes 10 forming one wide-angle scattered light detector group 8, and the scattering angle is 90 ° to 180 °. Part of the back scattered light and the 90 ° side scattered light up to is detected by the plurality of photodiodes 10 constituting the other wide angle scattered light detector group 9 for each scattering angle. The light intensity detected by the photodiode 10 is converted into an analog electric signal, and further inputted to a multiplexer 12 via a preamplifier (not shown) provided on the electric circuit board 11.

【0017】前記マルチプレクサ12においては、前方
検出器5および各フォトダイオード10からの測定デー
タ、つまりアナログ電気信号が所定の順序で順次取り込
まれる。そして、マルチプレクサ12によって取り込ま
れたアナログ電気信号は直列信号にされて、AD変換器
13で順次ディジタル信号に変換され、さらに、コンピ
ュータ14に入力される。
In the multiplexer 12, the measurement data from the front detector 5 and the photodiodes 10, that is, the analog electric signals are sequentially fetched in a predetermined order. Then, the analog electric signal taken in by the multiplexer 12 is converted into a serial signal, sequentially converted into a digital signal by the AD converter 13, and further inputted to the computer 14.

【0018】前記コンピュータ14においては、前方検
出器5および各フォトダイオード10によってそれぞれ
得られた各散乱角ごとの光強度データを、フラウンホー
ファ回折理論やミー散乱理論に基づいて処理し、その処
理結果は、表示装置15の表示画面上に適宜の形態で表
示される。
In the computer 14, the light intensity data for each scattering angle obtained by the front detector 5 and each photodiode 10 are processed based on the Fraunhofer diffraction theory and the Mie scattering theory, and the processing result is , Is displayed in an appropriate form on the display screen of the display device 15.

【0019】上記構成の粒子径分布測定装置において
は、試料セル6を光軸4a(または4b)に対して45
°に傾けているので、90°前後の散乱/回折光を、全
反射などで妨げられることなく、また、それらの試料セ
ル6内での減衰を可及的に防止することにより、確実に
検出することができる。さらに、試料セル6の両側に、
複数の検出器10を列状に設けた広角散乱光検出器群
8,9を配置しているので、前方検出器5によって検出
されないより大きな角度で散乱/回折する前方散乱光は
勿論のこと、90°側方散乱光や後方散乱光を漏れなく
確実に検出することができる。また、90°前後の散乱
/回折光を、前記広角散乱光検出器群8,9で検出する
ことができ、信号量を増加させることができる。したが
って、90°前後の散乱/回折光に対して十分な信号量
が得られるとともに、散乱角が0°〜180°近傍まで
の広い範囲の散乱光を漏れなく連続的に検出することが
でき、測定精度およびデータ再現性を向上させることが
できる。
In the particle size distribution measuring apparatus having the above-mentioned structure, the sample cell 6 is placed at 45 with respect to the optical axis 4a (or 4b).
Since it is tilted at 90 °, scattered / diffracted light around 90 ° can be reliably detected without being disturbed by total reflection or the like and by preventing attenuation thereof in the sample cell 6 as much as possible. can do. Furthermore, on both sides of the sample cell 6,
Since the wide-angle scattered light detector groups 8 and 9 in which a plurality of detectors 10 are provided in a row are arranged, not to mention the forward scattered light scattered / diffracted at a larger angle which is not detected by the front detector 5, It is possible to reliably detect 90 ° side scattered light and back scattered light without leakage. Further, scattered / diffracted light around 90 ° can be detected by the wide-angle scattered light detector groups 8 and 9, and the signal amount can be increased. Therefore, a sufficient amount of signal can be obtained for scattered / diffracted light around 90 °, and scattered light in a wide range from a scattering angle of around 0 ° to 180 ° can be continuously detected without leakage. Measurement accuracy and data reproducibility can be improved.

【0020】そして、上記構成よれば、集光レンズ3と
して長い焦点距離を確保することができるといった逆フ
ーリエ光学系の利点を100%享受することができるの
で、散乱角が例えば0°〜5°というような微小な散乱
光を検出するのに、微細加工を施した高価な前方検出器
5を必要とせず、市販の安価なダイオードアレイを用い
ることができる。また、長い焦点距離を確保することが
できるので、焦点のビーム径を大きくしても、散乱角が
小さい散乱光を検出することができるので、集光レンズ
3として焦点ビーム径の大きなもの、つまり、安価なも
のを用いることができ、それだけ装置を安価に構成する
ことができる。
Further, according to the above configuration, the advantage of the inverse Fourier optical system that a long focal length can be secured as the condenser lens 3 can be enjoyed 100%, so that the scattering angle is, for example, 0 ° to 5 °. In order to detect such minute scattered light, an expensive front detector 5 that has been finely processed is not required, and a commercially available inexpensive diode array can be used. Further, since a long focal length can be ensured, scattered light with a small scattering angle can be detected even if the beam diameter of the focal point is increased. Therefore, the condenser lens 3 having a large focal beam diameter, that is, However, an inexpensive one can be used, and the device can be constructed inexpensively.

