JP4300569B2 - Method for producing high-density oxygen-containing copper ingot - Google Patents

Method for producing high-density oxygen-containing copper ingot Download PDF

Info

Publication number
JP4300569B2
JP4300569B2 JP2003208017A JP2003208017A JP4300569B2 JP 4300569 B2 JP4300569 B2 JP 4300569B2 JP 2003208017 A JP2003208017 A JP 2003208017A JP 2003208017 A JP2003208017 A JP 2003208017A JP 4300569 B2 JP4300569 B2 JP 4300569B2
Authority
JP
Japan
Prior art keywords
oxygen
copper
ingot
density
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003208017A
Other languages
Japanese (ja)
Other versions
JP2005059023A (en
Inventor
徳和 石田
賢一 高木
健一 作道
和雅 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003208017A priority Critical patent/JP4300569B2/en
Publication of JP2005059023A publication Critical patent/JP2005059023A/en
Application granted granted Critical
Publication of JP4300569B2 publication Critical patent/JP4300569B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
この発明は、銅板や銅棒などの伸銅品や電線などを製造する際に使用される比重:8.9以上を有しガスホールのほとんど認められない酸素を10〜600ppm含有する高密度の酸素含有銅鋳塊を製造する方法に関するものである。
【0002】
【従来の技術】
一般に、銅は酸素含有量に応じて酸素:10ppm未満含有の無酸素銅、酸素:20〜50ppm含有のP脱酸銅、酸素:200〜350ppm含有のタフピッチ銅に大きく分けられている。前記無酸素銅の鋳塊を製造する方法として、銅溶湯を鋳型に導く途中の銅溶湯に一酸化炭素、水素などの還元ガスを吹き込んで酸素を除去し、次いで湯道で水素分圧の低い不活性ガスに曝して残留水素を除去したのち鋳型に鋳込む方法(特許文献1参照)または銅溶湯を鋳型に導く途中の銅溶湯にCoなど還元ガスを吹き込みながら撹拌し脱酸する途中で酸素ガスを吹き込んだのち鋳型に鋳込む方法などが知られており(特許文献2参照)、前記P脱酸銅の鋳塊を製造する方法としてP脱酸溶銅に不活性ガスを吹き込んで脱酸したのち鋳型に鋳込む方法が知られており(特許文献3参照)、さらに、前記酸素:200〜350ppmを含有するタフピッチ銅の鋳塊を製造する方法として、銅溶湯の移送過程を気密に保持するとともに、少なくとも移送過程の最終段階を還元性または不活性ガスによってガスシールし、かつ還元剤を用いて還元処理し、この還元処理は酸素含有量の測定値に基づいて制御され、オーバー還元がなされた場合は空気を入れることによって還元の程度を制御したのち鋳型に鋳込む方法が知られている(特許文献4参照)。
このようにして製造した各種銅の鋳塊は、700〜900℃で熱間加工し、表面を面削し、ついで冷間加工したのち350〜500℃の温度範囲内で焼鈍する操作を所定回数繰り返した後、最終的に冷間圧延することにより銅板を製造し、または最終的に冷間引抜き加工することに銅棒または電線を製造している。
