JPH06122929A - Production of extremely low-oxygen copper - Google Patents

Production of extremely low-oxygen copper

Info

Publication number
JPH06122929A
JPH06122929A JP4296397A JP29639792A JPH06122929A JP H06122929 A JPH06122929 A JP H06122929A JP 4296397 A JP4296397 A JP 4296397A JP 29639792 A JP29639792 A JP 29639792A JP H06122929 A JPH06122929 A JP H06122929A
Authority
JP
Japan
Prior art keywords
oxygen
copper
molten copper
gaseous
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4296397A
Other languages
Japanese (ja)
Inventor
Tokukazu Ishida
徳和 石田
Yoshiharu Mae
義治 前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP4296397A priority Critical patent/JPH06122929A/en
Publication of JPH06122929A publication Critical patent/JPH06122929A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To obtain an extremely low-oxygen copper having a lower content of oxygen than before by transiently blowing gaseous oxygen into the molten copper which is agitated to deoxidize the molten copper. CONSTITUTION:Electrolytic copper as the raw material is melted in the atmosphere of gaseous Ar, etc. In this case, a reducing gas is introduced into the molten copper for a specified time, then a specified amt. of pure gaseous oxygen or a gaseous mixture of Ar and oxygen is blown into the molten copper from another blowing port, and further gaseous CO is introduced to deoxidize the molten copper. The amt. of gaseous oxygen is preferably controlled so that the oxygen concn. in the molten copper is adjusted to 100-300ppm. When the molten copper is reduced by gaseous CO, the oxygen and hydrogen in the molten copper and H2O in the atmosphere approach equilibrium. Since the bonding strength between H and O is stronger than that between CO and O, the molten copper is not further oxidized. Accordingly, gaseous oxygen is blown into the molten copper to remove the dissolved hydrogen from the molten copper as H2O, hence CO reacts with O more easily, and deoxidation further proceeds. An extremely low-oxygen copper contg. <= about 0.05ppm is obtained in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、酸素濃度が0.5pp
m 以下の極低酸素銅の製造法に関するものである。
This invention has an oxygen concentration of 0.5 pp.
The present invention relates to a method for producing extremely low oxygen copper of m or less.

【0002】[0002]

【従来の技術】無酸素銅を製造する方法の1つとして、
市販の電気銅を不活性ガスまたは還元性ガス雰囲気中で
溶解して溶銅を作製し、この溶銅中に還元性ガスを吹込
んで撹拌し脱ガスする方法が知られている。
2. Description of the Related Art As one of the methods for producing oxygen-free copper,
A method is known in which commercially available electrolytic copper is melted in an atmosphere of an inert gas or a reducing gas to prepare molten copper, and the reducing gas is blown into the molten copper and stirred to degas.

【0003】この方法により製造される無酸素銅の酸素
濃度は1ppm までしか下げることができず、1ppm より
も少なくすることは極めて困難であった。
The oxygen concentration of oxygen-free copper produced by this method can be lowered to only 1 ppm, and it was extremely difficult to reduce it to less than 1 ppm.

【0004】特に、近年、高真空下で使用される粒子加
速器の部材として無酸素銅が使用されており、この無酸
素銅にガスが含まれていると粒子加速器の作動中に真空
度が下がることになる。
Particularly, in recent years, oxygen-free copper has been used as a member of a particle accelerator used under high vacuum, and if gas is contained in this oxygen-free copper, the degree of vacuum decreases during operation of the particle accelerator. It will be.

【0005】したがって、粒子加速器部材として残存ガ
スの極めて少ない無酸素銅が求められており、かかる残
存ガスの少ない無酸素銅を得るためにベーキング処理が
行なわれていた。
Therefore, there is a demand for oxygen-free copper having a very small amount of residual gas as a particle accelerator member, and a baking process has been performed to obtain such oxygen-free copper having a small amount of residual gas.

【0006】[0006]

【発明が解決しようとする課題】しかし、無酸素銅に残
存するガスのほとんどは水素であり、水素は無酸素銅中
に酸素が残存していると残存酸素にトラップされてベー
キング処理を行っても十分に除去されない。そのため、
従来よりも一層酸素含有量の少ない極低酸素銅が求めら
れていた。
However, most of the gas remaining in oxygen-free copper is hydrogen, and when oxygen remains in oxygen-free copper, hydrogen is trapped in the remaining oxygen and baking is performed. Is not removed enough. for that reason,
There has been a demand for ultra-low oxygen copper having a lower oxygen content than ever before.