【0021】この発明は、種々に変形して実施すること
ができる。以下、説明する。上記第1の実施の形態にお
いては、試料セル6の光軸4a(または4b)に対する
傾き角度θが45°であり、試料セル6を光軸4a(ま
たは4b)に対して容易に傾けた状態で配置することが
できるが、この角度θはこれに限られるものではなく、
例えば25°〜65°までの任意の角度に設定すること
ができる。これは、前記角度θがあまりに小さいと、試
料セル6における全反射やその内部における光の多重反
射等を確実に防止できないといった不都合があり、ま
た、角度θがあまり大きいと、試料セル6内における光
路長が大きくなり、前方検出器5に対する信号が弱くな
ったり、試料セル6内における光の多重反射による弊害
を防止できないといった不都合があるからである。な
お、前記傾き角度θは、この発明の主旨を逸脱しない範
囲で任意の大きさで設定することができ、したがって、
前記角度範囲に限定されるものではない。
The present invention can be implemented with various modifications. This will be described below. In the first embodiment, the tilt angle θ of the sample cell 6 with respect to the optical axis 4a (or 4b) is 45 °, and the sample cell 6 is easily tilted with respect to the optical axis 4a (or 4b). However, the angle θ is not limited to this,
For example, it can be set to any angle from 25 ° to 65 °. This is disadvantageous in that if the angle θ is too small, total reflection in the sample cell 6 and multiple reflection of light inside the sample cell 6 cannot be reliably prevented, and if the angle θ is too large, in the sample cell 6 there is a problem. This is because the optical path length is increased, the signal to the front detector 5 is weakened, and the adverse effects of multiple reflection of light in the sample cell 6 cannot be prevented. The tilt angle θ can be set to any size without departing from the gist of the present invention.
It is not limited to the angle range.

【0022】さらに、上記実施の形態においては、試料
セル6を後方に傾けていたが、これに代えて、前方に傾
けてもよい。
Further, although the sample cell 6 is tilted rearward in the above embodiment, it may be tilted forward instead.

【0023】そして、上述の実施の形態においては、光
学系が所謂逆フーリエ光学系に構成されていたが、例え
ば図3に示すように、集光レンズ3を試料セル6と前方
検出器5との間に設けるとともに、前方検出器5を集光
レンズ3の焦点位置に設け、光学系を所謂フーリエ光学
系に構成してあってもよい。
In the above-described embodiment, the optical system is a so-called inverse Fourier optical system, but as shown in FIG. 3, for example, the condenser lens 3 is connected to the sample cell 6 and the front detector 5. The optical system may be configured as a so-called Fourier optical system by providing the front detector 5 at the focal position of the condenser lens 3 as well as the optical system.

【0024】そして、試料セル6の両側に設けられる広
角散乱光検出器群8,9は、必ずしも、図2に示した配
置に限定されるものではなく、図4に示すように、試料
セル6の幅方向(長手方向)に平行になるように配置し
てもよい。なお、この図における光学系は、逆フーリ
エ系であるが、フーリエ光学系であってもよいことは勿
論である。
The wide-angle scattered light detector groups 8 and 9 provided on both sides of the sample cell 6 are not necessarily limited to the arrangement shown in FIG. 2, but as shown in FIG. You may arrange | position so that it may become parallel to the width direction (longitudinal direction). The optical system in FIG. 4 is an inverse Fourier system, but it goes without saying that it may be a Fourier optical system.

【0025】そして、上記いずれの実施の形態において
も、広角散乱光検出器群8,9における複数のフォトダ
イオード10が、平板な基板上に配置されており、直線
上に配置されているが、これに限られるものではなく、
例えば図5に示すように、フォトダイオード10を湾曲
した基板11A上に設けるなどして、広角散乱光検出器
群8,9のそれぞれにおけるフォトダイオード10を曲
線状に配置してもよい。なお、この図5における光学系
は、逆フーリエ系であるが、フーリエ光学系であっても
よいことは勿論である。
In each of the above embodiments, the plurality of photodiodes 10 in the wide-angle scattered light detector groups 8 and 9 are arranged on a flat substrate, and are arranged in a straight line. It is not limited to this,
For example, as shown in FIG. 5, the photodiodes 10 in each of the wide-angle scattered light detector groups 8 and 9 may be arranged in a curved shape by providing the photodiodes 10 on a curved substrate 11A. The optical system in FIG. 5 is an inverse Fourier system, but it goes without saying that it may be a Fourier optical system.