【0003】
【特許文献1】
特許第268954号明細書
【特許文献2】
特開平6−122929号公報
【特許文献3】
特開平6−232300号公報
【特許文献4】
特公昭59−6736号公報
【0004】
【発明が解決しようとする課題】
しかし、従来の方法で作製した酸素含有銅鋳塊は、ガスホールが多く発生し、したがって、従来の銅鋳塊の密度は8.6〜8.8g/cmであり、8.8g/cmを超えることがなく、この銅鋳塊に含まれるガスホールは圧延などの後工程において二次的な欠陥発生の原因になり、また圧延などの加工を経た後もさまざまな形態で材料に残留する場合があり、例えば、極薄圧延加工材のピンホールや表面傷、荒引き銅線の表面傷などの欠陥の発生原因となる。特に700〜900℃で熱間圧延し、表面を面削し、ついで冷間圧延したのち350〜500℃の温度範囲内で焼鈍する操作を繰り返し施して厚さの薄い銅箔を製造すると、銅箔が薄くなるにつれて銅箔にピンポールが発生し始め、厚さが100μmより薄くなると、得られた銅箔に発生するピンポールの数が増加し、厚さ:20μm以下の薄い圧延銅箔には多数のピンホールが発生して商品にならないことが多く、したがって、歩留まり良く圧延銅箔を作ることは難しかった。
【0005】
【課題を解決するための手段】
そこで、本発明者らは、銅鋳塊に含まれるガスホールの発生を極力少なくして銅鋳塊の密度が8.9g/cm以上の高密度酸素含有鋳塊を作製すべく研究を行った。その結果、
(イ)高純度電気銅または再溶解原料銅を燃焼雰囲気炉にて溶解することにより酸素含有量の少ない銅溶湯を作製し、得られた銅溶湯を鋳型に導く途中工程で露点:−30℃以下の酸素ガスまたは酸素および不活性ガスからなる酸素含有混合ガスを導入することにより銅溶湯に酸素を付加し、この酸素を付加して銅溶湯に含まれる酸素量を10〜600ppmに調整したのち鋳造することにより得られた酸素含有銅鋳塊は、ガスホールの発生が少なくなり、したがって、この酸素含有銅鋳塊の密度は8.9g/cm以上になる、
(ロ)高純度電気銅または再溶解原料銅を非酸化性雰囲気の電気炉にて溶解することにより酸素含有量:10ppm未満の無酸素銅溶湯を作製し、得られた無酸素銅溶湯を鋳型に導く途中工程で露点:−30℃以下の酸素ガスまたは酸素および不活性ガスからなる酸素含有混合ガスを導入することにより無酸素銅溶湯に酸素を付加して銅溶湯に含まれる酸素量を10〜600ppmに調整したのち鋳造することことにより得られた酸素含有銅鋳塊は、ガスホールの発生が極めて少なくなり、したがって、この酸素含有銅鋳塊の密度は8.9g/cm以上になる、
(ハ)前記無酸素銅溶湯を作製し、得られた無酸素銅溶湯を鋳型に導く途中工程で導入する露点:−30℃以下の酸素および不活性ガスからなる酸素含有混合ガスは露点:−30℃以下の空気であっても良い、などの研究結果が得られたのである。
【0006】
この発明は、かかる研究結果にもとづいてなされたものであって、
(1)高純度電気銅または再溶解原料銅を燃焼雰囲気炉にて溶解することにより銅溶湯を作製し、得られた銅溶湯を鋳型に導く途中の銅溶湯に露点:−30℃以下の酸素ガスまたは酸素および不活性ガスからなる酸素含有混合ガスを導入することにより銅溶湯に酸素を付加して銅溶湯に含まれる酸素量を10〜600ppmに調整したのち鋳造する高密度酸素含有銅鋳塊の製造方法、
(2)高純度電気銅または再溶解原料銅を非酸化性雰囲気の電気炉にて溶解することにより酸素含有量:10ppm未満の無酸素銅溶湯を作製し、得られた無酸素銅溶湯を鋳型に導く途中の無酸素銅溶湯銅に露点:−30℃以下の酸素ガスまたは酸素および不活性ガスからなる酸素含有混合ガスを導入することにより無酸素銅溶湯に酸素を付加して銅溶湯に含まれる酸素量を10〜600ppmに調整したのち鋳造する高密度酸素含有銅鋳塊の製造方法、
(3)前記露点:−30℃以下の酸素含有混合ガスは、露点:−30℃以下の空気である前記(1)または(2)記載の高密度酸素含有銅鋳塊の製造方法、に特徴を有するものである。
