WO2020218237A1 - Dross generation suppression method, metal refinement method, and metal refinement apparatus - Google Patents

Dross generation suppression method, metal refinement method, and metal refinement apparatus Download PDF

Info

Publication number
WO2020218237A1
WO2020218237A1 PCT/JP2020/017050 JP2020017050W WO2020218237A1 WO 2020218237 A1 WO2020218237 A1 WO 2020218237A1 JP 2020017050 W JP2020017050 W JP 2020017050W WO 2020218237 A1 WO2020218237 A1 WO 2020218237A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
dross
containing material
generation
housing
Prior art date
Application number
PCT/JP2020/017050
Other languages
French (fr)
Japanese (ja)
Inventor
岳人 平木
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2021516100A priority Critical patent/JPWO2020218237A1/ja
Publication of WO2020218237A1 publication Critical patent/WO2020218237A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/32Refining zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals

Definitions

  • the present invention relates to a method for suppressing the generation of dross, a method for refining a metal, and a metal refining apparatus.
  • the present application claims priority based on Japanese Patent Application No. 2019-08216 filed in Japan on April 23, 2019, the contents of which are incorporated herein by reference.
  • Non-Patent Document 1 describes a method for efficiently separating a metal from dross.
  • Non-Patent Document 1 describes a method for treating dross, and does not describe how to reduce dross fundamentally. In principle, if oxygen, which is an oxidant, is completely blocked, the generation of dross can be suppressed, but it is not realistic in terms of technology and cost.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for suppressing the generation of dross and a method for refining a metal, which can easily suppress the generation of dross.
  • the present inventors have found that if water can be reduced even in the presence of oxygen, the occurrence of dross can be dramatically suppressed. That is, the present invention provides the following means for solving the above problems.
  • the method for suppressing the generation of dross according to the first aspect is to heat and melt the metal-containing material under the condition that the environmental atmosphere in which the metal-containing material is arranged has less moisture than the atmospheric environment surrounding the environmental atmosphere. ..
  • the metal-containing material may be heated and melted while controlling the water content in the environmental atmosphere.
  • the water content may be controlled so that the water content does not increase.
  • the amount of water in the environmental atmosphere at the time of heating and melting may be 2000 ppm or less.
  • the metal-containing substance is a simple substance of aluminum or a group consisting of magnesium, zinc, lithium, potassium, sodium, calcium, iron, titanium, cerium, thorium and beryllium. It may contain an alloy of at least one element selected from and aluminum.
  • the environmental atmosphere in which the metal-containing material is arranged is set to have less moisture than the atmospheric environment around the environmental atmosphere, and the metal-containing material is heated and melted. The metal is taken out from the metal-containing material.
  • the molten metal treatment may be performed after the heating and melting, and the molten metal treatment may be performed under conditions where the water content is less than that in the atmospheric environment.
  • the metal refining apparatus has a housing capable of forming a closed reaction space and storing the metal-containing material, a heating unit for heating the stored metal-containing material, and the above. It is provided with a supply unit connected to the housing and supplying gas into the housing, and a dehumidifying unit connected to the supply unit to dehumidify the moisture in the housing.
  • the metal smelting device may be connected to the housing and further include a discharge unit for discharging gas from the housing, and the discharge unit may be connected to the dehumidification unit.
  • the metal refining apparatus includes a furnace body for storing the metal-containing material, a water-impervious layer covering the opening surface of the furnace body, and a heating unit for heating the stored metal-containing material. You may prepare.
  • the dross generation suppressing method and the metal refining method according to the above aspect the dross generation can be easily suppressed.
  • FIG. 1 It is a schematic diagram of the apparatus used in an Example and a comparative example. It is a photograph which photographed the surface of the AlMg ingot after the treatment of Example 1. It is a photograph of the surface of the AlMg ingot after the treatment of Comparative Example 1. It is a figure which shows the result of Example 2.