【0026】また、試料セル6の両側に設けられる広角
散乱光検出器群8,9が受光する散乱光の分担は、上述
した数値範囲に限られるものではなく、広角散乱光検出
器群8,9の設置位置を試料セル6の前方または後方に
適宜ずらしたり、広角散乱光検出器群8,9の光軸4a
(または4b)方向における設置範囲を広げたり狭めた
りすることにより、適宜設定することができる。
The distribution of scattered light received by the wide-angle scattered-light detector groups 8 and 9 provided on both sides of the sample cell 6 is not limited to the above-mentioned numerical range, but the wide-angle scattered-light detector groups 8 and The installation position of 9 is appropriately shifted to the front or the rear of the sample cell 6, or the optical axis 4a of the wide-angle scattered light detector groups 8 and 9 is used.
It can be appropriately set by widening or narrowing the installation range in the (or 4b) direction.

【0027】ところで、粒子径分布測定装置における光
学系としては、大きく分けて、逆フーリエ光学系(図
1、図2、図4および図5参照)と、フーリエ光学系
(図3参照)があり、省スペースという観点からは、前
者が勝っている。しかしながら、逆フーリエ光学系にお
いて、図10に示すように、光軸91に対して試料セル
92を傾けて配置した場合、試料セル92において入射
する光線93の角度が異なるため、試料セル92を通過
する長さが光線ごとに異なり、非点収差によって前方検
出器94の受光面94aにおいて焦点ボケが生じ、これ
に起因して測定データに悪影響が及ぼされるといった不
都合が生ずることがある。なお、95は光源、96は集
光レンズである。また、このような不都合は、フーリエ
光学系においては生ずることはない。
By the way, the optical system in the particle size distribution measuring apparatus is roughly classified into an inverse Fourier optical system (see FIGS. 1, 2, 4 and 5) and a Fourier optical system (see FIG. 3). From the viewpoint of space saving, the former is superior. However, in the inverse Fourier optical system, when the sample cell 92 is arranged so as to be inclined with respect to the optical axis 91, as shown in FIG. The length of the light beam varies depending on the light rays, and astigmatism may cause defocusing on the light receiving surface 94a of the front detector 94, which may adversely affect the measurement data. In addition, 95 is a light source and 96 is a condenser lens. Further, such inconvenience does not occur in the Fourier optical system.

【0028】そこで、第2発明においては、逆フーリエ
光学系を採用した粒子径分布測定装置において、集光レ
ンズと前方検出器との間の光軸上のいずれかの位置に、
散乱光を前記前方検出器の受光面上に収斂させるための
ガラスなどの平板状の光透過部材より成る光学的コンペ
ンセータを、試料セルの傾き方向と逆方向に傾いた状態
で設けるようにしている。以下、この第2発明につい
て、図6〜図8を参照しながら説明する。
Therefore, in the second invention, in the particle size distribution measuring apparatus employing the inverse Fourier optical system, at any position on the optical axis between the condenser lens and the front detector,
An optical compensator composed of a flat plate-like light transmitting member such as glass for converging scattered light on the light receiving surface of the front detector is provided in a state of being inclined in a direction opposite to the direction of inclination of the sample cell. . Hereinafter, the second invention will be described with reference to FIGS.

【0029】まず、図6は、第2発明の一つの実施の形
態を示すもので、逆フーリエ光学系を採用した粒子径分
布測定装置の要部の構成を概略的に示している。この図
6において、20は例えば平面視矩形の試料室で、その
周囲は例えば外部の光を遮断する機能を有する材料より
なる側壁20a〜20dで囲われている。そして、一対
の側壁20a,20cの45°対角線上には光透過性素
材よりなる光学的コンペンセータとしての光学窓21,
22が形成されている。
First, FIG. 6 shows one embodiment of the second invention, and schematically shows the structure of a main part of a particle size distribution measuring apparatus employing an inverse Fourier optical system. In FIG. 6, reference numeral 20 denotes a sample chamber having a rectangular shape in plan view, for example, and its periphery is surrounded by side walls 20a to 20d made of a material having a function of blocking external light. And, on the 45 ° diagonal line of the pair of side walls 20a, 20c, an optical window 21 as an optical compensator made of a light transmissive material,
22 is formed.