【0007】
前記銅溶湯を鋳型に導く途中工程で導入する酸素、酸素と不活性ガスの酸素含有混合ガスまたは空気の露点を−30℃以下にした理由は、露点が−30℃より高い露点を有する酸素ガス、酸素と不活性ガスの酸素含有混合ガスまたは空気を導入することにより銅溶湯に酸素を付加しても得られた鋳塊に発生するガスホールの数は減少せず、したがって密度が8.8g/cm以下となるからである。酸素、酸素と不活性ガスの酸素含有混合ガスまたは空気の露点の一層好ましい範囲は−40℃以下である。
【0008】
前記酸素と不活性ガスの酸素含有混合ガスに含まれる酸素は特に限定されるものではないが1容量%以上であることが好ましい。その理由は酸素:1容量%未満含む酸素と不活性ガスの酸素含有混合ガスであると、低酸素銅溶湯を鋳型に導く工程内で十分に酸化させることができなくなるからである。
【0009】
【発明の実施の形態】
実施例1
原料として高純度電気銅を用意し、これをCOガス雰囲気の電気炉で溶解することにより酸素含有量:5ppmの無酸素銅溶湯を作製した。この無酸素銅溶湯を連続鋳型に導く樋に水分を除去した露点:−30℃を有し純酸素を導入することにより無酸素銅溶湯に酸素を付与して酸素含有銅溶湯を作製し、この酸素含有銅溶湯をデストリビュータに充填し、連続鋳型に注入して連続鋳造することにより酸素含有銅鋳塊を作製した。得られた酸素含有銅鋳塊の酸素濃度および密度を測定し、その結果を表1に示した。前記酸素含有銅鋳塊の密度は酸素含有銅鋳塊の中心部および表面部の密度の平均値である。
【0010】
実施例2
実施例1で作製した酸素含有量:5ppmの無酸素銅溶湯を連続鋳型に導く樋に水分を除去した露点:−30℃を有し酸素:50%、アルゴン:50容量%からなる酸素含有混合ガスを導入することにより無酸素銅溶湯に酸素を付与して酸素含有銅溶湯を作製し、この酸素含有銅溶湯をデストリビュータに充填し、連続鋳型に注入して連続鋳造することにより酸素含有銅鋳塊を作製した。この酸素含有銅鋳塊に含まれる酸素濃度および密度を測定し、その結果を表1に示した。前記酸素含有銅鋳塊の密度は酸素含有銅鋳塊の中心部および表面部の密度の平均値である。
【0011】
実施例3
実施例1で作製した酸素含有量:5ppmの無酸素銅溶湯を連続鋳型に導く樋に水分を除去した露点:−30℃のドライエアーを導入することにより無酸素銅溶湯に酸素を付与して酸素含有銅溶湯を作製し、この酸素含有銅溶湯をデストリビュータに充填し、連続鋳型に注入して連続鋳造することにより酸素含有銅鋳塊を作製した。得られた酸素含有銅鋳塊の酸素濃度および密度を測定し、その結果を表1に示した。前記酸素含有銅鋳塊の密度は酸素含有銅鋳塊の中心部および表面部の密度の平均値である。さらにこの実施例3で作製した鋳塊の中心部の金属顕微鏡による組織写真を図1に示した。
【0012】
実施例4〜5および比較例1〜2
実施例1で作製した酸素含有量:5ppmの無酸素銅溶湯を連続鋳型に導く樋に表1に示される露点を有するドライエアーを導入することにより無酸素銅溶湯に酸素を付与して酸素含有銅溶湯を作製し、この酸素含有銅溶湯をデストリビュータに充填し、連続鋳型に注入して連続鋳造することにより酸素含有銅鋳塊を作製した。得られた酸素含有銅鋳塊の酸素濃度および密度を測定し、その結果を表1に示した。表1に示される酸素含有銅鋳塊の密度は酸素含有銅鋳塊の中心部および表面部の密度の平均値である。
【0013】
従来例1
実施例1で作製した酸素含有量:5ppmの無酸素銅溶湯を連続鋳造鋳型へ導く樋をガス燃焼雰囲気として酸素濃度の急激な上昇を防ぎ、この銅溶湯をディストリビューターに充填し、ディストリビューターで大気と接触させることで酸素を付与して所定の酸素量とした酸素含有銅溶湯を連続鋳造することにより酸素含銅鋳塊を作製した。得られたを酸素含有銅鋳塊の酸素濃度および密度を測定し、その結果を表1に示した。表1に示される酸素含有銅鋳塊の密度は酸素含有銅鋳塊の中心部および表面部の密度の平均値である。
【0014】
【表1】