  • FIG. 1 It is a schematic diagram of the apparatus used in an Example and a comparative example. It is a photograph which photographed the surface of the AlMg ingot after the treatment of Example 1. It is a photograph of the surface of the AlMg ingot after the treatment of Comparative Example 1. It is a figure which shows the result of Example 2.
  • FIG. 1 It is a schematic diagram of the apparatus used in an Example and a comparative example. It is a photograph which photographed the surface of the AlMg ingot after the treatment of Example 1. It is a photograph of the surface of the AlMg ingot after the treatment of Comparative Example 1. It is a figure which shows the result of Example 2.
  • FIG. 1 It is a schematic
  • FIG. 1 is a cross-sectional view of a melt after heating and melting an aluminum alloy in an atmospheric environment.
  • the melt has a metal layer M and a dross layer D.
  • the metal layer M is a layer in which the metal contained in the molten metal-containing material is solidified.
  • the dross layer D is a layer containing a by-product (dross) produced by heating and melting.
  • Dross is mainly composed of molten metal oxides, unrecovered metals and nitrides, and in actual operation, flux-derived chlorides and fluorides that are added for the purpose of separating the dross layer and the metal layer. Etc. are included. Dross occurs when various metals are melted and melted. Dross is sometimes referred to as slag, slag, or ash.
  • Dross generated during melting and molten metal treatment causes various problems. For example, as the amount of dross generated increases, the amount of metal that can be extracted from the melt decreases. Further, the dross layer D inhibits heat transfer from the surface side of the melt, which causes an increase in the amount of energy required for melting and molten metal treatment. Further, the dross adheres to the refractory bricks of the melting furnace or the like and causes deterioration of the refractory bricks. Further, if dross intervenes in the metal layer M, it causes deterioration of product quality. Further, when the amount of metal that can be taken out from the melt is reduced due to dross, the concentration of impurities contained in the metal is increased, which causes deterioration of product quality.
  • the environmental atmosphere in which the metal-containing material is arranged is set to have less moisture than the atmospheric environment around the environmental atmosphere, and the metal-containing material is heated and melted.
  • the metal-containing material contains a metal that causes dross.
  • the metal-containing material is, for example, a simple substance metal of aluminum, or at least one element selected from the group consisting of magnesium, zinc, lithium, potassium, sodium, calcium, iron, titanium, cerium, thorium, and beryllium, and aluminum. It is an alloy with.
  • the metal content is, for example, an aluminum alloy. If the metal content contains one selected from the group consisting of aluminum, magnesium, zinc, lithium, potassium, sodium, calcium, iron, titanium, cerium, thorium and beryllium, it will oxidize in reaction with water and cause dross. It becomes easy to form. Further, an element such as magnesium that easily occludes hydrogen promotes the reaction shown in FIG. 2 described later, and promotes the generation of dross.
  • Aluminum alloy is an example of metal-containing material. Aluminum alloys are prone to dross, and the treatment of dross is a problem.
  • Aluminum alloys are pure aluminum alloys (1000 series in JIS standard), Al—Cu alloys (2000 series in JIS standard), Al-Mn alloys (3000 series in JIS standard), Al—Si alloys. (4000 series in JIS standard), Al-Mg alloy (5000 series in JIS standard), Al-Mg-Si alloy (6000 series in JIS standard), Al-Zn-Mg alloy (5000 series in JIS standard) Dross occurs in any case of 7000 series), Al—Li alloy (8000 series in JIS standard) and the like.
  • alloying element is magnesium or lithium
  • hydrogen is easily taken into the crystal structure, and dross is particularly likely to occur due to the reaction with water.
  • Al—Mg-based alloys are more prone to dross than pure aluminum-based alloys.
  • Alloy elements are contained, for example, in alloys on the order of a few percent.
  • the abundance ratio of the alloying elements is, for example, 10% or less in terms of weight percent concentration. If the abundance ratio of alloying elements such as magnesium is high, dross is likely to occur.
  • the temperature at which the metal-containing material is heated and melted is determined by the metal species constituting the metal-containing material.
  • the temperature at which the metal-containing material is heated and melted is lower than the range in which the metal-containing material can be heated and melted, the occurrence of dross can be suppressed.