【0030】そして、一方の光学窓21の外部の斜め下
方には、光源1と集光レンズ3が一方の光学窓21を介
して他方の光学窓22を臨むように、つまり、光源1、
集光レンズ3、一方の光学窓21および他方の光学窓2
2がこの順で一つの直線23上に並ぶように配置されて
いる。また、他方の光学窓22の斜め上方には、前方検
出器5が他方の光学窓22を介して一方の光学窓21を
臨むように、つまり、前方検出器5、他方の光学窓22
および一方の光学窓21がこの順で前記一つの直線23
上に並ぶように配置されている。つまり、光源1、集光
レンズ3、一方の光学窓21、他方の光学窓22および
前方検出器5が45°傾いた一つの直線23上に並ぶよ
うに配置されている。
Then, the light source 1 and the condenser lens 3 face the other optical window 22 through the one optical window 21 diagonally below the one optical window 21, that is, the light source 1,
Condensing lens 3, one optical window 21 and the other optical window 2
2 are arranged in this order so as to be lined up on one straight line 23. Further, the front detector 5 faces the one optical window 21 through the other optical window 22 diagonally above the other optical window 22, that is, the front detector 5 and the other optical window 22.
And one of the optical windows 21 is arranged in this order as the straight line 23.
It is arranged so as to line up. That is, the light source 1, the condenser lens 3, the one optical window 21, the other optical window 22 and the front detector 5 are arranged so as to be aligned on one straight line 23 inclined by 45 °.

【0031】また、前記試料室20の内部ほぼ中央に
は、前記一つの直線23上に位置し、かつ、光源1を発
し、集光レンズ3を経た集光レーザ光4が45°で入射
するように、直方体形状の試料セル6が設けられてい
る。より具体的には、試料セル6の照射光透過方向の辺
6aが一対の側壁20a,20cと平行になり、幅方向
の辺6bが他の一対の側壁20b,20dと平行になる
ように設けられている。つまり、試料セル6は、その中
心線CLが前記45°傾いた一つの直線23と45°傾
くようにした状態で設けられている。そして、前記試料
セル6の両側の側壁20b,20dには、広角散乱光検
出器群8,9がそれぞれ設けられている。
The focused laser beam 4 which is located on the one straight line 23 and which emits the light source 1 and which has passed through the condenser lens 3 is incident on the inside of the sample chamber 20 at 45 °. Thus, the rectangular parallelepiped sample cell 6 is provided. More specifically, the side 6a of the sample cell 6 in the irradiation light transmission direction is provided in parallel with the pair of side walls 20a, 20c, and the side 6b in the width direction is provided in parallel with the other pair of side walls 20b, 20d. Has been. That is, the sample cell 6 is provided in a state in which the center line CL is inclined at 45 ° with the one straight line 23 inclined at 45 °. Wide-angle scattered light detector groups 8 and 9 are provided on the side walls 20b and 20d on both sides of the sample cell 6, respectively.

【0032】そして、この実施の形態においては、前記
光学窓21,22を、光軸(図中の符号23で示す線)
に対して後方(光源1側)に45°傾けて設けられた試
料セル6と逆方向に傾けて、つまり、前記光軸23に対
して前方(前方検出器5側)に45°傾けて配置するこ
とにより、これらの光学窓21,22が、試料セル6に
おいて生じ前方検出器5に入射する散乱光を、前方検出
器5の受光面5a上に収斂させるための光学的コンペン
セータとして機能する。この場合、光学窓21,22に
おける光の透過方向の厚みを適宜設定して、それらのト
ータルの厚みが前方検出器5の受光面5a上にレーザ光
を収斂させるのに最適になるようにするのである。この
ように構成された粒子径分布測定装置においては、試料
セル6に照射光が斜め方向に入射することによって生ず
る非点収差が解消され、測定データへの悪影響を除去す
ることができる。
In this embodiment, the optical windows 21 and 22 are connected to the optical axis (the line indicated by reference numeral 23 in the figure).
With respect to the optical axis 23, that is, the sample cell 6 tilted backward (on the side of the light source 1) by 45 ° is tilted in the opposite direction, that is, tilted forward (on the side of the front detector 5) by 45 °. By doing so, these optical windows 21 and 22 function as an optical compensator for converging the scattered light generated in the sample cell 6 and incident on the front detector 5 on the light receiving surface 5a of the front detector 5. In this case, the thickness of the optical windows 21 and 22 in the light transmission direction is appropriately set so that the total thickness thereof is optimal for converging the laser light on the light receiving surface 5a of the front detector 5. Of. In the particle size distribution measuring device configured as described above, the astigmatism caused by the incident irradiation light on the sample cell 6 in an oblique direction is eliminated, and the adverse effect on the measurement data can be eliminated.

【0033】つまり、上記第2発明の粒子径分布測定装
置においては、試料セル6に照射光が斜め方向に入射す
ることによって生ずる光線のずれを、試料セル6の傾き
方向と逆に所定角度だけ傾けた状態で設けた光学的コン
ペンセータ21,22によって補正している。
That is, in the particle size distribution measuring apparatus of the second aspect of the invention, the deviation of the light beam caused by the incident incident light on the sample cell 6 in the oblique direction is opposite to the inclination direction of the sample cell 6 by a predetermined angle. It is corrected by the optical compensators 21 and 22 provided in a tilted state.

