JP2012189493A - Particle detector - Google Patents

Particle detector Download PDF

Info

Publication number
JP2012189493A
JP2012189493A JP2011054223A JP2011054223A JP2012189493A JP 2012189493 A JP2012189493 A JP 2012189493A JP 2011054223 A JP2011054223 A JP 2011054223A JP 2011054223 A JP2011054223 A JP 2011054223A JP 2012189493 A JP2012189493 A JP 2012189493A
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving element
particle detector
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011054223A
Other languages
Japanese (ja)
Inventor
Akihiro Isozaki
瑛宏 磯崎
Kenta KUWANA
健太 桑名
Masataka Araogi
正隆 新荻
Masaru Tomimatsu
大 富松
Hisahiro Ito
寿浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Seiko Instruments Inc
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc, National Institute of Advanced Industrial Science and Technology AIST filed Critical Seiko Instruments Inc
Priority to JP2011054223A priority Critical patent/JP2012189493A/en
Publication of JP2012189493A publication Critical patent/JP2012189493A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve sensitivity and detection accuracy of a particle detector and miniaturize the same.SOLUTION: A particle detector 10 comprises: a light source 11 for applying light to a sample fluid F; and a light receiving element 12 for detecting the scattered light which is formed by scattering the light L emitted from the light source 11 by particles in a sample fluid F. A flow passage 13 for passing the sample fluid F connects between a pair of plate-like light receiving elements 12 and 12 arranged in parallel with light-receiving surfaces 12A and 12A opposed to each other with a predetermined interval and the pair of light receiving elements and is formed in a square columnar shape by a pair of plate-like reflecting mirrors arranged in parallel with light-receiving surfaces 16A and 16A opposed to each other. The pair of light receiving elements 12 and 12 are arranged in parallel with a light path along a light path of the light L emitted from the light source 11 and disposed so as to sandwich the light path from both sides in a direction orthogonal to the light path by the light-receiving surfaces 12A and 12A.

Description

この発明は、粒子検出器に関する。   The present invention relates to a particle detector.

従来、例えば検出対象である粒子を含む気体流を横切る方向で両側から挟み込むように光源と光検出器とを配置し、気体流を横切るように光源からレーザ光を照射して、このレーザ光が粒子によって散乱されて得られる散乱光を光センサにより検出することで、気体流に含まれる粒子を検出する粒子計測器が知られている。(例えば、特許文献1参照)。   Conventionally, for example, a light source and a photodetector are arranged so as to be sandwiched from both sides in a direction crossing a gas flow containing particles to be detected, and laser light is emitted from the light source so as to cross the gas flow. There is known a particle measuring device that detects particles contained in a gas flow by detecting scattered light obtained by being scattered by particles using an optical sensor. (For example, refer to Patent Document 1).

特開2009−539084号公報JP 2009-539084 A

ところで、上記従来技術に係る粒子計測器においては、十分な散乱光を得て計測精度を向上させることが望まれている。
これに対して、例えばレーザ光を集光させて気体流の粒子への入射光強度を増加させるために、レンズなどからなる光学システムを構成すると、構成に要する費用が増大するとともに、レンズの大きさや所定の焦点距離を確保することなどに起因して、粒子計測器が大型化してしまうという問題が生じる。
By the way, in the particle measuring instrument according to the above prior art, it is desired to improve the measurement accuracy by obtaining sufficient scattered light.
On the other hand, for example, in order to increase the incident light intensity to the gas flow particles by condensing the laser beam, configuring an optical system including a lens increases the cost required for the configuration and increases the size of the lens. In addition, there is a problem that the particle measuring instrument becomes large due to securing a predetermined focal length.

本発明は上記事情に鑑みてなされたもので、感度および検出精度を向上させるとともに、小型化することが可能な粒子検出器を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a particle detector that can improve sensitivity and detection accuracy and can be miniaturized.

上記課題を解決して係る目的を達成するために、本発明の請求項1に係る粒子検出器は、試料流体に向けて光を照射する光源(例えば、実施の形態での光源11)と、該光源から発せられた前記光が前記試料流体中の粒子によって散乱されることで生じた散乱光を検出する受光素子(例えば、実施の形態での受光素子12)とを備え、前記受光素子の受光面(例えば、実施の形態での受光面12A)は、前記光源から発せられる前記光の光路に沿って、前記光路に平行である。   In order to solve the above problems and achieve the object, a particle detector according to claim 1 of the present invention includes a light source that irradiates light toward a sample fluid (for example, light source 11 in the embodiment), A light receiving element (for example, the light receiving element 12 in the embodiment) for detecting scattered light generated by the light emitted from the light source being scattered by particles in the sample fluid. The light receiving surface (for example, the light receiving surface 12A in the embodiment) is parallel to the optical path along the optical path of the light emitted from the light source.

さらに、本発明の請求項2に係る粒子検出器は、少なくとも1対の前記受光素子を備え、前記少なくとも1対の前記受光素子の前記受光面は、前記光路に直交する方向の両側から前記光路を挟み込む。   Furthermore, the particle detector according to claim 2 of the present invention includes at least one pair of the light receiving elements, and the light receiving surfaces of the at least one pair of the light receiving elements are from the both sides in a direction orthogonal to the optical path. Is inserted.

さらに、本発明の請求項3に係る粒子検出器は、前記試料流体を内部通過させる流路(例えば、実施の形態での流路13)を備え、前記受光素子は、前記流路の入口部(例えば、実施の形態での入口部13a)から出口部(例えば、実施の形態での出口部13b)までの間に設けられ、前記入口部から前記出口部までの間で前記光を往復反射する少なくとも1対の反射鏡(例えば、実施の形態での反射鏡16)を備える。   Furthermore, the particle detector according to claim 3 of the present invention includes a flow path (for example, the flow path 13 in the embodiment) through which the sample fluid passes, and the light receiving element is an inlet portion of the flow path. (For example, the inlet portion 13a in the embodiment) to the outlet portion (for example, the outlet portion 13b in the embodiment), and the light is reflected back and forth between the inlet portion and the outlet portion. At least one pair of reflecting mirrors (for example, the reflecting mirror 16 in the embodiment).

さらに、本発明の請求項4に係る粒子検出器は、前記散乱光を検出する第2受光素子(例えば、実施の形態での第2受光素子17)を備え、前記第2受光素子の受光面は、前記光路を含む平面に対して直交する。   Furthermore, a particle detector according to a fourth aspect of the present invention includes a second light receiving element (for example, the second light receiving element 17 in the embodiment) that detects the scattered light, and a light receiving surface of the second light receiving element. Is orthogonal to the plane containing the optical path.

さらに、本発明の請求項5に係る粒子検出器は、前記受光素子の受光面は、前記受光素子の内部に向かい弧状に膨出するマイクロ構造を有する。   Furthermore, in the particle detector according to claim 5 of the present invention, the light receiving surface of the light receiving element has a microstructure that bulges in an arc shape toward the inside of the light receiving element.

