JPH0612809B2 - Method for manufacturing optoelectronic integrated circuit - Google Patents

Method for manufacturing optoelectronic integrated circuit

Info

Publication number
JPH0612809B2
JPH0612809B2 JP27404987A JP27404987A JPH0612809B2 JP H0612809 B2 JPH0612809 B2 JP H0612809B2 JP 27404987 A JP27404987 A JP 27404987A JP 27404987 A JP27404987 A JP 27404987A JP H0612809 B2 JPH0612809 B2 JP H0612809B2
Authority
JP
Japan
Prior art keywords
integrated circuit
transistor
optoelectronic integrated
substrate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27404987A
Other languages
Japanese (ja)
Other versions
JPH01115156A (en
Inventor
知二 寺門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP27404987A priority Critical patent/JPH0612809B2/en
Publication of JPH01115156A publication Critical patent/JPH01115156A/en
Publication of JPH0612809B2 publication Critical patent/JPH0612809B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光電子集積回路の製造方法に関する。The present invention relates to a method for manufacturing an optoelectronic integrated circuit.

(従来の技術とその問題点) 光通信技術の進歩に伴い、その適用分野は基幹伝送系か
ら加入者系,LAN,データ・リンク等のシステムへ急
速に拡がりつつある。このような光システムの高度化に
対応する為には、光デバイスのより高性能化,高機能化
が不可欠である。
(Conventional Technology and Its Problems) With the progress of optical communication technology, its application field is rapidly expanding from the backbone transmission system to the subscriber system, LAN, data link and other systems. In order to respond to such sophistication of optical systems, higher performance and higher functionality of optical devices are indispensable.

光電子集積回路は、これらの光システムの核となるキー
・デバイスの一つである。そこで、低価格,小型,高信
頼,無調整化といった集積による基本的利点のほか、高
速化,高感度化といった光デバイスの性能改善、さらに
は光配線,光交換といった将来の光システムを支える高
機能、新機能デバイスの実現をねらいとして光電子集積
回路の開発が精力的に行なわれている。
Optoelectronic integrated circuits are one of the key devices at the core of these optical systems. Therefore, in addition to the basic advantages of integration such as low price, small size, high reliability, and no adjustment, the performance improvement of optical devices such as high speed and high sensitivity, as well as the high performance to support future optical systems such as optical wiring and optical switching. Development of optoelectronic integrated circuits is being energetically carried out with the aim of realizing functional and new functional devices.

光電子集積回路を高性能化するには、用いられる電子素
子において、1μm以下のゲート電極を再現性良く形成
できる微細電極形成プロセス技術が必要である。光電子
集積回路を製作する場合、光素子と電子素子の層構造の
違いから、ウエハ内で数μmの段差が生じる。このため
通常のホトリソグラフィー技術を用いて光電子集積回路
を製作すると、マスクパターンの広がりによって1μm
以下の微細パターンの形成が難しい。このパターンの広
がりを解決するために段差基板を用い、段差下部に光素
子を、段差上部に電子素子を形成して、光素子と、電子
素子の高さを一致させる方法が知られている。このよう
な段差構造の光電子集積回路としては、例えば寺門他3
名の発明になる特願昭62-072053号の発明がある。
In order to improve the performance of an optoelectronic integrated circuit, a fine electrode forming process technology capable of forming a gate electrode of 1 μm or less with high reproducibility is required in an electronic element used. When manufacturing an optoelectronic integrated circuit, a step difference of several μm occurs in the wafer due to the difference in the layer structure between the optical element and the electronic element. For this reason, when an optoelectronic integrated circuit is manufactured by using a normal photolithography technique, the mask pattern spreads to 1 μm.
It is difficult to form the following fine patterns. In order to solve the spread of this pattern, a method is known in which a stepped substrate is used, an optical element is formed below the step and an electronic element is formed above the step, and the heights of the optical element and the electronic element are matched. Examples of such an optoelectronic integrated circuit having a step structure include Teramon et al.
There is an invention of Japanese Patent Application No. 62-072053, which is a name invention.