  • the metal-containing material is an aluminum alloy
  • the temperature is preferably 700 ° C. or higher and 1300 ° C. or lower, and more preferably 740 ° C. or higher and 800 ° C. or lower.
  • the temperature is preferably 600 ° C. or higher and 1200 ° C. or lower.
  • the metal content is a zinc alloy
  • the temperature is preferably 300 ° C. or higher and 800 ° C. or lower. The higher the temperature, the more likely it is that dross will occur.
  • the environmental atmosphere at the time of heating and melting shall be a condition where the water content is less than the atmospheric environment.
  • the water content in the environmental atmosphere is preferably 2000 ppm or less, more preferably 1500 ppm, still more preferably 1000 ppm or less, and particularly preferably 500 ppm or less in terms of volume fraction.
  • the water content can be converted from the dew point temperature measured by the dew point meter.
  • a water content of 2000 ppm is a dew point temperature of about -13 ° C.
  • a water content of 1200 ppm is a dew point temperature of about -18 ° C.
  • the higher the heating temperature the smaller the amount of water in the environmental atmosphere.
  • the water content in the environmental atmosphere is preferably 5000 ppm or less, more preferably 4000 ppm or less, and further preferably 2000 ppm or less.
  • Beryllium may be added to the metal-containing material. Beryllium forms a dense surface oxide film on the surface of the molten metal. The surface oxide film is a barrier that inhibits contact between the metal-containing material and oxygen or hydrogen, and suppresses the reaction between the metal-containing material and oxygen or hydrogen.
  • the generation of dross can be suppressed beyond expectations even in an oxygen coexisting environment.
  • the metal content is an aluminum alloy
  • the oxidation of aluminum occurs by the following two reaction formulas. 4Al + 3O 2 ⁇ 2Al 2 O 3 ... (1) 2Al + 3H 2 O ⁇ 3H 2 + Al 2 O 3 ... (2) That is, aluminum reacts with oxygen or moisture to produce dross.
  • the method for suppressing the generation of dross according to the present embodiment can effectively suppress the generation of dross by suppressing the reaction formula (2) even in an environment where the reaction formula (1) can occur. It can be expected that oxygen and water will affect the formation of dross (oxide), but it is true that reducing the amount of water significantly reduces the amount of dross generated despite the presence of oxygen. It exceeds the expectations of the vendor. The reason for this is not clear, but it is thought that the following points are related.
  • FIG. 2 is a diagram schematically showing the reason for the occurrence of dross.
  • FIG. 2 is an image of a cross section of the molten melt, and the melt has a melt region Me and a surface region S. Oxygen and water that cause the generation of dross invade the melt from the surface region S side. The invading oxygen and water react with aluminum to produce oxides.
  • reaction formula (1) The reaction between aluminum and oxygen is represented by the reaction formula (1), and only aluminum oxide is produced.
  • the reaction equation (1) does not produce a by-product, and the reaction is considered to be completed in the surface region S.
  • reaction formula (2) the reaction between aluminum and water is represented by the reaction formula (2), and aluminum oxide and hydrogen as a by-product are generated. Hydrogen spreads in the melt.
  • hydrogen generated as a by-product affects the molten region Me. This relationship is not limited to the case where the metal species is aluminum, and the same applies to the case of other metal elements.
  • magnesium easily reacts with hydrogen, as mentioned in hydrogen storage alloys. It is consistent with the above consideration that dross is likely to occur when the aluminum alloy contains magnesium. This is because it is considered that magnesium attracts the hydrogen generated in the reaction formula (2) to the deeper part of the molten region Me, and the reaction is promoted.
  • the generation of bubbles in the melt can be suppressed.
  • the water content in the environment is suppressed, and the above reaction formula (2) is suppressed. That is, hydrogen is less likely to be generated inside the melt, and hydrogen is less likely to be incorporated into the melt. Hydrogen incorporated into the melt causes the generation of bubbles during solidification. Bubbles become defects in refined metal.