Figure 0004300569
【0015】
表1に示される結果から、この発明の酸素含有銅鋳塊の製造方法である実施例1〜5で得られた酸素含有銅鋳塊に含まれる酸素濃度と従来法の従来例1で得られた酸素含有銅鋳塊に含まれる酸素濃度を比較するとほぼ同じであるにもかかわらず、実施例1〜5で得られた酸素含有銅鋳塊の密度は従来例1で得られた酸素含有銅鋳塊に比べて格段に大きいことがわかる。
しかし、比較例2に見られるように、高密度酸素含有銅鋳塊を製造する際に銅溶湯を酸化するためのドライエアーは、露点が−19℃であると、酸素含有銅鋳塊に含まれる酸素濃度はほぼ同じであるが、密度がやや低くなり、したがって、この発明で使用する酸素ガス、酸素と不活性ガスの酸素含有混合ガスまたは空気の露点は−30℃以下でなければならないことがわかる。
【0016】
また、図1の実施例3で得られた酸素含有銅鋳塊の金属組織写真と図2の従来例1で得られた酸素含有銅鋳塊の金属組織写真とを比較すると、実施例3で得られた酸素含有銅鋳塊に含まれるガスホール(金属組織写真において見られる黒い点がガスホールである)の数が従来例1で得られた酸素含有銅鋳塊に含まれるガスホールの数に比べて格段に少ないことが明らかである。
【0017】
【発明の効果】
この発明の方法によると、高密度の酸素含有銅鋳塊を提供することができ、したがって、欠陥のない銅板や銅棒などの伸銅品や電線などを製造することができ、さらにピンホールの少ない銅箔などを製造することができるので、電気・電子産業の発展におおいに貢献しうるものである。
【図面の簡単な説明】
【図1】実施例3で得られた酸素含有銅鋳塊の金属組織写真である。
【図2】従来例1で得られた酸素含有銅鋳塊の金属組織写真である。[0001]
[Industrial application fields]
This invention has a specific gravity of 8.9 or more used for producing copper products such as copper plates and copper bars, electric wires, etc., and has a high density containing 10 to 600 ppm of oxygen that is hardly recognized in gas holes. The present invention relates to a method for producing an oxygen-containing copper ingot.
[0002]
[Prior art]
Generally, copper is roughly divided into oxygen: oxygen-free copper containing less than 10 ppm, oxygen: P-deoxidized copper containing 20-50 ppm, and oxygen: tough pitch copper containing 200-350 ppm. As a method for producing the oxygen-free copper ingot, oxygen is removed by blowing a reducing gas such as carbon monoxide and hydrogen into the molten copper in the middle of introducing the molten copper into the mold, and then the hydrogen partial pressure is low in the runner A method in which residual hydrogen is removed by exposure to an inert gas and then cast into a mold (see Patent Document 1), or oxygen is added while stirring and deoxidizing while blowing a reducing gas such as Co into a molten copper in the middle of introducing the molten copper into the mold. A method is known in which a gas is blown and then cast into a mold (see Patent Document 2). As a method for producing the P deoxidized copper ingot, deoxidation is performed by blowing an inert gas into P deoxidized molten copper. After that, a method of casting into a mold is known (see Patent Document 3). Furthermore, as a method of manufacturing a tough pitch copper ingot containing the oxygen: 200 to 350 ppm, the process of transferring the molten copper is kept airtight. And less If the final stage of the transfer process is gas-sealed with a reducing or inert gas and reduced using a reducing agent, this reduction is controlled based on the measured oxygen content and over-reduction occurs A method is known in which the degree of reduction is controlled by introducing air and then cast into a mold (see Patent Document 4).
The copper ingots thus produced are hot-worked at 700 to 900 ° C., chamfered on the surface, and then cold-worked and then annealed within a temperature range of 350 to 500 ° C. a predetermined number of times. After repeating, the copper plate is manufactured by finally cold rolling, or finally the copper rod or the electric wire is manufactured by cold drawing.
[0003]
[Patent Document 1]
Japanese Patent No. 268954 [Patent Document 2]
JP-A-6-122929 [Patent Document 3]
JP-A-6-232300 [Patent Document 4]
Japanese Patent Publication No. 59-6736 [0004]
[Problems to be solved by the invention]
However, the oxygen-containing copper ingot produced by the conventional method generates many gas holes. Therefore, the density of the conventional copper ingot is 8.6 to 8.8 g / cm 3 and is 8.8 g / cm 3. The gas hole contained in this copper ingot does not exceed 3 and causes secondary defects in subsequent processes such as rolling, and remains in the material in various forms after processing such as rolling. For example, it may cause defects such as pinholes and surface flaws in ultra-thin rolled materials and surface flaws in roughing copper wires. In particular, when a thin copper foil is manufactured by hot rolling at 700 to 900 ° C., chamfering the surface, then performing cold rolling and annealing in a temperature range of 350 to 500 ° C. As the foil becomes thinner, pin poles begin to occur in the copper foil. When the thickness is less than 100 μm, the number of pin poles generated in the obtained copper foil increases, and many thin rolled copper foils having a thickness of 20 μm or less Therefore, it is difficult to produce a rolled copper foil with a high yield.
[0005]
[Means for Solving the Problems]
Therefore, the present inventors have studied to produce a high-density oxygen-containing ingot having a copper ingot density of 8.9 g / cm 3 or more by minimizing the generation of gas holes contained in the copper ingot. It was. as a result,
(A) A high-purity electrolytic copper or a remelted raw material copper is melted in a combustion atmosphere furnace to produce a molten copper having a low oxygen content, and a dew point of −30 ° C. in the course of introducing the obtained molten copper into a mold. After introducing the following oxygen gas or an oxygen-containing mixed gas composed of oxygen and an inert gas, oxygen is added to the molten copper, and after adding this oxygen, the amount of oxygen contained in the molten copper is adjusted to 10 to 600 ppm. The oxygen-containing copper ingot obtained by casting has less generation of gas holes, and thus the density of this oxygen-containing copper ingot is 8.9 g / cm 3 or more.