しかしながら、この従来例においては、光素子と電子素
子の高さは一致しているものの、光素子がメサ構造であ
り、ウエハ内に数μm程度の段差があるから、段差部に
おいてレジストの切れによるパターン不良が生じやす
い。このパターン不良を防ぐために、電極形成プロセス
において、2μm程度の厚みを有する厚膜レジストを用
いていた。しかしながら厚膜レジストを用いると、ゲー
ト長が1μm以下のゲート電極を再現性よく形成するこ
とが困難であり、そのためトランジスタの高性能化が難
しく、さらに特製のバラツキも大きい。結果として、光
電子集積回路として十分な素子特性が得られないばかり
でなく、特性の均一性に欠くという欠点を有していた。
However, in this conventional example, although the heights of the optical element and the electronic element are the same, since the optical element has a mesa structure and there is a step difference of about several μm in the wafer, there is a break in the resist at the step difference. Pattern defects are likely to occur. In order to prevent this pattern failure, a thick film resist having a thickness of about 2 μm is used in the electrode forming process. However, when a thick film resist is used, it is difficult to form a gate electrode having a gate length of 1 μm or less with good reproducibility, so that it is difficult to improve the performance of the transistor and there is a large variation in the characteristics. As a result, not only sufficient device characteristics cannot be obtained as an optoelectronic integrated circuit, but also the characteristics are not uniform.

本発明の目的は、これらの欠点を除去し、高性能な光電
子集積回路が再現性よく得られる製造方法を提供するこ
とにある。
An object of the present invention is to eliminate these drawbacks and to provide a manufacturing method capable of obtaining a high-performance optoelectronic integrated circuit with good reproducibility.

(問題点を解決するための手段) 前述の問題点を解決し、上記目的を達成するために、本
発明が提供する光電子集積回路の製造方法は、段差を有
する基板の段差下部に形勢された光デバイスと段差上部
に形成されたトランジスタとがモノリシックに集積され
ている光電子集積回路の製造方法において、基板の一部
にエッチングを施して前記段差を形成することにより前
記段差下部と前記段差上部とを前記基板に設け、該基板
の段差下部に光デバイズ用半導体層を形成し、該基板の
段差上部にトランジスタ用半導体層を形成することでウ
エハの平坦化を行う工程、及び前記光デバイスと前記ト
ランジスタとの間の段差領域を覆うように1μm以上の
厚さの厚膜レジストを形成後に、1μm以下の厚さの薄
膜レジストを用いフォトリソグラフィーの手法により1
μm以下のゲート長を有するトランジスタのゲート電極
を形成する工程を含み、前記エッチングにより形成され
る前記段差の深さは、前記光デバイスの半導体層の厚さ
と前記トランジスタの半導体層の厚さとの差の±1μm
以内の範囲にあることを特徴とする。
(Means for Solving Problems) In order to solve the above problems and achieve the above object, the method for manufacturing an optoelectronic integrated circuit provided by the present invention is formed below a step of a substrate having a step. In a method for manufacturing an optoelectronic integrated circuit in which an optical device and a transistor formed above a step are monolithically integrated, a step is formed by etching a part of a substrate to form the step lower portion and the step upper portion. Is provided on the substrate, a semiconductor layer for optical devices is formed below the step of the substrate, and a semiconductor layer for transistors is formed on the step of the substrate to planarize the wafer, and the optical device and the optical device. After forming a thick film resist with a thickness of 1 μm or more so as to cover the step area between the transistor and the transistor, photolithography using a thin film resist with a thickness of 1 μm or less By the technique 1
a step of forming a gate electrode of a transistor having a gate length of μm or less, wherein a depth of the step formed by the etching is a difference between a thickness of a semiconductor layer of the optical device and a thickness of a semiconductor layer of the transistor. ± 1 μm
It is characterized by being within the range.