【0034】そして、上記図6に示した構成によれば、
集光レンズ3として長い焦点距離を確保することができ
るといった逆フーリエ光学系の利点を100%享受する
ことができるので、上記第0020段落において述べた
効果を奏することは言うまでもない。
Then, according to the configuration shown in FIG.
Since the advantage of the inverse Fourier optical system that a long focal length can be secured as the condenser lens 3 can be enjoyed 100%, it goes without saying that the effect described in the above paragraph 0020 is exerted.

【0035】また、上記図6においては、光学的コンペ
ンセータ21,22が試料セル6や広角散乱光検出器群
8,9を収容した試料室20における光学窓として兼用
されるものであったが、これに限られるものではなく、
種々に変形して実施することができ、レーザ光源1のレ
ーザ光2の光度が強すぎる場合には、減光するためのN
D(ニュートラル・デンシティ)フィルタを光学的コン
ペンセータとして用いるようにしてもよい。また、レー
ザ光2が複数の波長を有するものであったり、レーザ光
源に代えて、白色光源を用いるような場合には、波長選
別のためのバンドパスフィルタを光学的コンペンセータ
として用いるようにしてもよい。
Further, in FIG. 6 described above, the optical compensators 21 and 22 are also used as optical windows in the sample chamber 20 in which the sample cell 6 and the wide-angle scattered light detector groups 8 and 9 are accommodated. It is not limited to this,
It can be variously modified and implemented, and when the intensity of the laser light 2 of the laser light source 1 is too strong, N for dimming is applied.
A D (neutral density) filter may be used as an optical compensator. When the laser light 2 has a plurality of wavelengths or when a white light source is used instead of the laser light source, a bandpass filter for wavelength selection may be used as an optical compensator. Good.

【0036】さらに、図7に示すように、楔型のプリズ
ム21A,22Aを光学的コンペンセータとして用いて
もよく、適宜のレンズを用いてもよい。なお、光学的コ
ンペンセータとしてレンズを用いる場合、その設置角度
は、セル6の中心線CLと90°をなすように設ける必
要はない。これは、光学的コンペンセータが平板状であ
る場合、収差を除去するために、試料セル6の中心線C
Lと90°をなすように設ける必要があるが、光学的コ
ンペンセータが平板状でない場合には、前記設置角度に
関係なく収差を除去することができる。なお、光学的コ
ンペンセータが平板状の場合、より簡易な構成で収差を
除去することができる。
Furthermore, as shown in FIG. 7, wedge-shaped prisms 21A and 22A may be used as an optical compensator, or an appropriate lens may be used. When a lens is used as the optical compensator, it is not necessary to set its installation angle so as to form 90 ° with the center line CL of the cell 6. This is because when the optical compensator has a flat plate shape, the center line C of the sample cell 6 is used to remove the aberration.
It must be provided so as to form an angle of 90 ° with L, but if the optical compensator is not flat, aberration can be removed regardless of the installation angle. When the optical compensator has a flat plate shape, the aberration can be removed with a simpler configuration.

【0037】また、図8に示すように、試料セル6のみ
を密閉された収容室24内に収容してもよい。この場
合、収容室24はレーザ光などの光を良好に透過させる
素材で形成する必要がある。なお、試料セル6を試料室
20や収容室24など密閉された空間内に設けることに
より、より安定な測定を行うことができる。
Further, as shown in FIG. 8, only the sample cell 6 may be housed in the sealed housing chamber 24. In this case, the housing chamber 24 needs to be formed of a material that allows light such as laser light to pass through well. By providing the sample cell 6 in a closed space such as the sample chamber 20 and the storage chamber 24, more stable measurement can be performed.

【0038】そして、上記図6〜図8の実施の形態にお
いては、集光レンズ3と前方検出器5との間の光軸上に
二つの光学的コンペンセータ21,22(21A,22
A、21B,22B)を設けていたが、このようにする
必要はなく、前記光軸上のいずれかの位置に、光学的コ
ンペンセータを唯一つ設けてあってもよい。
In the embodiments shown in FIGS. 6 to 8, the two optical compensators 21, 22 (21A, 22) are arranged on the optical axis between the condenser lens 3 and the front detector 5.
A, 21B, 22B) are provided, but it is not necessary to do so, and only one optical compensator may be provided at any position on the optical axis.