(B) High-purity electrolytic copper or remelted raw material copper is melted in an electric furnace in a non-oxidizing atmosphere to produce an oxygen-free molten copper with an oxygen content of less than 10 ppm, and the resulting oxygen-free molten copper is used as a mold. In the middle of the process, a dew point of -30 ° C. or lower is introduced, or an oxygen-containing mixed gas composed of oxygen and an inert gas is introduced to add oxygen to the oxygen-free copper melt to reduce the amount of oxygen contained in the copper melt to 10 The oxygen-containing copper ingot obtained by casting after adjusting to ˜600 ppm has very little generation of gas holes, and therefore the density of this oxygen-containing copper ingot is 8.9 g / cm 3 or more. ,
(C) A dew point for producing the oxygen-free copper melt and introducing the obtained oxygen-free copper melt in the middle of the process leading to the mold: an oxygen-containing mixed gas composed of oxygen of −30 ° C. or lower and an inert gas is a dew point: − Research results were obtained, such as air below 30 ° C.
[0006]
This invention was made based on the results of such research,
(1) A high-purity electrolytic copper or a remelted raw material copper is melted in a combustion atmosphere furnace to produce a molten copper, and the dew point is -30 ° C. or lower on the molten copper in the middle of guiding the obtained molten copper to a mold. A high-density oxygen-containing copper ingot that is cast after adjusting the amount of oxygen contained in the molten copper to 10 to 600 ppm by adding oxygen to the molten copper by introducing an oxygen-containing mixed gas comprising gas or oxygen and an inert gas Manufacturing method,
(2) High-purity electrolytic copper or remelted raw material copper is melted in an electric furnace in a non-oxidizing atmosphere to prepare an oxygen-free molten copper with an oxygen content of less than 10 ppm, and the resulting oxygen-free molten copper is used as a mold. Oxygen is added to oxygen-free molten copper by introducing oxygen-containing mixed gas consisting of oxygen gas or oxygen and inert gas at -30 ° C or lower into oxygen-free molten copper on the way A method for producing a high-density oxygen-containing copper ingot that is cast after adjusting the amount of oxygen to be adjusted to 10 to 600 ppm,
(3) The method for producing a high-density oxygen-containing copper ingot according to (1) or (2), wherein the oxygen-containing mixed gas having a dew point of −30 ° C. or lower is air having a dew point of −30 ° C. or lower. It is what has.
[0007]
The reason why the dew point of oxygen, oxygen-containing mixed gas of oxygen and inert gas or air introduced in the intermediate process of introducing the molten copper into the mold is -30 ° C. or lower is that oxygen gas having a dew point higher than −30 ° C. The number of gas holes generated in the ingot obtained by adding oxygen to the molten copper by introducing an oxygen-containing mixed gas of oxygen and an inert gas or air does not decrease, and thus the density is 8.8 g. This is because / cm 3 or less. A more preferable range of the dew point of oxygen, oxygen-containing mixed gas of oxygen and inert gas, or air is −40 ° C. or lower.
[0008]
The oxygen contained in the oxygen-containing mixed gas of oxygen and inert gas is not particularly limited, but is preferably 1% by volume or more. The reason for this is that if the oxygen-containing mixed gas of oxygen and inert gas containing less than 1% by volume of oxygen is insufficiently oxidized in the process of introducing the low oxygen copper melt into the mold.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
High-purity electrolytic copper was prepared as a raw material, and this was melted in an electric furnace in a CO gas atmosphere to prepare an oxygen-free copper melt having an oxygen content of 5 ppm. The oxygen-free copper melt is prepared by introducing oxygen to the oxygen-free copper melt by introducing pure oxygen with a dew point of −30 ° C. in which moisture is removed in the cage that leads the oxygen-free copper melt to the continuous mold. An oxygen-containing copper ingot was produced by filling a distributor with oxygen-containing copper melt, pouring it into a continuous mold and continuously casting it. The oxygen concentration and density of the obtained oxygen-containing copper ingot were measured, and the results are shown in Table 1. The density of the oxygen-containing copper ingot is an average value of the density of the center portion and the surface portion of the oxygen-containing copper ingot.
[0010]
Example 2
Oxygen content prepared in Example 1: Oxygen-containing mixture consisting of 5 ppm oxygen-free copper molten metal removed from water in a continuous mold Dew point: −30 ° C., oxygen: 50%, argon: 50% by volume By introducing gas, oxygen is added to the oxygen-free copper melt to produce an oxygen-containing copper melt, and this oxygen-containing copper melt is filled into a distributor, poured into a continuous mold, and continuously cast to produce oxygen-containing copper. An ingot was produced. The oxygen concentration and density contained in this oxygen-containing copper ingot were measured, and the results are shown in Table 1. The density of the oxygen-containing copper ingot is an average value of the density of the center portion and the surface portion of the oxygen-containing copper ingot.