(作用) 本発明では、段差を有する基板の段差部を厚膜レジスト
で覆った後、薄膜レジストを用いてトランジスタの電極
パターンを形成することにより、1μm以下の微細電極
を再現性よく製作することが可能となる。したがって、
本発明の方法の採用により、ウエハ内で均一性を保ちな
がら、ゲート長を1μm以下にすることが可能となり、
トランジスタの高性能化、高歩留り化がはかれ、結果と
して高性能な光電子集積回路を再現性良く製作できる。
(Operation) According to the present invention, a stepped portion of a substrate having a step is covered with a thick film resist, and then a thin film resist is used to form an electrode pattern of a transistor, so that a fine electrode of 1 μm or less can be reproducibly manufactured. Is possible. Therefore,
By adopting the method of the present invention, it becomes possible to reduce the gate length to 1 μm or less while maintaining uniformity within the wafer.
High performance and high yield of transistors are achieved, and as a result, high performance optoelectronic integrated circuits can be manufactured with good reproducibility.

(実施例) 次に図面を参照して本発明の実施例の製造方法を詳細に
説明する。
(Example) Next, a manufacturing method of an example of the present invention will be described in detail with reference to the drawings.

第1図は実施例の方法で製作された光電子集積回路の断
面図であり、第2図(a)〜(c)は、本実施例の光電
子集積回路の製作工程の中で、特に微細パターン形成が
必要になるトランジスタのゲート電極の形成方法を説明
する工程図である。即ち、本発明の製造方法は、従来例
である前出の特願昭62−072053号に記載の光電
子集積回路の製造方法であって、特に1μm以下の微細
なパターン形成が可能になる新しいフォトリソグラフィ
ーの手法を提供するものである。以下にその製造方法を
説明する。
FIG. 1 is a sectional view of an optoelectronic integrated circuit manufactured by the method of the embodiment, and FIGS. 2A to 2C are particularly fine patterns in the manufacturing process of the optoelectronic integrated circuit of this embodiment. FIG. 6 is a process diagram illustrating a method of forming a gate electrode of a transistor that needs to be formed. That is, the manufacturing method of the present invention is a manufacturing method of the optoelectronic integrated circuit described in the above-mentioned Japanese Patent Application No. 62-072053, which is a conventional example, and in particular, a new photo that can form a fine pattern of 1 μm or less. It provides a method of lithography. The manufacturing method will be described below.