本発明の請求項1に係る粒子検出器によれば、受光素子の受光面は、光源から発せられる光の光路に沿って、光路に平行であることから、各種の散乱光のうち、光源から発せられる光の光路の前方方向に指向性が強い散乱光、例えばMie散乱の散乱光に対する感度を向上させることができる。
しかも、光の波長および粒子の粒径などに対する所定の条件において、Mie散乱の散乱光は、他の散乱光に比べて散乱強度が高いことから、粒子検出器が大型化することを防止しつつ、散乱光に対する感度を向上させ、十分な散乱光を得て粒子の検出精度を向上させることができる。
According to the particle detector according to claim 1 of the present invention, the light receiving surface of the light receiving element is parallel to the optical path along the optical path of the light emitted from the light source. Sensitivity to scattered light having strong directivity in the forward direction of the light path of emitted light, for example, Mie scattered light can be improved.
In addition, Mie scattered scattered light has higher scattering intensity than other scattered light under predetermined conditions with respect to the wavelength of light and the particle size of the particles, etc., while preventing the particle detector from increasing in size. The sensitivity to scattered light can be improved, and sufficient scattered light can be obtained to improve particle detection accuracy.

さらに、本発明の請求項2に係る粒子検出器によれば、少なくとも1対の受光素子の受光面によって光路を挟み込むことにより、より一層、散乱光に対する感度を向上させ、検出精度を向上させることができる。   Furthermore, according to the particle detector of claim 2 of the present invention, the sensitivity to scattered light is further improved and detection accuracy is improved by sandwiching the optical path between the light receiving surfaces of at least one pair of light receiving elements. Can do.

さらに、本発明の請求項3に係る粒子検出器によれば、光源から発せられる光を往復反射する少なくとも1対の反射鏡を備えることにより、散乱光を増加させることができ、より一層、検出精度を向上させることができる。   Furthermore, according to the particle detector according to claim 3 of the present invention, it is possible to increase the scattered light by providing at least one pair of reflecting mirrors that reciprocally reflect the light emitted from the light source. Accuracy can be improved.

さらに、本発明の請求項4に係る粒子検出器によれば、第2受光素子を備えることによって、より一層、散乱光に対する感度を向上させ、検出精度を向上させることができる。   Furthermore, according to the particle detector according to claim 4 of the present invention, by providing the second light receiving element, it is possible to further improve the sensitivity to scattered light and improve the detection accuracy.

さらに、本発明の請求項5に係る粒子検出器によれば、受光素子の受光面に対する入射角が大きな散乱光を、受光素子の内部に向かい弧状に膨出するマイクロ構造での多重反射により効率よく検出することができる。   Furthermore, according to the particle detector according to claim 5 of the present invention, the scattered light having a large incident angle with respect to the light receiving surface of the light receiving element is efficiently reflected by multiple reflections in a micro structure that bulges in an arc shape toward the inside of the light receiving element. Can be detected well.

すなわち、このマイクロ構造は、受光素子の表面上に形成された複数の凹部を備え、各凹部は、受光素子の表面上の開口端から適宜の深さまで内部に向かうことに伴い、内部空間の横断面積が増大傾向に変化する曲面状の内壁面を有する弧状膨大部と、さらに、適宜の深さから凹部の底部に向かうことに伴い、内部空間の横断面積が減少傾向に変化する曲面状の内壁面を有する弧状縮小部とから成る形状を有している。   That is, this microstructure includes a plurality of recesses formed on the surface of the light receiving element, and each recess crosses the internal space as it goes from the opening end on the surface of the light receiving element to an appropriate depth. An arc-shaped bulge with a curved inner wall whose area tends to increase, and a curved inner where the cross-sectional area of the internal space changes toward a decreasing trend from the appropriate depth toward the bottom of the recess It has the shape which consists of an arcuate reduction part which has a wall surface.

このため、受光素子の受光面に対する入射角が大きな散乱光であっても、各凹部の弧状膨大部に対しては入射角が小さくなって反射が抑制される。
また、この散乱光が弧状膨大部で反射されたとしても、この反射による反射光は凹部の内部に向かい、凹部の内壁面に対して入射角が小さくなるように反射される可能性が高くなり、さらなる反射が抑制される。
また、凹部に入射した散乱光が内部で反射を繰り返す場合であっても、反射光が凹部の外部に抜け出てしまうことは抑制されており、凹部の内部での多重反射を経て検出される可能性が高くなっている。
これらにより、より一層、散乱光に対する感度を向上させ、検出精度を向上させることができる。
For this reason, even if it is scattered light with a large incident angle with respect to the light-receiving surface of a light receiving element, an incident angle becomes small with respect to the arc-shaped enormous part of each recessed part, and reflection is suppressed.
Moreover, even if this scattered light is reflected by the arc-shaped enormous portion, the reflected light from this reflection is likely to be reflected toward the inside of the recess so that the incident angle becomes small with respect to the inner wall surface of the recess. Further reflections are suppressed.
In addition, even if the scattered light incident on the recess is repeatedly reflected inside, it is suppressed that the reflected light escapes outside the recess and can be detected through multiple reflections inside the recess. The nature is getting higher.
As a result, the sensitivity to scattered light can be further improved and the detection accuracy can be improved.

本発明の実施の形態に係る粒子検出器の一部を示す構成図である。It is a lineblock diagram showing some particle detectors concerning an embodiment of the invention. 本発明の実施の形態に係る粒子検出器の構成図である。It is a lineblock diagram of the particle detector concerning an embodiment of the invention. 本発明の実施の形態に係る粒子検出器の一部を示す構成図である。It is a lineblock diagram showing some particle detectors concerning an embodiment of the invention. 本発明の実施の形態に係る粒子検出器の一部を示す構成図である。It is a lineblock diagram showing some particle detectors concerning an embodiment of the invention. 本発明の実施の形態に係る所定波長の光に対する所定粒径の粒子によるMie散乱の散乱光の出力強度の角度分布の一例を示す図である。It is a figure which shows an example of angle distribution of the output intensity of the scattered light of Mie scattering by the particle | grains of the predetermined particle diameter with respect to the light of the predetermined wavelength which concerns on embodiment of this invention. 本発明の実施の形態に係る複数の所定波長の光を粒子に入射したときのMie散乱の出力強度の一例を示す図である。It is a figure which shows an example of the output intensity | strength of Mie scattering when the light of the several predetermined wavelength which concerns on embodiment of this invention injects into particle | grains. 本発明の実施の形態に係る粒子検出器の受光素子の受光面に形成されたマイクロ構造を示す斜視図である。It is a perspective view which shows the micro structure formed in the light-receiving surface of the light receiving element of the particle | grain detector which concerns on embodiment of this invention. 本発明の実施の形態に係る粒子検出器の受光素子の受光面に形成されたマイクロ構造を示す断面図である。It is sectional drawing which shows the microstructure formed in the light-receiving surface of the light receiving element of the particle | grain detector which concerns on embodiment of this invention. 図9(A)は本発明の実施の形態に係る実施例での受光素子のマイクロ構造における光の反射および吸収の例を示す図であり、図9(B),(C)は本発明の実施の形態に係る第1比較例および第2比較例での受光素子における光の反射および吸収の例を示す図である。FIG. 9A is a diagram showing an example of light reflection and absorption in the microstructure of the light receiving element in the example according to the embodiment of the present invention, and FIGS. 9B and 9C are diagrams of the present invention. It is a figure which shows the example of reflection and absorption of the light in the light receiving element in the 1st comparative example and 2nd comparative example which concern on embodiment. 本発明の実施の形態に係る実施例および第1比較例での受光素子の受光面での散乱光の受光強度の入射角に応じた変化の例を示す図である。It is a figure which shows the example of the change according to the incident angle of the received light intensity of the scattered light in the light-receiving surface of the light receiving element in the Example which concerns on embodiment of this invention, and a 1st comparative example. 本発明の実施の形態に係る粒子検出器の受光素子の受光面に設けられるマイクロ構造を製造する方法の各工程を示す図である。It is a figure which shows each process of the method of manufacturing the microstructure provided in the light-receiving surface of the light receiving element of the particle | grain detector which concerns on embodiment of this invention.