【0039】また、前記平板状の光学的コンペンセータ
を設けた第2発明においても、試料セル6の光軸23に
対する傾き角度θが45°のみに限られるものではな
く、前記角度θを、例えば25°〜65°までの任意の
角度に設定してもよい。この場合、試料セル6の傾き角
度θと、光学的コンペンセータ21,22(21A,2
2A、21B,22B)の傾き角度θ’との間には、θ
+θ’=90°となるように設定する。例えば、試料セ
ル6を後方に30°傾けた場合、光学的コンペンセータ
21,22(21A,22A、21B,22B)は、前
方に60°傾ける必要がある。
Also in the second invention provided with the plate-like optical compensator, the inclination angle θ of the sample cell 6 with respect to the optical axis 23 is not limited to 45 °, and the angle θ is, for example, 25 °. The angle may be set to any angle from ° to 65 °. In this case, the inclination angle θ of the sample cell 6 and the optical compensators 21, 22 (21A, 2
2A, 21B, 22B) and the inclination angle θ '
It is set so that + θ ′ = 90 °. For example, when the sample cell 6 is tilted backward by 30 °, the optical compensators 21, 22 (21A, 22A, 21B, 22B) need to be tilted forward by 60 °.

【0040】[0040]

【発明の効果】以上説明したように、この発明の粒子径
分布測定装置によれば、散乱角が90°近傍の散乱光を
も確実に検出することができ、0°〜180°付近まで
の広い角度範囲の散乱光を確実に検出することができ、
広い粒子範囲にわたる粒径分布を再現性よく測定するこ
とができる。
As described above, according to the particle size distribution measuring apparatus of the present invention, it is possible to reliably detect scattered light with a scattering angle of around 90 °, and it is possible to detect scattered light of around 0 ° to 180 °. It is possible to reliably detect scattered light in a wide angle range,
The particle size distribution over a wide particle range can be measured with good reproducibility.

【0041】そして、請求項3に記載の発明によれば、
逆フーリエ光学系を採用した粒子径分布測定装置におい
て、試料セルに照射光が斜め方向に入射することによっ
て生ずる非点収差が解消され、測定データへの悪影響を
除去することができる。
According to the invention described in claim 3,
In the particle size distribution measuring device employing the inverse Fourier optical system, the astigmatism caused by the irradiation light incident on the sample cell in the oblique direction is eliminated, and the adverse effect on the measurement data can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1発明に係る粒子径分布測定装置の構成の一
例を概略的に示す図である。
FIG. 1 is a diagram schematically showing an example of a configuration of a particle size distribution measuring device according to a first invention.

【図2】前記粒子径分布測定装置の光学系の一例を示す
図である。
FIG. 2 is a diagram showing an example of an optical system of the particle size distribution measuring device.

【図3】前記光学系の他の例を示す図である。FIG. 3 is a diagram showing another example of the optical system.

【図4】前記光学系のさらに他の例を示す図である。FIG. 4 is a diagram showing still another example of the optical system.

【図5】前記光学系のさらに他の例を示す図である。FIG. 5 is a diagram showing still another example of the optical system.

【図6】第2発明に係る粒子径分布測定装置の構成の一
例を概略的に示す図である。
FIG. 6 is a diagram schematically showing an example of the configuration of a particle size distribution measuring device according to a second invention.

【図7】前記粒子径分布測定装置の構成の他の例を概略
的に示す図である。
FIG. 7 is a diagram schematically showing another example of the configuration of the particle size distribution measuring device.

【図8】前記粒子径分布測定装置の構成のさらに他の例
を概略的に示す図である。
FIG. 8 is a diagram schematically showing still another example of the configuration of the particle size distribution measuring device.

【図9】従来技術を説明するための図である。FIG. 9 is a diagram for explaining a conventional technique.

【図10】従来技術を説明するための図である。FIG. 10 is a diagram for explaining a conventional technique.

【符号の説明】[Explanation of symbols]