【0007】[0007]

【課題を解決するための手段】そこで、本発明者等は、
従来よりも一層酸素濃度の低い極低酸素銅を得るべく研
究を行った結果、(a) 電気銅を溶解して得られた溶
銅に還元性ガスを吹込んで脱酸する工程において、上記
還元性ガスを吹込んでいる途中で一時的に酸素ガスを吹
込むと、得られた鋳塊の酸素濃度が0.5ppm 以下に低
下する、(b) 上記一時的に吹込む酸素ガス量は、溶
銅に対する酸素濃度が100〜300ppm に相当する量
であることが一層好ましい、という知見を得たのであ
る。
Therefore, the present inventors have
As a result of research to obtain ultra-low oxygen copper having a lower oxygen concentration than before, (a) In the step of deoxidizing a molten copper obtained by dissolving electrolytic copper by blowing a reducing gas, the above reduction is performed. If oxygen gas is temporarily blown during the blowing of the volatile gas, the oxygen concentration of the obtained ingot decreases to 0.5 ppm or less. (B) The amount of oxygen gas blown temporarily is It was found that it is more preferable that the oxygen concentration with respect to copper is equivalent to 100 to 300 ppm.

【0008】この発明は、かかる知見にもとづいてなさ
れたものであって、溶銅に還元性ガスを吹き込みながら
撹拌し脱酸する工程の途中で一時的に酸素ガスを吹込む
極低酸素銅の製造法に特徴を有するものである。
The present invention has been made on the basis of the above findings, and is an extremely low oxygen copper alloy in which oxygen gas is temporarily blown during the process of stirring and deoxidizing molten copper while blowing a reducing gas. It is characterized by the manufacturing method.

【0009】上記一時的に吹込む酸素ガスの量は、溶銅
に対する酸素濃度が100〜300ppm に相当するのが
好ましく、100ppm 未満ではその後の脱酸効果が十分
でなく、一方、300ppm を越えると溶銅中に過剰の酸
素が残留してしまうので好ましくない。したがって、溶
銅に吹込む酸素ガス量は溶銅に対して100〜300pp
m と定めた。
The amount of oxygen gas to be blown temporarily is preferably such that the oxygen concentration with respect to the molten copper is 100 to 300 ppm. If it is less than 100 ppm, the subsequent deoxidizing effect is not sufficient, while if it exceeds 300 ppm. It is not preferable because excess oxygen remains in the molten copper. Therefore, the amount of oxygen gas blown into the molten copper is 100 to 300 pp relative to the molten copper.
I decided to m.

【0010】溶銅は電気銅をArガス雰囲気中で溶解す
ることが好ましく、脱酸工程にて吹込む還元性ガスはC
Oガスが好ましい。
The molten copper preferably dissolves electrolytic copper in an Ar gas atmosphere, and the reducing gas blown in in the deoxidizing step is C.
O 2 gas is preferred.

【0011】脱酸工程において、COガスを所定時間吹
込んだのち、COガスとは別の吹込み口より所定量の純
2 ガスまたはArガスとO2 ガスの混合ガスを吹込
み、さらにCOガスを吹込む。
In the deoxidizing step, CO gas is blown for a predetermined time, and then a predetermined amount of pure O 2 gas or a mixed gas of Ar gas and O 2 gas is blown from a blowing port different from the CO gas, and further, Blow in CO gas.

【0012】溶銅にCOガスを吹込んで脱酸している途
中で一時的にO2 ガスを吹込むことにより酸素濃度を極
めて低くすることができる理由は、下記によるものと考
えられる。
The reason why the oxygen concentration can be made extremely low by temporarily blowing O 2 gas during the deoxidation by blowing CO gas to the molten copper is considered to be as follows.