以下、本発明の一実施形態に係る粒子検出器について添付図面を参照しながら説明する。   Hereinafter, a particle detector according to an embodiment of the present invention will be described with reference to the accompanying drawings.

本実施の形態による粒子検出器10は、例えば、クリーンルーム内に設置され、クリーンルーム内の空気清浄度を管理するシステムとして用いられ、試料流体とされる空気中に含まれる、例えば微粒子状の塵埃や、細菌やウイルスなどの浮遊微生物などの粒子を検出するものである。   The particle detector 10 according to the present embodiment is installed in, for example, a clean room and is used as a system for managing the cleanliness of air in the clean room. For example, particulate dust or It detects particles such as airborne microorganisms such as bacteria and viruses.

本実施の形態による粒子検出器10は、例えば図1(A),(B)に示すように、空気などの試料流体Fに向けて光Lを照射する光源11と、該光源11から発せられた光Lが試料流体F中の粒子Pによって散乱されることで生じた散乱光SLを検出する受光素子12とを備えて構成されている。   A particle detector 10 according to the present embodiment is emitted from a light source 11 that irradiates light L toward a sample fluid F such as air and the light source 11 as shown in FIGS. 1A and 1B, for example. The light receiving element 12 detects the scattered light SL generated by the scattered light L being scattered by the particles P in the sample fluid F.

光源11は、例えば所定の波長のレーザ光を所定の出力で出射するレーザ光源などである。
受光素子12は、例えばフォトダイオードなどであって、受光素子12の受光面12Aは、光源11から発せられる光Lの光路に沿って、光路に平行に配置されている。
そして、粒子検出器10は、受光素子12から出力される光学的出力波形(つまり、散乱光SLの出力波形)から試料流体F中の粒子Pの粒径や数を検出する。
The light source 11 is, for example, a laser light source that emits laser light having a predetermined wavelength with a predetermined output.
The light receiving element 12 is, for example, a photodiode, and the light receiving surface 12A of the light receiving element 12 is disposed along the optical path of the light L emitted from the light source 11 in parallel with the optical path.
The particle detector 10 detects the particle size and the number of particles P in the sample fluid F from the optical output waveform output from the light receiving element 12 (that is, the output waveform of the scattered light SL).

より詳細には、この粒子検出器10は、例えば図2に示すように、試料流体Fを通過させる流路13と、流路13内に試料流体Fを導入するポンプ14と、流路13に連通する光吸収部15とを備えて構成されている。   More specifically, as shown in FIG. 2, for example, the particle detector 10 includes a flow path 13 that allows the sample fluid F to pass therethrough, a pump 14 that introduces the sample fluid F into the flow path 13, and a flow path 13. The light absorption part 15 connected is comprised.

流路13は、例えば、所定間隔をおいて互いの受光面12A,12A同士を対向させて平行に配置された1対の板状の受光素子12,12と、1対の受光素子12,12間を接続し、かつ互いの反射面16A,16A同士を対向させて平行に配置された1対の板状の反射鏡16,16とにより、4角筒状に形成されている。   The flow path 13 includes, for example, a pair of plate-shaped light receiving elements 12 and 12 arranged in parallel with each other with the light receiving surfaces 12A and 12A facing each other at a predetermined interval, and a pair of light receiving elements 12 and 12. A pair of plate-like reflecting mirrors 16 and 16 arranged in parallel with the reflecting surfaces 16A and 16A facing each other are formed in a rectangular tube shape.

そして、流路13の両端で開口する入口部13aおよび出口部13bのうち、出口部13bは、例えば吸引用のポンプ14に接続され、試料流体Fは外部に連通するように開口する入口部13aから流路13内に導入され、流路13内を流通した試料流体Fは出口部13bからポンプ14に吸引される。   Of the inlet portion 13a and the outlet portion 13b that open at both ends of the flow path 13, the outlet portion 13b is connected to, for example, a pump 14 for suction, and the inlet portion 13a that opens so that the sample fluid F communicates with the outside. The sample fluid F introduced into the flow path 13 and circulated in the flow path 13 is sucked into the pump 14 from the outlet portion 13b.

光源11は、流路13の入口部13aにおいて、1対の反射鏡16,16の一方側にずれた位置に配置され、この一方側から他方側に向かう方向に対して所定角度だけ流路13の出口部13b側に傾斜した方向に向けて光Lを出射するように配置されている。
そして、1対の受光素子12,12は、光源11から発せられる光Lの光路に沿って、光路に平行に配置され、互いの受光面12A,12Aによって光路に直交する方向の両側から光路を挟み込むように配置されている。
The light source 11 is disposed at a position shifted to one side of the pair of reflecting mirrors 16 and 16 in the inlet portion 13a of the flow path 13, and the flow path 13 is formed at a predetermined angle with respect to the direction from the one side to the other side. It is arrange | positioned so that the light L may be radiate | emitted toward the direction inclined to the exit part 13b side.
The pair of light receiving elements 12 and 12 are arranged in parallel to the optical path along the optical path of the light L emitted from the light source 11, and the light receiving surfaces 12A and 12A pass the optical path from both sides in the direction orthogonal to the optical path. It is arranged so as to be sandwiched.