  • FIG. 3 is a flow chart of a metal refining method.
  • the metal refining method includes a melting process of heating and melting a raw material, a molten metal treatment of adjusting a molten metal (melted metal) melted by heating, and a casting process of casting the molten metal.
  • the metal refining method according to the present embodiment is a method for producing a metal from scrap or the like.
  • the melting process is a process of heating and melting the raw material.
  • the melting process is a process in which dross is generated.
  • the above method for suppressing the generation of dross is applied to the melting treatment according to the present embodiment.
  • the raw material is heated and melted under conditions where the water content is less than that in the atmospheric environment.
  • the raw material is, for example, a metal-containing substance such as cutting chips, scrap, and ingot.
  • the metal-containing material is the same as that presented in the method for suppressing the generation of dross.
  • the heating and melting temperature and the environmental atmosphere at the time of heating and melting are the same as those presented in the method for suppressing the generation of dross.
  • the molten metal treatment is a process of adjusting the molten metal by adding flux and alloying elements to the molten liquid (molten metal).
  • the molten metal treatment is a process in which dross is generated.
  • the above-mentioned method for suppressing the generation of dross is applied to the molten metal treatment according to the present embodiment.
  • the molten metal treatment is performed under conditions where the water content is less than that of the atmospheric environment.
  • the environmental atmosphere during the molten metal treatment is the same as that presented in the method for suppressing the generation of dross.
  • the casting process is the process of cooling the molten metal and hardening it again. By solidifying the molten metal, a solid metal is produced.
  • dross generated in each step can be suppressed. Therefore, the energy loss and the increase in cost due to the generation of dross can be suppressed. In addition, the concentration of impurities and the increase of inclusions due to the formation of dross are suppressed, and the quality of the product can be improved. Further, the reaction between the nitride generated by the reaction between the molten metal and nitrogen in the atmosphere and water can be suppressed, and the generation of ammonia which causes a foul odor can be suppressed. Further, the uptake of hydrogen into the melt is suppressed, and the generation of bubble defects can be suppressed.
  • Metal refining equipment The metal refining apparatus according to the present embodiment is an apparatus used for the above-mentioned melting treatment and molten metal treatment, and can heat and melt metal-containing substances under conditions where the water content is less than that in the atmospheric environment.
  • FIG. 4 is a schematic view of a first example of the metal refining apparatus according to the present embodiment.
  • the metal refining apparatus ME1 according to the first example includes a housing C, a heating unit H, a supply unit p1, a dehumidifying unit Dh, a discharge unit p2, a pump P, and a dew point meter Dp.
  • the housing C forms a reaction space R closed inside.
  • the metal-containing material m can be stored in the housing C.
  • the metal-containing material m is housed in the crucible CR, for example, and melts in the crucible CR.
  • the heating unit H heats the metal-containing material m.
  • the heating unit H is, for example, a heater, a burner, or the like.
  • the heating unit H heats the metal-containing material m from the outside of the housing C, for example.
  • the heating unit H may be installed in the housing C as long as it does not release moisture from itself by heating.
  • the supply unit p1 and the discharge unit p2 are connected to the housing C.
  • the supply unit p1 supplies gas into the housing C.
  • the discharge unit p2 is connected to the pump P and discharges gas from the housing C.
  • the supply unit p1 is, for example, an air supply pipe that supplies gas into the housing C.
  • the discharge unit p2 is, for example, an intake pipe that sucks out gas from the housing C.
  • the supply unit p1 and the discharge unit p2 are connected to the dehumidification unit Dh.
  • gas circulates through the dehumidifying portion Dh.
  • the dehumidifying section Dh reduces the amount of water in the reaction space R.
  • the dehumidifying section Dh has a desiccant such as silica gel.
  • FIG. 5 is a schematic view of a second example of the metal refining apparatus according to the present embodiment.
  • the metal refining apparatus ME2 according to the second example includes a housing C, a heating unit H, a supply unit p1, a dehumidifying unit Dh, a discharge unit p2, a pump P, and a dew point meter Dp.