先ず、半絶縁性基板1の一部にSiOからなるエッチ
ングマスクを形成しHClとH3PO4からなる混合液によ
り基板をエッチングして2.8μmの段差を形成する。
エッチングマスクを除去後、半絶縁性InP基板1上
に、液相,又は気相成長方によりn型InPよりなるコン
タクト層4(厚さ1.5μm,キャリア濃度1×1018
cm-3)、n型In0.47Ga0.53Asよりなる光吸収層5(厚さ
1.5μm,キャリア濃度2×1015cm-3)、n型InP
よりなるウインドウ層6(厚さ1μm,キャリア濃度2
×1015cm-3)を順次成長する。次にPINホトダイオード
部2を残し、ウィンドウ層6,光吸収層5,コンタクト
層4をメサエッチングし、半絶縁性InP基板1を露出さ
せる。光吸収層5のエッチングにはH2SO4とH2O2とH2O2
の混合液を、ウィンドウ層6とコンタクト層4のエッチ
ングにはHClとH3PO4の混合液を用いる。さらにPINホト
ダイオード部2にSiO2よりなるマスクを施し、気相成長
法又は分子線成長法を用いてGaAsよりなる歪バッファー
層7(厚さ1.0μm,ノンドープ)、n型GaAsよりな
る能動層8(厚さ0.2μm,キャリア濃度1×1017cm
-3)を形成する。次にPINホトダイオード部2上の能動
層8,歪バッファー層7を除去した後、SiO2よりなるマ
スク15を用い選択亜鉛拡散を行ない、p形反転領域9を
形成し、更にAuGeNiよりなるソース電極12,ドレイン電
極13,ホトダイオードのn電極11,AuZnよりなるホトダ
イオードのp電極10,Alよりなるゲート電極14,Ti/Au
よりなる配線16を形成し、本実施例の光電子集積回路が
完成する(第1図)。特に、1μm以下の微細電極構造
を必要とするゲート電極14は第2図(a)〜(c)に示
す様な2層レジスト構成によって作られる。すなわち、
フォトリソグラフィーの手法により、厚さ2μmの厚膜
レジスト17を段差部に形成した後、約0.5μmの薄膜
レジスト18を用いてゲート電極のパターンを形成する
(第2図(b))。次にAlを蒸着してリフトオフ法によ
りゲート電極14を形成する(第2図(c))。
First, an etching mask made of SiO 2 is formed on a part of the semi-insulating substrate 1, and the substrate is etched with a mixed solution of HCl and H 3 PO 4 to form a 2.8 μm step.
After removing the etching mask, the contact layer 4 made of n-type InP (thickness: 1.5 μm, carrier concentration: 1 × 10 18 ) was formed on the semi-insulating InP substrate 1 by liquid phase or vapor phase growth.
cm −3 ), n-type In 0.47 Ga 0.53 As light absorption layer 5 (thickness 1.5 μm, carrier concentration 2 × 10 15 cm −3 ), n-type InP
Window layer 6 (thickness 1 μm, carrier concentration 2
× 10 15 cm -3 ). Next, the PIN photodiode portion 2 is left, and the window layer 6, the light absorption layer 5, and the contact layer 4 are mesa-etched to expose the semi-insulating InP substrate 1. For etching the light absorption layer 5, H 2 SO 4 , H 2 O 2 and H 2 O 2 are used.
Is used as a mixed solution of HCl and H 3 PO 4 for etching the window layer 6 and the contact layer 4. Further, a mask made of SiO 2 is applied to the PIN photodiode part 2, and a strain buffer layer 7 made of GaAs (thickness 1.0 μm, non-doped) by using a vapor phase growth method or a molecular beam growth method, an active layer made of n-type GaAs. 8 (thickness 0.2 μm, carrier concentration 1 × 10 17 cm
-3 ) form. Next, after removing the active layer 8 and the strain buffer layer 7 on the PIN photodiode part 2, selective zinc diffusion is performed using a mask 15 made of SiO 2 to form a p-type inversion region 9, and a source electrode made of AuGeNi. 12, drain electrode 13, photodiode n-electrode 11, AuZn photodiode p-electrode 10, Al gate electrode 14, Ti / Au
The wiring 16 is formed to complete the optoelectronic integrated circuit of this embodiment (FIG. 1). Particularly, the gate electrode 14 which requires a fine electrode structure of 1 μm or less is formed by a two-layer resist structure as shown in FIGS. 2 (a) to (c). That is,
After forming a thick film resist 17 having a thickness of 2 μm on the step portion by a photolithography technique, a pattern of the gate electrode is formed using a thin film resist 18 having a thickness of about 0.5 μm (FIG. 2 (b)). Next, Al is deposited and the gate electrode 14 is formed by the lift-off method (FIG. 2 (c)).

このように厚膜/薄膜の2層レジスト構成によって、ゲ
ート電極の微細化が容易となり1μm以下のゲート長を
有する高性能なトランジスタの製造が可能になる。した
がって、本実施例の方法により、高性能で均一性の良い
光電子集積回路が製造できる。
As described above, the thick film / thin film two-layer resist structure facilitates miniaturization of the gate electrode and enables manufacture of a high-performance transistor having a gate length of 1 μm or less. Therefore, according to the method of this embodiment, an optoelectronic integrated circuit having high performance and good uniformity can be manufactured.