また、各反射鏡16の反射面16A上には、例えば図3および図4に示すように、光路に直交する方向の中央部から両側つまり1対の受光素子12,12側にずれた位置に1対の第2受光素子17,17が設けられている。
第2受光素子17は、例えばフォトダイオードなどであって、第2受光素子17の受光面は、例えば光Lの光路を含む平面に対して直交するように配置されている。
そして、光源11から出射された光Lは、1対の反射鏡16,16の反射面16A,16A間を往復反射して流路13の入口部13aから出口部13bに導光される。
Further, on the reflecting surface 16A of each reflecting mirror 16, for example, as shown in FIGS. 3 and 4, the center portion in the direction orthogonal to the optical path is shifted to both sides, that is, the pair of light receiving elements 12 and 12 side. A pair of second light receiving elements 17, 17 are provided.
The second light receiving element 17 is, for example, a photodiode, and the light receiving surface of the second light receiving element 17 is disposed so as to be orthogonal to a plane including the optical path of the light L, for example.
The light L emitted from the light source 11 is reflected back and forth between the reflecting surfaces 16A and 16A of the pair of reflecting mirrors 16 and 16, and is guided from the inlet portion 13a of the flow path 13 to the outlet portion 13b.

光吸収部15は、流路13の出口部13bに連通しており、流路13内を往復反射しつつ導光されて出口部13bに到達した光Lを、流路13内から光吸収部15の内部に導く形状を有する光吸収体により形成されている。   The light absorbing portion 15 communicates with the outlet portion 13 b of the flow path 13, and the light L that has been guided to the outlet portion 13 b while being reciprocally reflected in the flow path 13 is transmitted from the flow path 13 to the light absorbing portion. 15 is formed by a light absorber having a shape leading to the inside.

このように、光源11から発せられる光Lの光路に沿って、光路に平行に配置される受光素子12は、光源11から出射された光Lが試料流体F中の粒子Pによって散乱されることで生じた各種の散乱光SLのうち、特に、光源11から発せられる光Lの光路の前方方向に指向性が強い散乱光SL、例えばMie散乱の散乱光SLに対する感度を向上させることができる。   As described above, the light receiving element 12 arranged in parallel to the optical path along the optical path of the light L emitted from the light source 11 causes the light L emitted from the light source 11 to be scattered by the particles P in the sample fluid F. Among the various scattered light SL generated in Step 1, the sensitivity to the scattered light SL having strong directivity in the forward direction of the optical path of the light L emitted from the light source 11, for example, the Mie scattered scattered light SL can be improved.

例えば図5に示すように、所定波長(例えば、660nm)の光Lに対する所定粒径(例えば、直径d=1.0μm、0.5μm)の粒子PによるMie散乱の散乱光SLの出力強度の角度分布によると、クリーンルーム内の粒子Pの平均的な大きさである直径d=1.0μmの粒子Pに対して、Mie散乱の散乱光SLは、光Lの光路の前方方向に指向性が強いことが認められる。
しかも、所定波長(例えば、660nm)の光Lに対する所定粒径(例えば、直径d=1.0μm)の粒子Pによる散乱では、Mie散乱が支配的となることから、Mie散乱の散乱光SLに対する感度を向上させることで、十分な散乱光SLを得て粒子Pの検出精度を向上させることができる。
For example, as shown in FIG. 5, the output intensity of the scattered light SL of Mie scattering by the particle P having a predetermined particle diameter (for example, diameter d = 1.0 μm, 0.5 μm) with respect to the light L having a predetermined wavelength (for example, 660 nm). According to the angular distribution, the Mie scattered scattered light SL has directivity in the forward direction of the optical path of the light L with respect to the particle P having a diameter d = 1.0 μm, which is the average size of the particles P in the clean room. It is recognized that it is strong.
In addition, Mie scattering is dominant in scattering by particles P having a predetermined particle diameter (for example, diameter d = 1.0 μm) with respect to light L having a predetermined wavelength (for example, 660 nm). By improving the sensitivity, sufficient scattered light SL can be obtained and the detection accuracy of the particles P can be improved.

したがって、各受光素子12の受光面12Aと、光源11から出射される光Lの光路との間の間隔は、小さい方が好ましい。   Therefore, the distance between the light receiving surface 12A of each light receiving element 12 and the optical path of the light L emitted from the light source 11 is preferably small.

なお、Mie散乱の出力強度は、光Lの波長λと粒子Pの大きさ(例えば、直径d)との関係に依存して変化する。
例えば、図6に示すように、複数の所定波長(例えば、300nm、600nm、900nm)の光Lを粒子Pに入射したときのMie散乱の出力強度から、全ての所定波長(例えば、300nm、600nm、900nm)において、d/λが所定値(例えば、0.5)未満では、出力強度の低下が増大することが認められる。
これにより、d/λに対する下限値として、d/λ=0.5を設定することが好ましい。
なお、図6では、横軸を、直径d/波長λとし、縦軸を、Mie散乱の出力強度をd/λ=20の値で規格化した値としている。
Note that the output intensity of Mie scattering varies depending on the relationship between the wavelength λ of the light L and the size of the particle P (for example, the diameter d).
For example, as shown in FIG. 6, all the predetermined wavelengths (for example, 300 nm, 600 nm) are obtained from the output intensity of Mie scattering when light L having a plurality of predetermined wavelengths (for example, 300 nm, 600 nm, 900 nm) is incident on the particle P. , 900 nm), it is recognized that when d / λ is less than a predetermined value (for example, 0.5), the decrease in output intensity increases.
Accordingly, it is preferable to set d / λ = 0.5 as the lower limit value for d / λ.
In FIG. 6, the horizontal axis is the diameter d / wavelength λ, and the vertical axis is the value obtained by normalizing the output intensity of Mie scattering by the value of d / λ = 20.

また、例えばクリーンルーム内の所望の空気清浄度に応じて、例えば粒子Pの直径dに対する上限値として、例えばd=5μmを設定することが好ましい。   For example, it is preferable to set, for example, d = 5 μm as the upper limit value for the diameter d of the particles P, for example, according to the desired air cleanliness in the clean room.

そして、例えば図7(A),(B)に示すように、受光素子12の受光面12Aは、受光素子12の内部に向かい弧状に膨出するマイクロ構造20を有している。   For example, as shown in FIGS. 7A and 7B, the light receiving surface 12 </ b> A of the light receiving element 12 has a micro structure 20 that bulges in an arc toward the inside of the light receiving element 12.

このマイクロ構造20は、例えば図8に示すように、受光素子12の受光面12A上に形成された複数の凹部21を備えている。
そして、各凹部21は、受光素子12の受光面12A上の開口端21aから適宜の深さまで内部に向かうことに伴い、内部空間の横断面積が増大傾向に変化する曲面状の受光内壁面31Aを有する弧状膨大部31と、さらに、適宜の深さから凹部21の底部に向かうことに伴い、内部空間の横断面積が減少傾向に変化する曲面状の受光内壁面32Aを有する弧状縮小部32とから成る形状を有している。
For example, as shown in FIG. 8, the microstructure 20 includes a plurality of recesses 21 formed on the light receiving surface 12 </ b> A of the light receiving element 12.
Each concave portion 21 has a curved light-receiving inner wall surface 31A in which the cross-sectional area of the internal space changes in an increasing trend as it goes from the opening end 21a on the light-receiving surface 12A of the light-receiving element 12 to an appropriate depth. An arc-shaped enlarging portion 31 having a curved light-receiving inner wall surface 32A in which the cross-sectional area of the internal space changes in a decreasing tendency from the appropriate depth toward the bottom of the concave portion 21. It has the shape which consists of.