【0013】すなわち、溶銅をCOガスで還元し脱酸が
進行すると、溶銅中の酸素と水素および雰囲気中のH2
Oは平衡に近づく。ここでHとOの結合力はCOとOの
それよりも強いため、COガスではそれ以上の脱酸が困
難になる。そこで溶銅中にO2 ガスを吹込み、固溶水素
をH2 Oの形で溶銅中から除去すると、COとOの反応
がしやすくなり、脱酸がさらに進行する。
That is, when molten copper is reduced with CO gas and deoxidation proceeds, oxygen and hydrogen in the molten copper and H 2 in the atmosphere
O approaches equilibrium. Here, since the binding force of H and O is stronger than that of CO and O, further deoxidation becomes difficult with CO gas. Therefore, if O 2 gas is blown into the molten copper to remove the solid solution hydrogen in the form of H 2 O from the molten copper, the reaction between CO and O is facilitated, and the deoxidation proceeds further.

【0014】[0014]

【実施例】原料として酸素:20ppm 含有の電気銅を用
意し、この電気銅を15kgづつArガス雰囲気下で加熱
された黒鉛るつぼに投入した。
[Example] As a raw material, electrolytic copper containing oxygen: 20 ppm was prepared, and 15 kg of this electrolytic copper was charged into a graphite crucible heated in an Ar gas atmosphere.

【0015】原料の電気銅が溶解した時点でCOガスを
溶銅中に流量:5l/分で10分間吹込んだのち、O2
ガスを表1に示される条件で吹込み、さらに5l/分の
COガスを10分間吹込んで本発明法1〜5および比較
法1〜4により脱酸した。
When the raw material electrolytic copper was dissolved, CO gas was blown into the molten copper at a flow rate of 5 l / min for 10 minutes, and then O 2 was added.
Gas was blown in under the conditions shown in Table 1, and further 5 l / min of CO gas was blown in for 10 minutes to deoxidize by the methods 1 to 5 of the present invention and the comparative methods 1 to 4.

【0016】上記脱酸した溶銅を直径:30mmの寸法を
有するモールドに鋳造して鋳塊を製造し、これら鋳塊の
酸素濃度を測定し、その測定値を表1に示した。
The deoxidized molten copper was cast in a mold having a diameter of 30 mm to produce ingots, and the oxygen concentration of these ingots was measured. The measured values are shown in Table 1.

【0017】さらに比較のために、途中でO2 ガスを吹
込むことなく、流量:5l/分のCOガスを20分間吹
込むことにより従来法による脱酸を行ない、同様にモー
ルドに鋳造して鋳塊を製造し、得られた鋳塊の酸素濃度
を測定してその測定結果を表1に示した。
For comparison, deoxidation was carried out by the conventional method by blowing CO gas for 20 minutes without blowing O 2 gas on the way, and the same method was followed by casting into a mold. The ingot was manufactured, the oxygen concentration of the obtained ingot was measured, and the measurement results are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【発明の効果】表1に示される結果から、COガス吹込
み途中で一時的にO2 ガスを溶銅に対して100〜30
0ppm 吹込む本発明法1〜5で脱酸した溶銅の鋳塊は、
COガスのみにより脱酸する従来法により得られた鋳塊
に比べて、酸素濃度が極めて低いことがわかる。
From the results shown in Table 1, the O 2 gas was temporarily added to the molten copper in the range of 100 to 30 during the blowing of the CO gas.
Molten copper ingots deoxidized by the present invention methods 1 to 5 in which 0 ppm is blown,
It can be seen that the oxygen concentration is extremely low as compared with the ingot obtained by the conventional method of deoxidizing only with CO gas.

【0019】しかし、比較法1〜4に見られるように、
2 ガスの吹込み量がこの発明の範囲から外れると、得
られた鋳塊の酸素濃度は上昇し、十分に脱酸されていな
いことがわかる。
However, as seen in Comparative Methods 1-4,
It can be seen that when the blowing amount of O 2 gas is out of the range of the present invention, the oxygen concentration of the obtained ingot is increased and the oxygen is not sufficiently deoxidized.