[0011]
Example 3
Oxygen content prepared in Example 1: 5 ppm oxygen free molten copper was removed from the continuous mold. Water was removed from the dew point: -30 ° C dry air was introduced to give oxygen to the oxygen free molten copper. An oxygen-containing copper ingot was prepared by preparing an oxygen-containing copper melt, filling the distributor with the oxygen-containing copper melt, pouring it into a continuous mold and continuously casting it. The oxygen concentration and density of the obtained oxygen-containing copper ingot were measured, and the results are shown in Table 1. The density of the oxygen-containing copper ingot is an average value of the density of the center portion and the surface portion of the oxygen-containing copper ingot. Furthermore, the structure | tissue photograph by the metallographic microscope of the center part of the ingot produced in this Example 3 was shown in FIG.
[0012]
Examples 4-5 and Comparative Examples 1-2
Oxygen content produced in Example 1: Oxygen content is imparted to oxygen-free copper melt by introducing dry air having a dew point as shown in Table 1 into a mold for introducing 5 ppm oxygen-free copper melt to a continuous mold. A molten copper was prepared, this oxygen-containing molten copper was filled in a distributor, poured into a continuous mold, and continuously cast to prepare an oxygen-containing copper ingot. The oxygen concentration and density of the obtained oxygen-containing copper ingot were measured, and the results are shown in Table 1. The density of the oxygen-containing copper ingot shown in Table 1 is an average value of the density of the center portion and the surface portion of the oxygen-containing copper ingot.
[0013]
Conventional Example 1
The oxygen content produced in Example 1: 5 ppm oxygen-free molten copper that leads to the continuous casting mold is used as a gas combustion atmosphere to prevent a rapid increase in oxygen concentration, and this molten copper is filled in the distributor. An oxygen-containing copper ingot was produced by continuously casting an oxygen-containing copper melt that was given a predetermined amount of oxygen by being brought into contact with the atmosphere. The oxygen concentration and density of the obtained oxygen-containing copper ingot were measured, and the results are shown in Table 1. The density of the oxygen-containing copper ingot shown in Table 1 is an average value of the density of the center portion and the surface portion of the oxygen-containing copper ingot.
[0014]
[Table 1]
Figure 0004300569
[0015]
From the results shown in Table 1, the oxygen concentration contained in the oxygen-containing copper ingot obtained in Examples 1 to 5, which is the method for producing the oxygen-containing copper ingot of the present invention, and the conventional method 1 of the conventional method are obtained. Although the oxygen concentration contained in the oxygen-containing copper ingot was almost the same, the density of the oxygen-containing copper ingot obtained in Examples 1 to 5 was the oxygen-containing copper obtained in Conventional Example 1 It can be seen that it is much larger than the ingot.
However, as seen in Comparative Example 2, the dry air for oxidizing the molten copper when producing the high-density oxygen-containing copper ingot is included in the oxygen-containing copper ingot when the dew point is −19 ° C. The oxygen concentration is almost the same, but the density is slightly lower. Therefore, the dew point of oxygen gas, oxygen-containing mixed gas of oxygen and inert gas or air used in the present invention must be -30 ° C or lower. I understand.
[0016]
Moreover, when the metal structure photograph of the oxygen-containing copper ingot obtained in Example 3 of FIG. 1 and the metal structure photograph of the oxygen-containing copper ingot obtained in Conventional Example 1 of FIG. The number of gas holes contained in the obtained oxygen-containing copper ingot is the number of gas holes contained in the oxygen-containing copper ingot obtained in Conventional Example 1 (the black dots seen in the metal structure photograph are gas holes). It is clear that it is much less than
[0017]
【The invention's effect】
According to the method of the present invention, it is possible to provide a high-density oxygen-containing copper ingot, and thus it is possible to produce copper products and electric wires such as copper plates and copper bars that are free from defects, and further to pinholes. Since it can produce few copper foils, it can greatly contribute to the development of the electrical and electronic industries.
[Brief description of the drawings]
1 is a metallographic photograph of an oxygen-containing copper ingot obtained in Example 3. FIG.
2 is a metallographic photograph of the oxygen-containing copper ingot obtained in Conventional Example 1. FIG.