このマイクロ構造20により、例えば図9(A)に示す実施例のように、受光素子12の受光面12Aに対する入射角が大きな散乱光SLであっても、各凹部21の弧状膨大部31に対しては入射角が小さくなって反射が抑制される。   With this microstructure 20, for example, as in the embodiment shown in FIG. 9A, even with the scattered light SL having a large incident angle with respect to the light receiving surface 12A of the light receiving element 12, the arc-shaped enormous portion 31 of each concave portion 21 is prevented. As a result, the incident angle is reduced and reflection is suppressed.

また、この散乱光SLが弧状膨大部31で反射されたとしても、この反射による反射光SLaは凹部21の内部に向かい、凹部21の内壁面(例えば、弧状縮小部32の受光内壁面32Aなど)に対して入射角が小さくなるように反射される可能性が高くなり、さらなる反射が抑制される。   Even if the scattered light SL is reflected by the arc-shaped enormous portion 31, the reflected light SLa due to this reflection goes to the inside of the concave portion 21, and the inner wall surface of the concave portion 21 (for example, the light receiving inner wall surface 32A of the arc-shaped reducing portion 32). ) Is more likely to be reflected such that the incident angle becomes smaller, and further reflection is suppressed.

また、凹部21に入射した散乱光SLが内部で反射を繰り返す場合であっても、反射光SLa,SLb,…が凹部21の外部に抜け出てしまうことは抑制されており、凹部21の内部での多重反射を経て検出される可能性が高くなっている。   Further, even when the scattered light SL incident on the recess 21 is repeatedly reflected inside, it is suppressed that the reflected light SLa, SLb,... Escapes to the outside of the recess 21. The possibility of being detected through multiple reflections is high.

このマイクロ構造20により、例えば図10に示す実施例のように、受光素子12の受光面12Aに対する散乱光SLの入射角が増大することに伴い、この散乱光SLに対する感度は増大傾向に変化していることが認められる。   With this microstructure 20, as shown in the embodiment shown in FIG. 10, for example, as the incident angle of the scattered light SL with respect to the light receiving surface 12A of the light receiving element 12 increases, the sensitivity to the scattered light SL changes in an increasing trend. It is recognized that

一方、例えば図9(B)に示す第1比較例のように、受光素子12の受光面12Aが平坦である場合(つまり、マイクロ構造を有していない場合)には、例えば図10に示す第1比較例のように、受光素子12の受光面12Aに対する散乱光SLの入射角が所定角度(例えば、70°など)以上に増大することに伴い、散乱光SLは受光面12Aで反射され易くなり、散乱光SLに対する感度は減少傾向に変化していることが認められる。   On the other hand, when the light receiving surface 12A of the light receiving element 12 is flat (that is, when it does not have a micro structure) as in the first comparative example shown in FIG. 9B, for example, as shown in FIG. As in the first comparative example, as the incident angle of the scattered light SL with respect to the light receiving surface 12A of the light receiving element 12 increases to a predetermined angle (for example, 70 °) or more, the scattered light SL is reflected by the light receiving surface 12A. It becomes easier to see that the sensitivity to the scattered light SL changes in a decreasing trend.

また、例えば図9(C)に示す第2比較例のように、受光素子12の受光面12A上の開口端21aから内部に向かうことに伴い、内部空間の横断面積が減少傾向に変化するテーパ状の凹部、あるいは内部空間の横断面積が一定である凹部などから成るマイクロ構造を有するだけでは、実施例に比べて、凹部21に入射した散乱光SLが内部での反射によって凹部21の外部に抜け出し易く、受光素子12の受光面12Aに対する入射角が大きな散乱光SLに対する感度を向上させることは困難であることが認められる。   Further, as in the second comparative example shown in FIG. 9C, for example, the taper in which the cross-sectional area of the internal space changes in a decreasing trend as it goes from the opening end 21a on the light receiving surface 12A of the light receiving element 12 to the inside. Compared to the embodiment, the scattered light SL incident on the concave portion 21 is reflected outside to the outside of the concave portion 21 only by having a micro structure composed of a concave portion or a concave portion having a constant cross-sectional area of the internal space. It can be seen that it is difficult to improve the sensitivity to the scattered light SL that is easily pulled out and has a large incident angle with respect to the light receiving surface 12A of the light receiving element 12.

以下に、マイクロ構造20の製造方法およびマイクロ構造20を有するマイクロ構造体(例えば、フォトダイオードである受光素子12)の製造方法について説明する。   Below, the manufacturing method of the microstructure 20 and the manufacturing method of the microstructure (for example, the light receiving element 12 which is a photodiode) which has the microstructure 20 are demonstrated.

先ず、例えば図11(A)に示すように、例えばp型などのシリコン基板50を用意する。
次に、所定温度(例えば、1100℃など)による所定時間(例えば、60分など)の熱酸化によって、例えば図11(B)に示すように、所定厚さ(例えば、100nmなど)の酸化膜51を形成する。
First, as shown in FIG. 11A, for example, a p-type silicon substrate 50 is prepared.
Next, an oxide film having a predetermined thickness (for example, 100 nm) is formed by thermal oxidation at a predetermined temperature (for example, 1100 ° C.) for a predetermined time (for example, 60 minutes), for example, as shown in FIG. 51 is formed.

次に、酸化膜51の表面上に液状のフォトレジストをスピンコーティングなどにより塗布して、例えば図11(C)に示すように、レジスト層52を形成する。
次に、露光マスクを用いてレジスト層52を露光し、現像液によって現像することにより、例えば図11(D)に示すように、所定パターンの開口52aを有するレジストマスク52bを形成する。
Next, a liquid photoresist is applied on the surface of the oxide film 51 by spin coating or the like to form a resist layer 52 as shown in FIG. 11C, for example.
Next, the resist layer 52 is exposed using an exposure mask and developed with a developer, thereby forming a resist mask 52b having a predetermined pattern of openings 52a as shown in FIG. 11D, for example.

次に、レジストマスク52bの所定パターンに応じて酸化膜51をウェットエッチングし、例えば図11(E)に示すように、所定パターンの開口51aを有する酸化膜マスク51bを形成する。
次に、例えば図11(F)に示すように、レジストマスク52bを除去する。
Next, the oxide film 51 is wet-etched according to a predetermined pattern of the resist mask 52b to form an oxide film mask 51b having an opening 51a of a predetermined pattern, for example, as shown in FIG.
Next, for example, as illustrated in FIG. 11F, the resist mask 52b is removed.