【0020】上述のように、この発明の方法によると従
来の無酸素銅よりも大幅に酸素濃度の低い極低酸素銅を
製造することができ、酸素濃度が低いために材料中に存
在する水素ガスをベーキング等により容易に除去するこ
とができ、高真空下で使用する真空容器の真空度を下げ
ることがない真空容器材料を提供することができ、産業
上すぐれた効果を奏するものである。
As described above, according to the method of the present invention, it is possible to produce an extremely low oxygen copper having a much lower oxygen concentration than the conventional oxygen-free copper, and the hydrogen present in the material due to the low oxygen concentration. A gas can be easily removed by baking or the like, and a vacuum container material that does not reduce the degree of vacuum of a vacuum container used under high vacuum can be provided, which has an excellent industrial effect.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶銅に還元性ガスを吹き込みながら撹拌
し脱酸する工程の途中で一時的に酸素ガスを吹込むこと
を特徴とする極低酸素銅の製造法。
1. A method for producing ultra-low oxygen copper, characterized in that oxygen gas is temporarily blown in the middle of the step of stirring and deoxidizing molten copper while blowing a reducing gas.
【請求項2】 上記一時的に吹込む酸素ガス量は、溶銅
に対する酸素濃度が100〜300ppm に相当する量で
あることを特徴とする請求項1記載の極低酸素銅の製造
法。
2. The method for producing ultra-low oxygen copper according to claim 1, wherein the amount of oxygen gas blown in temporarily is an amount corresponding to an oxygen concentration with respect to molten copper of 100 to 300 ppm.
JP4296397A 1992-10-08 1992-10-08 Production of extremely low-oxygen copper Withdrawn JPH06122929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4296397A JPH06122929A (en) 1992-10-08 1992-10-08 Production of extremely low-oxygen copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4296397A JPH06122929A (en) 1992-10-08 1992-10-08 Production of extremely low-oxygen copper

Publications (1)

Publication Number Publication Date
JPH06122929A true JPH06122929A (en) 1994-05-06

Family

ID=17833018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4296397A Withdrawn JPH06122929A (en) 1992-10-08 1992-10-08 Production of extremely low-oxygen copper

Country Status (1)

Country Link
JP (1) JPH06122929A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6944930B2 (en) * 2000-02-24 2005-09-20 Mitsubishi Materials Corporation Method for manufacturing low-oxygen copper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6944930B2 (en) * 2000-02-24 2005-09-20 Mitsubishi Materials Corporation Method for manufacturing low-oxygen copper
US7524356B2 (en) 2000-02-24 2009-04-28 Mitsubishi Materials Corporation Method for manufacturing low-oxygen copper

Similar Documents

Publication Publication Date Title
CN114318109B (en) Method for smelting high-nitrogen die steel by using vacuum induction furnace and pressurized electroslag furnace
US4451430A (en) Method of producing copper alloy by melting technique
JPH05287402A (en) Production of extra-low oxygen copper and extra-low oxygen copper obtained by this production
NO131550B (en)
JPH06122929A (en) Production of extremely low-oxygen copper
CA1175661A (en) Process for aluminothermic production of chromium and chromium alloys low in nitrogen
JPH06212300A (en) Manufacture of low oxygen copper containing p by using shaft furnace
JP2989060B2 (en) Low oxygen Ti-Al alloy and method for producing the same
US2865736A (en) Method of alloying gaseous materials with metals
RU2407815C1 (en) Procedure for production of ingots of super-pure copper in vacuum
US3188198A (en) Method for deoxidizing metals
CN113182499A (en) Technology for adding nitrogen into carbon monoxide for quick deoxidization in copper smelting by upward drawing method
KR101961468B1 (en) Al-Mg-Ca MASTER ALLOY FOR ALUMINUM ALLOY AND MANUFACTURING METHOD THEREOF
US3615354A (en) Method of removing contaminants from steel melts
US3926623A (en) Process for purification of manganese alloys
JP4300569B2 (en) Method for producing high-density oxygen-containing copper ingot
JPH0192312A (en) Manufacture of high manganese steel
RU2786736C2 (en) Method for producing corrosion-resistant titanium steel
RU2782193C1 (en) Method for smelting khn33kv alloy
US2974033A (en) Melting titanium metal
JPH04120225A (en) Manufacture of ti-al series alloy
US4410359A (en) Process for production of stainless steel
JPS63218506A (en) How to purify split silicon under plasma
US1660220A (en) Copper refining
RU2265064C2 (en) Method of making steel for metal cord

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104