Claims (3)

高純度電気銅または再溶解原料銅を燃焼雰囲気炉にて溶解することにより銅溶湯を作製し、得られた銅溶湯を鋳型に導く途中の銅溶湯に露点:−30℃以下の酸素ガスまたは酸素および不活性ガスからなる酸素含有混合ガスを導入することにより銅溶湯に酸素を付加して銅溶湯に含まれる酸素量を10〜600ppmに調整したのち鋳造することによって酸素含有銅鋳塊の密度が8.9g/cm 以上であることを特徴とする高密度酸素含有銅鋳塊の製造方法。A high-purity electrolytic copper or a remelted raw material copper is melted in a combustion atmosphere furnace to prepare a molten copper, and a dew point of −30 ° C. or lower oxygen gas or oxygen is produced in the middle of the resulting molten copper to the mold. The density of the oxygen-containing copper ingot is reduced by adding oxygen to the molten copper by introducing an oxygen-containing mixed gas composed of an inert gas and adjusting the amount of oxygen contained in the molten copper to 10 to 600 ppm and then casting. A method for producing a high-density oxygen-containing copper ingot characterized by being 8.9 g / cm 3 or more . 高純度電気銅または再溶解原料銅を非酸化性雰囲気の電気炉にて溶解することにより酸素含有量:10ppm未満の無酸素銅溶湯を作製し、得られた無酸素銅溶湯を鋳型に導く途中の無酸素銅溶湯に露点:−30℃以下の酸素ガスまたは酸素および不活性ガスからなる酸素含有混合ガスを導入することにより無酸素銅溶湯に酸素を付加して銅溶湯に含まれる酸素量を10〜600ppmに調整したのち鋳造することによって酸素含有銅鋳塊の密度が8.9g/cm 以上であることを特徴とする高密度酸素含有銅鋳塊の製造方法。High-purity electrolytic copper or remelted raw material copper is melted in an electric furnace in a non-oxidizing atmosphere to produce an oxygen-free molten copper with an oxygen content of less than 10 ppm, and the resulting oxygen-free molten copper is being introduced to the mold The oxygen content in the molten copper is determined by adding oxygen to the molten oxygen-free copper by introducing an oxygen-containing mixed gas composed of oxygen gas or oxygen and an inert gas with a dew point of −30 ° C. or less into the molten oxygen-free copper. A method for producing a high-density oxygen-containing copper ingot, characterized in that the density of the oxygen-containing copper ingot is 8.9 g / cm 3 or more by casting after adjusting to 10 to 600 ppm . 前記露点:−30℃以下の酸素含有混合ガスは、露点:−30℃以下の空気であることを特徴とする請求項1または2記載の高密度酸素含有銅鋳塊の製造方法。  The method for producing a high-density oxygen-containing copper ingot according to claim 1 or 2, wherein the oxygen-containing mixed gas having a dew point of -30 ° C or lower is air having a dew point of -30 ° C or lower.
JP2003208017A 2003-08-20 2003-08-20 Method for producing high-density oxygen-containing copper ingot Expired - Lifetime JP4300569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003208017A JP4300569B2 (en) 2003-08-20 2003-08-20 Method for producing high-density oxygen-containing copper ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003208017A JP4300569B2 (en) 2003-08-20 2003-08-20 Method for producing high-density oxygen-containing copper ingot