尚、上記の実施例においてはトランジスタのゲート電極
はAlとしたが、本発明ではAlに限らずショットキー接合
がとれればいかなるものでもゲート電極の材料として用
い得る。また、能動層の厚さ,キャリア濃度組成は、光
電子集積回路用電子デバイスとして最適化されていれ
ば、いかなるものであってもよく、さらにAlGaAs混晶を
含むヘテロ構造の2次元電子ガスを利用する構造、InAl
As,InGaAs,InGaAsPを含むInP系トランジスタであって
もよい。本発明の製造方法を適用する光電子集積回路に
おける光デバイスは、半導体レーザ,発光ダイオード,
アバランシェ・ホトダイオードさらには光双安定素子,
光アンプ,光スイッチなどの光機能素子であってもよ
い。同様にその光電子集積回路における電子回路もトラ
ンジスタだけでなくてもよい。例えばダイオード,抵抗
を含んでもよく、その集積回路の規模はさらに大きなも
のであってもよい。
Although the gate electrode of the transistor is Al in the above embodiments, any material other than Al can be used as the material of the gate electrode as long as the Schottky junction can be obtained in the present invention. Further, the thickness of the active layer and the carrier concentration composition may be any as long as they are optimized as an electronic device for optoelectronic integrated circuits, and a two-dimensional electron gas having a heterostructure including AlGaAs mixed crystal is used. Structure, InAl
It may be an InP-based transistor containing As, InGaAs, InGaAsP. The optical device in the optoelectronic integrated circuit to which the manufacturing method of the present invention is applied is a semiconductor laser, a light emitting diode,
Avalanche photodiodes and optical bistable elements,
It may be an optical functional element such as an optical amplifier or an optical switch. Similarly, the electronic circuit in the optoelectronic integrated circuit is not limited to the transistor. For example, it may include a diode and a resistor, and the scale of the integrated circuit may be larger.

(発明の効果) 以上説明したように、本発明によれば、段差を有する基
板の段差下部に形成された光デバイスと段差上部に形成
されたトランジスタがモノリシックに集積された光電子
集積回路において、段差領域を覆うように厚膜レジスト
を形成した後、薄膜レジストを用いてトランジスタの電
極パターンを形成する工程を含めることによって、1μ
m以下の微細電極を再現性良く製作することが可能とな
り、結果として高性能な光電子集積回路が再現性よく得
られる。
(Effects of the Invention) As described above, according to the present invention, in an optoelectronic integrated circuit in which an optical device formed below a step and a transistor formed above the step of a substrate having a step are monolithically integrated, By forming a thick film resist so as to cover the region and then forming an electrode pattern of the transistor using the thin film resist,
It becomes possible to manufacture fine electrodes of m or less with good reproducibility, and as a result, a high-performance optoelectronic integrated circuit can be obtained with good reproducibility.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例で製造された光電子集積回路の
断面図、第2図(a)〜(c)はその実施例の製作工程
図である。 図において、1は半絶縁性InP基板、2はPINホトダイオ
ード、3は電界効果トランジスタ、4はホトダイオード
のコンタクト層、5はホトダイオードの光吸収層、6は
ホトダイオードのウィンドウ層、7は歪バッファー層、
8は能動層、9はp形反転領域、10はホトダイオードの
p電極、11はホトダイオードのn電極、12はソース電
極、13はドレイン電極、14はゲート電極、15はSiO2マス
ク、16は配線、17は厚膜レジスト、18は薄膜レジストで
ある。
FIG. 1 is a sectional view of an optoelectronic integrated circuit manufactured in an embodiment of the present invention, and FIGS. 2A to 2C are manufacturing process drawings of the embodiment. In the figure, 1 is a semi-insulating InP substrate, 2 is a PIN photodiode, 3 is a field effect transistor, 4 is a contact layer of the photodiode, 5 is a light absorption layer of the photodiode, 6 is a window layer of the photodiode, 7 is a strain buffer layer,
8 is an active layer, 9 is a p-type inversion region, 10 is a p-electrode of a photodiode, 11 is a n-electrode of a photodiode, 12 is a source electrode, 13 is a drain electrode, 14 is a gate electrode, 15 is a SiO 2 mask, 16 is a wiring , 17 is a thick film resist, and 18 is a thin film resist.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】段差を有する基板の段差下部に形勢された
光デバイスと段差上部に形成されたトランジスタとがモ
ノリシックに集積されている光電子集積回路の製造方法
において、基板の一部にエッチングを施して前記段差を
形成することにより前記段差下部と前記段差上部とを前
記基板に設け、該基板の段差下部に光デバイス用半導体
層を形成し、該基板の段差上部にトランジスタ用半導体
層を形成することでウエハの平坦化を行う工程、及び前
記光デバイスと前記トランジスタとの間の段差領域を覆
うように1μm以上の厚さの厚膜レジストを形成後に、
1μm以下の厚さの薄膜レジストを用いフォトリソグラ
フィーの手法により1μm以下のゲート長を有するトラ
ンジスタのゲート電極を形成する工程を含み、前記エッ
チングにより形成される前記段差の深さは、前記光デバ
イスの半導体層の厚さと前記トランジスタの半導体層の
厚さとの差の±1μm以内の範囲にあることを特徴とす
る光電子集積回路の製造方法。
1. A method of manufacturing an optoelectronic integrated circuit in which an optical device formed below a step of a substrate having a step and a transistor formed above the step are monolithically integrated, and a part of the substrate is etched. The step lower part and the step upper part are provided on the substrate by forming the step difference, the semiconductor layer for an optical device is formed under the step difference of the substrate, and the transistor semiconductor layer is formed over the step difference of the substrate. Thus, after the step of flattening the wafer, and after forming the thick film resist with a thickness of 1 μm or more so as to cover the step region between the optical device and the transistor,
The method includes a step of forming a gate electrode of a transistor having a gate length of 1 μm or less by a photolithography method using a thin film resist having a thickness of 1 μm or less, and the depth of the step formed by the etching is determined by the depth of the optical device. A method of manufacturing an optoelectronic integrated circuit, wherein the difference between the thickness of the semiconductor layer and the thickness of the semiconductor layer of the transistor is within ± 1 μm.
JP27404987A 1987-10-28 1987-10-28 Method for manufacturing optoelectronic integrated circuit Expired - Lifetime JPH0612809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27404987A JPH0612809B2 (en) 1987-10-28 1987-10-28 Method for manufacturing optoelectronic integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27404987A JPH0612809B2 (en) 1987-10-28 1987-10-28 Method for manufacturing optoelectronic integrated circuit