  • the metal refining apparatus ME2 according to the second example is different from the first example in that the discharge portion p2 is not connected to the dehumidifying portion Dh.
  • the same configuration as in the first example will not be described.
  • the air in the reaction space R does not circulate but flows in one direction.
  • the heat generated in the heating portion H is transferred to the metal-containing material m in the crucible CR via the wall surface of the housing C, and the metal-containing material m is melted.
  • the heating unit H may be a natural gas burner or the like containing a large amount of water in the exhaust gas.
  • FIG. 6 is a schematic view of a third example of the metal refining apparatus according to the present embodiment.
  • the metal refining apparatus ME3 according to the third example includes a housing C, a heating unit H, a supply unit p1, a dehumidifying unit Dh, a discharge unit p2, a pump P, and a dew point meter Dp.
  • the metal refining apparatus ME3 according to the third example is different from the second example in that the heating unit H is an indirect heating method in which the supply unit p1 is provided.
  • the same configuration as in the second example will not be described.
  • the dry gas dehumidified by the dehumidifying unit Dh flows in the supply unit p1.
  • the dry gas is heated by the heating unit H and sent to the metal-containing material m.
  • the heated dry gas heats the metal-containing material m and melts it.
  • FIG. 7 is a schematic view of a fourth example of the metal refining apparatus according to the present embodiment.
  • the metal refining apparatus ME4 according to the fourth example has a furnace body CR, an impermeable layer WB, and a heating unit H.
  • the furnace body is composed of at least a metal-containing material and a boundary member for isolating the metal-containing material from the surrounding environment.
  • the metal-containing material m is housed in the furnace body CR.
  • the impermeable layer WB covers the opening surface of the furnace body CR.
  • the impermeable layer WB is a film that suppresses the permeation of water.
  • the impermeable layer WB is, for example, a carbon plate.
  • the heating unit H heats the metal-containing material m and melts the metal-containing material m.
  • the heating unit H is, for example, a burner. Moisture contained in the exhaust gas of the burner reacts in the impermeable layer WB, and it is difficult to reach the metal content m.
  • the impermeable layer may be formed as long as a layer for keeping the surface of the metal-containing material in a dry state is formed, and may be formed by supplying, for example, a heated dry gas. By using a heated dry gas, it can also serve as a heating unit.
  • FIG. 8 is a schematic view of a fifth example of the metal refining apparatus according to the present embodiment.
  • the metal refining apparatus ME5 according to the fifth example has a heating unit H and a gas pipe Gp.
  • the heating unit H is, for example, a burner.
  • the gas pipe Gp covers the periphery of the heating portion H and supplies a dry shield gas between the heating portion H and the gas pipe Gp.
  • the shield gas is, for example, argon, carbon dioxide, or air.
  • the metal-containing substances m1 and m2 are heated by the heating unit H to form a melt mel. By supplying the shield gas from the gas pipe Gp, it is possible to suppress the supply of water to the melt mel.
  • FIG. 9 is a schematic view of the device used in the examples and comparative examples.
  • the device 100 includes a reaction tube 10, an electric furnace 20, a data logger 30, a humidifying device 40, a gas supply unit 50, and a dew point meter 70.
  • the reaction tube 10 has a mounting table 11, a thermocouple 12, a support table 13, a weighing scale 14, and a window 15.
  • the reaction tube 10 is a vertical quartz reaction tube.
  • the mounting table 11 mounts the crucible 60.
  • the mounting table 11 is supported by the support table 13, and the thermocouple 12 is installed on the back surface.
  • the thermocouple 12 measures the temperature of the crucible 60.
  • the weight scale 14 detects a change in the weight of the crucible 60. The state of the melt in the crucible 60 can be confirmed from the window 15.
  • the electric furnace 20 is arranged around the crucible 60 and heats the crucible 60.
  • a high-frequency induction heating furnace was used.
  • the data logger 30 records the temperature change and the weight change of the crucible 60.