1…光源、3…集光レンズ、4a,4b…光軸、5…前
方検出器、5a…受光面、6…試料セル、8,9…広角
散乱光検出器群、10…検出器、21,21A,21
B,22,22A,22B…光学的コンペンセータ、2
3…光軸。
DESCRIPTION OF SYMBOLS 1 ... Light source, 3 ... Condensing lens, 4a, 4b ... Optical axis, 5 ... Front detector, 5a ... Light receiving surface, 6 ... Sample cell, 8, 9 ... Wide angle scattered light detector group, 10 ... Detector, 21 , 21A, 21
B, 22, 22A, 22B ... Optical compensator, 2
3 ... Optical axis.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒住 拓司 京都府京都市南区吉祥院宮の東町2番地 株式会社堀場製作所内 Fターム(参考) 2G059 AA03 AA05 BB06 BB09 BB13 CC19 EE01 EE02 GG01 JJ11 KK03 MM01 MM09 MM10 PP04   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takuji Kurozumi             2 Higashimachi, Kichijoin-miya, Minami-ku, Kyoto-shi, Kyoto             HORIBA, Ltd. F term (reference) 2G059 AA03 AA05 BB06 BB09 BB13                       CC19 EE01 EE02 GG01 JJ11                       KK03 MM01 MM09 MM10 PP04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光源と、この光源からの光が照射される
試料セルと、前記光の光軸上に配置される集光レンズ
と、前記試料セルにおいて生ずる透過光および所定の散
乱光を検出する前方検出器とを備えた粒子径分布測定装
置において、前記試料セルを、前記光源を発した光の光
軸に対して傾けた状態で設けるとともに、前記試料セル
の両側に複数の検出器よりなる広角散乱光検出器群を設
けたことを特徴とする粒子径分布測定装置。
1. A light source, a sample cell irradiated with light from the light source, a condenser lens arranged on the optical axis of the light, a transmitted light and a predetermined scattered light generated in the sample cell are detected. In the particle size distribution measuring apparatus with a front detector to be provided, the sample cell is provided in a state of being inclined with respect to the optical axis of the light emitted from the light source, and a plurality of detectors are provided on both sides of the sample cell. An apparatus for measuring particle size distribution, characterized in that a wide-angle scattered light detector group is provided.
【請求項2】 集光レンズを光源と試料セルとの間に設
けるとともに、前方検出器を前記集光レンズの焦点位置
に設けてなる請求項1に記載の粒子径分布測定装置。
2. The particle size distribution measuring device according to claim 1, wherein a condenser lens is provided between the light source and the sample cell, and a front detector is provided at a focal position of the condenser lens.
【請求項3】 集光レンズと前方検出器との間の光軸上
のいずれかの位置に、透過光または散乱光を前記前方検
出器の受光面上に収斂させるための光学的コンペンセー
タを設けてなる請求項2に記載の粒子径分布測定装置。
3. An optical compensator for converging transmitted light or scattered light on the light receiving surface of the front detector is provided at any position on the optical axis between the condenser lens and the front detector. The particle size distribution measuring device according to claim 2, wherein
【請求項4】 集光レンズを試料セルと前方検出器との
間に設けるとともに、この前方検出器を前記集光レンズ
の焦点位置に設けてなる請求項1に記載の粒子径分布測
定装置。
4. The particle size distribution measuring device according to claim 1, wherein a condenser lens is provided between the sample cell and the front detector, and the front detector is provided at a focal position of the condenser lens.
JP2002135232A 2002-05-10 2002-05-10 Particle size distribution measuring device Expired - Lifetime JP3822840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002135232A JP3822840B2 (en) 2002-05-10 2002-05-10 Particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002135232A JP3822840B2 (en) 2002-05-10 2002-05-10 Particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JP2003329570A true JP2003329570A (en) 2003-11-19
JP3822840B2 JP3822840B2 (en) 2006-09-20

Family

ID=29697610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135232A Expired - Lifetime JP3822840B2 (en) 2002-05-10 2002-05-10 Particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP3822840B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2396411A (en) * 2002-11-21 2004-06-23 Horiba Ltd Particle size distribution analyser reducing optical noise by irradiating a region of its cell inclined at an angle with respect to an optical axis
JP2005070027A (en) * 2003-08-06 2005-03-17 Sankyo Seiki Mfg Co Ltd Counting apparatus for light scattering type particles
JP2009531659A (en) * 2006-03-23 2009-09-03 ハック・カンパニー Dual function measurement system
JP2011002375A (en) * 2009-06-19 2011-01-06 Kubota Corp Measurement instrument for measuring internal quality of particulate material
JP2012189493A (en) * 2011-03-11 2012-10-04 Seiko Instruments Inc Particle detector
JP2014055866A (en) * 2012-09-13 2014-03-27 Suga Test Instr Co Ltd Diffusion haze value measuring method and measuring device
CN105954154A (en) * 2016-04-28 2016-09-21 清华大学深圳研究生院 Method and device for measuring two-dimensional light scattering angular distribution of suspended particles
CN108431582A (en) * 2015-12-28 2018-08-21 Kbf企划株式会社 Gel particles assay method and its device
JP2019148585A (en) * 2018-01-31 2019-09-05 ジック エンジニアリング ゲーエムベーハーSICK Engineering GmbH Analysis device for determining particulate matter
US11965900B2 (en) 2018-11-09 2024-04-23 Wyatt Technology, Llc Indicating a status of an analytical instrument on a screen of the analytical instrument