Publications (2)

Publication Number Publication Date
JPH01115156A JPH01115156A (en) 1989-05-08
JPH0612809B2 true JPH0612809B2 (en) 1994-02-16

Family

ID=17536255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27404987A Expired - Lifetime JPH0612809B2 (en) 1987-10-28 1987-10-28 Method for manufacturing optoelectronic integrated circuit

Country Status (1)

Country Link
JP (1) JPH0612809B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW384385B (en) 1998-09-16 2000-03-11 Karlsruhe Forschzent Optical position detection device

Also Published As

Publication number Publication date
JPH01115156A (en) 1989-05-08

Similar Documents

Publication Publication Date Title
KR950000522B1 (en) Photo electro integrated device and manufacturing method thereof
US5822349A (en) Semiconductor device and method of manufacturing the same
JP2599131B2 (en) Integrated photodetector-amplifier device
US5357127A (en) Pin heterojunction photo diode with undercut gate jifet
US4829346A (en) Field-effect transistor and the same associated with an optical semiconductor device
US5665612A (en) Method for fabricating a planar buried heterostructure laser diode
US4980313A (en) Method of producing a semiconductor laser
JPH0582829A (en) Semiconductor light receiving element
US4982256A (en) Optoelectronic integrated circuit
JP2720635B2 (en) Method for manufacturing semiconductor light emitting device
EP0487192A2 (en) Opto-electronic integrated circuit having a transmitter of long wavelength
JPH0612809B2 (en) Method for manufacturing optoelectronic integrated circuit
JP2626149B2 (en) Optoelectronic integrated circuit manufacturing method
US6031857A (en) Semiconductor device having a current-constricting spaces and method of manufacturing the device
US5093225A (en) Processing method for fabricating electrical contacts to mesa structures in semiconductor devices
JP2911751B2 (en) Semiconductor laser and method of manufacturing the same
JPH05160427A (en) Lateral p-i-n hetero-junction device and formation method thereof
JPH07112099B2 (en) Optoelectronic semiconductor device and manufacturing method thereof
JPH069241B2 (en) Method for manufacturing optoelectronic integrated circuit
KR100262409B1 (en) Method of manufacturing optoelectronic integrated circuit
JPH02199877A (en) Optical receiver and photoelectric integrated circuit
JP2726204B2 (en) Manufacturing method of semiconductor waveguide device
JPS59202676A (en) Planar type light-emitting element
JPH021979A (en) Manufacture of photoelectric integrated circuit
JP3343008B2 (en) Manufacturing method of semiconductor laser