次に、酸化膜マスク51bの所定パターンに応じて、開口51aにより露出するシリコン基板50の領域を被エッチング部として、DRIE(deep reactive ion etching)により、シリコン基板50に対して異方性エッチング処理を行なう第1エッチング工程を実行し、例えば図11(G)に示すように、シリコン基板50の表面上に凹部50aを形成する。   Next, an anisotropic etching process is performed on the silicon substrate 50 by DRIE (deep reactive ion etching) using the region of the silicon substrate 50 exposed through the opening 51a as an etched portion according to a predetermined pattern of the oxide film mask 51b. A first etching step is performed to form a recess 50a on the surface of the silicon substrate 50, for example, as shown in FIG.

この第1エッチング工程は、被エッチング部に等方性プラズマエッチングを行なうステップと、被エッチング部の少なくとも側面に保護膜を形成するステップとを、所定周期(例えば、18秒など)で交互に所定回数(例えば、2回など)実行する。   In the first etching process, a step of performing isotropic plasma etching on the portion to be etched and a step of forming a protective film on at least the side surface of the portion to be etched are alternately specified at predetermined intervals (for example, 18 seconds). Execute the number of times (for example, twice).

この第1エッチング工程は、いわゆるボッシュプロセスであって、主に6フッ化硫黄ガスを用いて等方性プラズマエッチングを行なうステップと、フッ素樹脂系のガス(C48ガスなど)を用いて被エッチング部の少なくとも側面に保護膜を形成するステップとを交互に実行する。
これにより、被エッチング部の深さ方向(シリコン基板50の厚さ方向)にエッチングを行なう際に、被エッチング部の側面を保護して横方向のエッチングを抑制している。
This first etching process is a so-called Bosch process, and is a step of performing isotropic plasma etching mainly using sulfur hexafluoride gas, and using a fluororesin-based gas (C 4 F 8 gas or the like). The step of forming a protective film on at least the side surface of the etched portion is alternately performed.
Thereby, when etching is performed in the depth direction of the etched portion (thickness direction of the silicon substrate 50), the side surface of the etched portion is protected and lateral etching is suppressed.

したがって、この第1エッチング工程により形成される凹部50aは、シリコン基板50の表面上の開口端50bから深さ方向(つまり、シリコン基板50の厚さ方向)の内部に向かうことに伴い、側面においてスキャロップと呼ばれる凹凸形状を有している。   Therefore, the concave portion 50a formed by the first etching step is formed on the side surface as it goes from the opening end 50b on the surface of the silicon substrate 50 to the inside in the depth direction (that is, the thickness direction of the silicon substrate 50). It has an uneven shape called a scallop.

次に、第1エッチング工程の実行終了後に、被エッチング部に所定期間(例えば、23秒など)に亘って、主に6フッ化硫黄ガスを用いて等方性プラズマエッチングを行なう第2エッチング工程を実行する。
これにより、例えば図11(H)に示すように、シリコン基板50の表面上の開口端50bから深さ方向(つまり、シリコン基板50の厚さ方向)の内部に向かうことに伴い、弧状に膨出する凹部50cを形成する。
Next, after the execution of the first etching step, a second etching step in which isotropic plasma etching is mainly performed using a sulfur hexafluoride gas over a predetermined period (for example, 23 seconds) on the portion to be etched. Execute.
As a result, for example, as shown in FIG. 11 (H), the arc expands as it goes from the opening end 50b on the surface of the silicon substrate 50 to the inside in the depth direction (that is, the thickness direction of the silicon substrate 50). A recessed portion 50c is formed.

この凹部50cは、シリコン基板50の表面上の開口端50bから適宜の深さまで内部に向かうことに伴い、内部空間の横断面積が増大傾向に変化する曲面状の内壁面61Aを有する弧状膨大部61と、さらに、適宜の深さから凹部50cの底部に向かうことに伴い、内部空間の横断面積が減少傾向に変化する曲面状の内壁面62Aを有する弧状縮小部62とから成る形状を有している。
そして、本実施例では、開口端50bが内壁面において最も突出する構造となる。
The concave portion 50c has a curved inner wall portion 61A having a curved inner wall surface 61A in which the cross-sectional area of the inner space changes in an increasing tendency as it goes from the opening end 50b on the surface of the silicon substrate 50 to an appropriate depth. And an arcuate reduced portion 62 having a curved inner wall surface 62A in which the cross-sectional area of the internal space changes in a decreasing tendency from the appropriate depth toward the bottom of the recess 50c. Yes.
In this embodiment, the opening end 50b protrudes most on the inner wall surface.

次に、例えば図11(I)に示すように、酸化膜マスク51bをエッチング除去する。   Next, as shown in FIG. 11I, for example, the oxide film mask 51b is removed by etching.

次に、複数の凹部50cが形成されたシリコン基板50の表面に対して、所定温度(例えば、935℃など)による所定時間(例えば、40秒など)の熱拡散処理によってリンを熱拡散させて、例えば図11(J)に示すように、不純物層71を形成する。   Next, phosphorus is thermally diffused by thermal diffusion treatment for a predetermined time (for example, 40 seconds) at a predetermined temperature (for example, 935 ° C.) on the surface of the silicon substrate 50 in which the plurality of recesses 50c are formed. For example, as shown in FIG. 11J, an impurity layer 71 is formed.

次に、例えば図11(K)に示すように、複数の凹部50cが形成されたシリコン基板50の表面に対する裏面にアルミニウム(Al)膜72を成膜し、所定のパターニングを行ない、所定温度(例えば、450℃など)による所定時間(例えば、10分など)のアニールを行ない、アルミニウム(Al)膜72を結合させる。   Next, as shown in FIG. 11K, for example, an aluminum (Al) film 72 is formed on the back surface of the silicon substrate 50 in which the plurality of recesses 50c are formed, and predetermined patterning is performed, and a predetermined temperature ( For example, annealing is performed for a predetermined time (for example, 10 minutes) at 450 ° C. or the like, and the aluminum (Al) film 72 is bonded.

次に、例えば図11(L)に示すように、複数の凹部50cが形成されたシリコン基板50の表面の所定位置(例えば、端部など)にアルミニウム(Al)膜73を成膜し、所定のパターニングを行なうと共に、アルミニウム(Al)膜73を結合させる。
このとき、必ずしもアニールを行なう必要はない。n型シリコンを用いた場合、アニールを行なわなくてもオーミックコンタクトを実現できる。
Next, as shown in FIG. 11L, for example, an aluminum (Al) film 73 is formed at a predetermined position (for example, an end portion) of the surface of the silicon substrate 50 on which the plurality of concave portions 50c are formed. And the aluminum (Al) film 73 is bonded.
At this time, it is not always necessary to perform annealing. When n-type silicon is used, ohmic contact can be realized without annealing.

上述したように、本実施の形態による粒子検出器10によれば、受光素子12の受光面12Aは、光源11から発せられる光Lの光路に沿って、光路に平行であることから、各種の散乱光SLのうち、光源11から発せられる光Lの光路の前方方向に指向性が強い散乱光SL、例えばMie散乱の散乱光SLに対する感度を向上させることができる。   As described above, according to the particle detector 10 according to the present embodiment, the light receiving surface 12A of the light receiving element 12 is parallel to the optical path along the optical path of the light L emitted from the light source 11, so Of the scattered light SL, the sensitivity to the scattered light SL having strong directivity in the forward direction of the optical path of the light L emitted from the light source 11, for example, the scattered light SL of Mie scattering can be improved.