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323540A (en) * 1991-04-22 1992-11-12 Nikkiso Co Ltd Particle size distribution measuring device
JPH0612943U (en) * 1992-07-18 1994-02-18 株式会社堀場製作所 Particle measuring device
JPH07294249A (en) * 1994-04-28 1995-11-10 Keyence Corp Optical unit
JPH0933423A (en) * 1995-07-24 1997-02-07 Shimadzu Corp Vertical laser diffraction type particle size distribution measuring device
JP2000251314A (en) * 1999-03-03 2000-09-14 Sony Corp Optical pickup and optical disk device
JP2000304679A (en) * 1999-04-16 2000-11-02 Horiba Ltd Laser optical-axis adjusting mechanism for particle-size distribution measuring apparatus
JP3471634B2 (en) * 1998-11-06 2003-12-02 株式会社堀場製作所 Particle size distribution measuring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323540A (en) * 1991-04-22 1992-11-12 Nikkiso Co Ltd Particle size distribution measuring device
JPH0612943U (en) * 1992-07-18 1994-02-18 株式会社堀場製作所 Particle measuring device
JPH07294249A (en) * 1994-04-28 1995-11-10 Keyence Corp Optical unit
JPH0933423A (en) * 1995-07-24 1997-02-07 Shimadzu Corp Vertical laser diffraction type particle size distribution measuring device
JP3471634B2 (en) * 1998-11-06 2003-12-02 株式会社堀場製作所 Particle size distribution measuring device
JP2000251314A (en) * 1999-03-03 2000-09-14 Sony Corp Optical pickup and optical disk device
JP2000304679A (en) * 1999-04-16 2000-11-02 Horiba Ltd Laser optical-axis adjusting mechanism for particle-size distribution measuring apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2396411A (en) * 2002-11-21 2004-06-23 Horiba Ltd Particle size distribution analyser reducing optical noise by irradiating a region of its cell inclined at an angle with respect to an optical axis
GB2396411B (en) * 2002-11-21 2005-12-28 Horiba Ltd Particle size distribution analyzer
US7151602B2 (en) 2002-11-21 2006-12-19 Horiba, Ltd. Particle size distribution analyzer
JP2005070027A (en) * 2003-08-06 2005-03-17 Sankyo Seiki Mfg Co Ltd Counting apparatus for light scattering type particles
JP2009531659A (en) * 2006-03-23 2009-09-03 ハック・カンパニー Dual function measurement system
JP2011002375A (en) * 2009-06-19 2011-01-06 Kubota Corp Measurement instrument for measuring internal quality of particulate material
JP2012189493A (en) * 2011-03-11 2012-10-04 Seiko Instruments Inc Particle detector
JP2014055866A (en) * 2012-09-13 2014-03-27 Suga Test Instr Co Ltd Diffusion haze value measuring method and measuring device
CN108431582A (en) * 2015-12-28 2018-08-21 Kbf企划株式会社 Gel particles assay method and its device
CN105954154A (en) * 2016-04-28 2016-09-21 清华大学深圳研究生院 Method and device for measuring two-dimensional light scattering angular distribution of suspended particles
JP2019148585A (en) * 2018-01-31 2019-09-05 ジック エンジニアリング ゲーエムベーハーSICK Engineering GmbH Analysis device for determining particulate matter
US11965900B2 (en) 2018-11-09 2024-04-23 Wyatt Technology, Llc Indicating a status of an analytical instrument on a screen of the analytical instrument

Also Published As

Publication number Publication date
JP3822840B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
JP2911877B2 (en) Fiber detector for detecting scattered light or fluorescence of suspension
JP4605839B2 (en) Apparatus and method for measuring particle size distribution
US5637881A (en) Method to detect non-spherical particles using orthogonally polarized light
WO1996042007A1 (en) Re-entrant illumination system for particle measuring device
JP2003329570A (en) Apparatus for measuring distribution of particle size
JP6757964B2 (en) Crystallization analyzer and crystallization analysis method
JP3258889B2 (en) Optical axis adjustment method in scattering particle size distribution analyzer
JPH0843292A (en) Detector for measuring luminous intensity of scattered lightwith thin film of colloid-state medium
US5606418A (en) Quasi bright field particle sensor
US20160153902A1 (en) Device for measuring the scattering of a sample
EP0447991B1 (en) Apparatus for measuring the distribution of the size of diffraction-scattering type particles
JP4105888B2 (en) Particle size distribution measuring device
JP3471634B2 (en) Particle size distribution measuring device
US20240263937A1 (en) Measurement head
JP2002195945A (en) Sensor utilizing attenuated total reflection
JP2005164304A (en) Irradiation optical system, and particle processing device equipped with the same
JP2899368B2 (en) Particle measurement device
JP2004077150A (en) Particle diameter distribution measuring apparatus
JPH06241974A (en) Grain size distribution measuring device
JPS60129645A (en) Gas concentration measuring apparatus
JP4053236B2 (en) Sensor using total reflection attenuation
JPH0758256B2 (en) Particle measuring device
JP3025051B2 (en) Scattered light measurement cell
JP2003065946A (en) Sensor using attenuated total reflection
JPH0614008B2 (en) Particle analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3822840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term