Publications (2)

Publication Number Publication Date
JP2005059023A JP2005059023A (en) 2005-03-10
JP4300569B2 true JP4300569B2 (en) 2009-07-22

Family

ID=34364276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003208017A Expired - Lifetime JP4300569B2 (en) 2003-08-20 2003-08-20 Method for producing high-density oxygen-containing copper ingot

Country Status (1)

Country Link
JP (1) JP4300569B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2319363B1 (en) * 2006-10-16 2010-01-29 Jordi Pedragosa Sala METHOD OF MANUFACTURE OF CABLES AND TRENCILLAS FOR ELECTRIC CARS OF RACING SCALES AT REDUCED SCALE.
JP5481778B2 (en) * 2007-06-14 2014-04-23 株式会社豊田中央研究所 Metal melt preparation device, metal melt preparation method, metal melt degassing or non-metal inclusion removal device, metal melt manufacturing method, and metal melt degassing or non-metal inclusion removal method
WO2020218237A1 (en) * 2019-04-23 2020-10-29 国立大学法人東北大学 Dross generation suppression method, metal refinement method, and metal refinement apparatus

Also Published As

Publication number Publication date
JP2005059023A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
KR101450916B1 (en) Process for manufacturing copper alloy wire rod and copper alloy wire rod
CN109112319B (en) Slag for nuclear-grade stainless steel electroslag remelting and method for electroslag remelting by using slag
JP2006274383A (en) Method for manufacturing copper material, and copper material
JP2008255417A (en) Method for producing copper material, and copper material
JP2006274384A (en) Method for producing copper material and the copper material
CN108998729B (en) High-strength and high-toughness steel and preparation method thereof
US20050252585A1 (en) Cast ceramic anode for metal oxide electrolytic reduction
JP2012097327A (en) Copper alloy improved in hot and cold workability, method for production thereof, and copper alloy strip or alloy foil obtained from copper alloy
JP5202921B2 (en) Copper alloy wire manufacturing method, copper alloy wire and copper alloy wire manufacturing apparatus
JP2009226419A (en) Method for producing copper or copper alloy wire rod and copper or copper alloy wire rod
JP5064974B2 (en) Ingot manufacturing method for TiAl-based alloy
JP4300569B2 (en) Method for producing high-density oxygen-containing copper ingot
JP3235237B2 (en) Production method of P-containing low oxygen copper using shaft furnace
JP2008255416A (en) Method for manufacturing copper material, and copper material
JP3946966B2 (en) Method for producing Sn-based alloy containing Sn-Ti compound
JPH0867932A (en) Copper anode for high-current density plating
JPH05287402A (en) Production of extra-low oxygen copper and extra-low oxygen copper obtained by this production
JP4140471B2 (en) Copper refining method
JP2006272422A (en) Manufacturing method of copper material and copper material
JP2005144492A (en) Method for producing chromium-zirconium-aluminum-series copper alloy wire rod
JP4505731B2 (en) Method for producing high purity copper ingot with low carbon content
JP2015517030A (en) Manufacturing method of oxide dispersion strengthened platinum-gold alloy
CN113106264B (en) Preparation method of electroslag remelting steel ingot with high yttrium element yield
CN115491615B (en) High-temperature alloy large-specification consumable ingot and preparation method thereof
JP2996378B2 (en) Manufacturing method of copper alloy rod for conductive wire rolled by cold rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4300569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

EXPY Cancellation because of completion of term