しかも、光Lの波長および粒子Pの粒径などに対する所定の条件において、Mie散乱の散乱光は、他の散乱光に比べて散乱強度が高いことから、粒子検出器10が大型化することを防止しつつ、散乱光SLに対する感度を向上させ、十分な散乱光SLを得て粒子Pの検出精度を向上させることができる。   In addition, Mie-scattered scattered light has a higher scattering intensity than other scattered light under predetermined conditions for the wavelength of the light L and the particle size of the particles P, so that the size of the particle detector 10 is increased. While preventing, the sensitivity with respect to scattered light SL can be improved, sufficient scattered light SL can be obtained, and the detection accuracy of particle | grains P can be improved.

さらに、少なくとも1対の受光素子12,12の受光面12A,12Aによって光路を挟み込むことにより、より一層、散乱光SLに対する感度を向上させ、検出精度を向上させることができる。   Further, by sandwiching the optical path between the light receiving surfaces 12A and 12A of at least one pair of the light receiving elements 12, 12, the sensitivity to the scattered light SL can be further improved, and the detection accuracy can be improved.

さらに、光源11から発せられる光Lを往復反射する少なくとも1対の反射鏡16,16を備えることにより、散乱光SLを増加させることができ、より一層、検出精度を向上させることができる。   Furthermore, by providing at least one pair of reflecting mirrors 16 and 16 that reciprocally reflect the light L emitted from the light source 11, the scattered light SL can be increased, and detection accuracy can be further improved.

さらに、第2受光素子17を備えることによって、より一層、散乱光SLに対する感度を向上させ、検出精度を向上させることができる。   Furthermore, by providing the second light receiving element 17, the sensitivity to the scattered light SL can be further improved, and the detection accuracy can be improved.

さらに、受光素子12の受光面12Aに対する入射角が大きな散乱光SLを、受光素子12の内部に向かい弧状に膨出するマイクロ構造20での多重反射により効率よく検出することができる。   Further, the scattered light SL having a large incident angle with respect to the light receiving surface 12 </ b> A of the light receiving element 12 can be efficiently detected by multiple reflection at the micro structure 20 that bulges toward the inside of the light receiving element 12.

すなわち、このマイクロ構造20は、受光素子12の表面(つまり、受光面12A)上に形成された複数の凹部21を備え、各凹部21は、受光素子12の表面(つまり、受光面12A)上の開口端21aから適宜の深さまで内部に向かうことに伴い、内部空間の横断面積が増大傾向に変化する曲面状の受光内壁面31Aを有する弧状膨大部31と、さらに、適宜の深さから凹部21の底部に向かうことに伴い、内部空間の横断面積が減少傾向に変化する曲面状の受光内壁面32Aを有する弧状縮小部32とから成る形状を有している。
さらに、本実施例では、開口端21aが内壁面において最も突出する構造となる。
That is, the microstructure 20 includes a plurality of recesses 21 formed on the surface of the light receiving element 12 (that is, the light receiving surface 12A), and each recess 21 is provided on the surface of the light receiving element 12 (that is, the light receiving surface 12A). An arc-shaped enormous portion 31 having a curved light-receiving inner wall surface 31A in which the cross-sectional area of the internal space changes in an increasing tendency as it goes from the opening end 21a to an appropriate depth, and a recess from the appropriate depth. 21 has an arcuate reduced portion 32 having a curved light-receiving inner wall surface 32A in which the cross-sectional area of the internal space changes in a decreasing tendency as it goes toward the bottom of 21.
Furthermore, in this embodiment, the opening end 21a is the most protruding structure on the inner wall surface.

このため、受光素子12の受光面12Aに対する入射角が大きな散乱光SLであっても、各凹部21の弧状膨大部31に対しては入射角が小さくなって反射が抑制される。
また、この散乱光SLが弧状膨大部31で反射されたとしても、この反射による反射光は凹部21の内部に向かい、凹部の内壁面(例えば、弧状縮小部32の受光内壁面32Aなど)に対して入射角が小さくなるように反射される可能性が高くなり、さらなる反射が抑制される。
For this reason, even if the scattered light SL has a large incident angle with respect to the light receiving surface 12 </ b> A of the light receiving element 12, the incident angle is small with respect to the arc-shaped enormous portion 31 of each recess 21, and reflection is suppressed.
Further, even if the scattered light SL is reflected by the arc-shaped enormous portion 31, the reflected light due to this reflection goes to the inside of the recess 21 and reaches the inner wall surface of the recess (for example, the light receiving inner wall surface 32A of the arc-shaped reduction portion 32). On the other hand, there is a high possibility that the light is reflected so as to reduce the incident angle, and further reflection is suppressed.

また、凹部21に入射した散乱光SLが内部で反射を繰り返す場合であっても、反射光が凹部21の外部に抜け出てしまうことは抑制されており、凹部21の内部での多重反射を経て検出される可能性が高くなっている。
これらにより、より一層、散乱光SLに対する感度を向上させ、検出精度を向上させることができる。
Further, even when the scattered light SL incident on the recess 21 is repeatedly reflected inside, it is suppressed that the reflected light escapes to the outside of the recess 21, and passes through multiple reflections inside the recess 21. The probability of being detected is high.
As a result, the sensitivity to the scattered light SL can be further improved, and the detection accuracy can be improved.

なお、上述した実施の形態において、粒子検出器10は1つの受光素子12を備えるだけであってもよい。
なお、上述した実施の形態において、第2受光素子17は省略されてもよい。
なお、上述した実施の形態において、反射鏡16は省略されてもよい。
なお、上述した実施の形態において、ポンプ14は省略されてもよい。
In the above-described embodiment, the particle detector 10 may include only one light receiving element 12.
In the above-described embodiment, the second light receiving element 17 may be omitted.
In the embodiment described above, the reflecting mirror 16 may be omitted.
In the embodiment described above, the pump 14 may be omitted.

なお、上述した実施の形態においては、粒子検出器10をクリーンルーム内に設置し、試料流体とされる空気中に含まれる、例えば微粒子状の塵埃や、細菌やウイルスなどの浮遊微生物などの粒子を検出するとしたが、これに限定されず、例えば、空気以外の特定のガスなどに含まれる粒子を検出してもよい。例えば、成膜装置などに流入する特定のガスに含まれる不純物である粒子を検出してもよい。   In the above-described embodiment, the particle detector 10 is installed in a clean room, and particles such as particulate dust and airborne microorganisms such as bacteria and viruses contained in the air that is the sample fluid are included. However, the present invention is not limited to this. For example, particles contained in a specific gas other than air may be detected. For example, particles that are impurities contained in a specific gas flowing into a film forming apparatus or the like may be detected.

10 粒子検出器
11 光源
12 受光素子
12A 受光面
13 流路
13a 入口部
13b 出口部
16 反射鏡
17 第2受光素子
DESCRIPTION OF SYMBOLS 10 Particle detector 11 Light source 12 Light receiving element 12A Light receiving surface 13 Flow path 13a Inlet part 13b Outlet part 16 Reflecting mirror 17 Second light receiving element

Claims (5)

試料流体に向けて光を照射する光源と、該光源から発せられた前記光が前記試料流体中の粒子によって散乱されることで生じた散乱光を検出する受光素子とを備え、
前記受光素子の受光面は、前記光源から発せられる前記光の光路に沿って、前記光路に平行であることを特徴とする粒子検出器。
A light source that irradiates light toward the sample fluid, and a light receiving element that detects scattered light generated by the light emitted from the light source being scattered by particles in the sample fluid,
The light receiving surface of the said light receiving element is parallel to the said optical path along the optical path of the said light emitted from the said light source, The particle detector characterized by the above-mentioned.
少なくとも1対の前記受光素子を備え、
前記少なくとも1対の前記受光素子の前記受光面は、前記光路に直交する方向の両側から前記光路を挟み込むことを特徴とする請求項1に記載の粒子検出器。
Comprising at least one pair of the light receiving elements;
2. The particle detector according to claim 1, wherein the light receiving surfaces of the at least one pair of the light receiving elements sandwich the optical path from both sides in a direction orthogonal to the optical path.
前記試料流体を通過させる流路を備え、
前記受光素子は、前記流路の入口部から出口部までの間に設けられ、
前記入口部から前記出口部までの間で前記光を往復反射する少なくとも1対の反射鏡を備えることを特徴とする請求項1または請求項2に記載の粒子検出器。
A flow path for passing the sample fluid;
The light receiving element is provided between an inlet portion and an outlet portion of the flow path,
The particle detector according to claim 1, further comprising at least one pair of reflecting mirrors that reciprocally reflect the light between the entrance and the exit.
前記散乱光を検出する第2受光素子を備え、
前記第2受光素子の受光面は、前記光路を含む平面に対して直交することを特徴とする請求項1から請求項3の何れか1つに記載の粒子検出器。
A second light receiving element for detecting the scattered light;
The particle detector according to any one of claims 1 to 3, wherein a light receiving surface of the second light receiving element is orthogonal to a plane including the optical path.
前記受光素子の受光面は、前記受光素子の内部に向かい弧状に膨出するマイクロ構造を有することを特徴とする請求項1から請求項4の何れか1つに記載の粒子検出器。 The particle detector according to any one of claims 1 to 4, wherein a light receiving surface of the light receiving element has a microstructure that bulges in an arc shape toward the inside of the light receiving element.
JP2011054223A 2011-03-11 2011-03-11 Particle detector Pending JP2012189493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011054223A JP2012189493A (en) 2011-03-11 2011-03-11 Particle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011054223A JP2012189493A (en) 2011-03-11 2011-03-11 Particle detector

Publications (1)

Publication Number Publication Date
JP2012189493A true JP2012189493A (en) 2012-10-04

Family

ID=47082825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011054223A Pending JP2012189493A (en) 2011-03-11 2011-03-11 Particle detector

Country Status (1)

Country Link
JP (1) JP2012189493A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215843A (en) * 1985-12-10 1987-09-22 ハイ イ−ルド テクノロジ− Particle detector for wafer processor
JPH01301145A (en) * 1988-02-04 1989-12-05 High Yield Technol Inc Real time particle drop monitor
JPH02138852A (en) * 1988-11-18 1990-05-28 Hitachi Ltd Light sheet forming means and apparatus for measuring fine particle in space
JPH09203703A (en) * 1996-01-25 1997-08-05 Agency Of Ind Science & Technol Measuring method and device for particle shape, etc.
JP2003329570A (en) * 2002-05-10 2003-11-19 Horiba Ltd Apparatus for measuring distribution of particle size
JP2008107118A (en) * 2006-10-23 2008-05-08 Hattori Kogyo Co Ltd Suspended matter measuring device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215843A (en) * 1985-12-10 1987-09-22 ハイ イ−ルド テクノロジ− Particle detector for wafer processor
JPH01301145A (en) * 1988-02-04 1989-12-05 High Yield Technol Inc Real time particle drop monitor
JPH02138852A (en) * 1988-11-18 1990-05-28 Hitachi Ltd Light sheet forming means and apparatus for measuring fine particle in space
JPH09203703A (en) * 1996-01-25 1997-08-05 Agency Of Ind Science & Technol Measuring method and device for particle shape, etc.
JP2003329570A (en) * 2002-05-10 2003-11-19 Horiba Ltd Apparatus for measuring distribution of particle size
JP2008107118A (en) * 2006-10-23 2008-05-08 Hattori Kogyo Co Ltd Suspended matter measuring device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
磯崎瑛宏, 桑名健太, SVEN HEISIG, 伊藤寿浩: "パーティクルセンサの小型化に関する研究", 精密工学会大会学術講演会講演論文集, vol. 2011, JPN6014037213, 1 March 2011 (2011-03-01), JP, pages 69, ISSN: 0002889465 *

Similar Documents

Publication Publication Date Title
US10031213B2 (en) Laser scanner
JP5939016B2 (en) Optical device and detection apparatus
US9417186B2 (en) Opto-electronic sensor
EP2749866B1 (en) Molecular analysis device
JP7446111B2 (en) particle optical detector
JP6294312B2 (en) Laser power sensor
US20150098085A1 (en) Sensor chip, sensor cartridge, and detection apparatus
CN111665211A (en) Gas sensor
US11313797B2 (en) Optical waveguide and optical concentration measuring apparatus
KR20220156556A (en) Docking station with waveguide-enhanced analyte detection strip
JP2009210312A (en) Fabry-perot interferometer and method of manufacturing the same
CN114222911A (en) Optical nanostructure suppressor for integrated devices and methods thereof
TW201823675A (en) Light transmitting and receiving device and light detection and ranging system
US20190064061A1 (en) Gas sensor using vcsel
JP2014081330A (en) Fine particle detection device and fine particle detection method
JP2012189493A (en) Particle detector
JP2012187674A (en) Microstructure manufacturing method, microstructure, light receiving element and particle detector
KR102492176B1 (en) optical particle detector
JP2003344259A (en) Particle detector
JP2001021480A (en) Flow cell and particle measuring apparatus using the flow cell
JP6640403B1 (en) Optical waveguide and optical concentration measuring device
JP2017040608A (en) Sensor chip and manufacturing method therefor, and automatic analyzer
JP2015078904A (en) Optical element, analyzer, and electronic equipment
JP2019100770A (en) Optical waveguide and optical concentration measuring apparatus
JP2005147891A (en) Surface plasmon resonance sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150324