  • the humidifying device 40 is connected to the reaction tube 10 and determines the water content of the gas supplied to the reaction tube 10. The amount of water in the gas is measured with a dew point meter 70.
  • the Tekne TK-100 was used as the dew point meter.
  • the gas supply unit 50 is connected to the reaction tube 10 and supplies gas to the reaction tube 10.
  • the gas supply unit 50 includes a cylinder 51, a dehydration column 52, a deoxidizing column 53, and a mass flow controller 54.
  • G1 grade argon, nitrogen and oxygen cylinders were prepared respectively.
  • As the dehydration column 52 a dehydration column DC-A4 manufactured by Nikka Seiko Co., Ltd. was used.
  • the deoxidizing column 53 is connected only to the argon and nitrogen cylinders 51.
  • As the deoxidizing column 53 a deoxidizing column GC-RX manufactured by Nikka Seiko Co., Ltd. was used.
  • the mass flow controller 54 adjusts the amount of argon, the amount of nitrogen, and the amount of oxygen supplied to the reaction tube 10, respectively.
  • Example 1 About 50 g of AlMg ingot cut into 2 cm squares was weighed. The AlMg ingot contains 10% of Mg in weight percent concentration. This raw material was put into the same crucible as the crucible 60, pre-melted in a high-frequency induction heating furnace in an argon gas atmosphere to form a lump, and the dross slightly formed on the surface was cut with a cutter. The obtained massive sample was put into a crucible 60 and melted by heating. For the crucible 60, a dense alumina crucible was used.
  • the supply amount of nitrogen was 780 cc / min
  • the supply amount of oxygen was 210 cc / min
  • the supply amount of argon was 10 cc / min
  • a total of 1000 cc / min of gas was supplied.
  • the dew point of the gas was measured at 10 second intervals. The reproducibility test was performed four times, and the dew point was in the range of -15.2 ° C to -23.3 ° C. This corresponds to 761 ppm to 1631 ppm in terms of water content.
  • FIG. 10 is a photograph of the surface of the AlMg ingot after the treatment of Example 1.
  • the weight change rate of the ingot in Example 1 was 1% or less.
  • Example 1 The difference from Example 1 is that the merged gas is blown into about 500 mL of ultrapure water at room temperature, humidified and supplied.
  • the water content after humidification was about 20 ° C. (2.3%) at the dew point, which was equivalent to the water content in the atmospheric environment.
  • FIG. 11 is a photograph of the surface of the AlMg ingot after the treatment of Comparative Example 1.
  • the weight change rate of the ingot in Comparative Example 1 was 12.6% or less.
  • Example 1 Comparing Example 1 and Comparative Example 1, the weight change of the ingot was small in Example 1, and no dross was confirmed in appearance.
  • Example 1 although the Mg is contained in an amount of 10% by weight, the occurrence of dross is remarkably suppressed.
  • Example 2 In Example 2, the tendency of dross to occur was determined by changing the amount of water in the reaction space and the heating temperature.
  • FIG. 12 shows when about 40 g of an Al-4.5 mass% Mg alloy molten metal is heated at a predetermined temperature for 90 minutes under an air atmosphere (N 2 : 79 vol%, O 2 : 21 vol%) having different water contents. (Numerical value in parentheses in FIG. 12: mass%) was determined. The conditions of the amount of water in the reaction space and the heating temperature were changed by experiments. In FIG. 12, virtual lines having weight increase rates of 0.1%, 1.0%, and 5.0% are shown by dotted lines.
  • the relationship between the amount of water in the experimental reaction space and the heating temperature is shown below.
  • the alloy molten metal installed in the crucible is previously heated and melted in a dry argon atmosphere, and its specific surface area is about 2.0 cm 2 / g.
  • reaction tube 10 reaction tube, 11 mounting table, 12 thermocouple, 13 support table, 14 mass flow controller, 15 window, 20 electric furnace, 30 data logger, 40 humidifier, 50 gas supply unit, 51 cylinder, 52 dehydration column, 53 removal Oxygen column, 54 mass flow controller, 60, CR crucible, 70, Dp dew point meter, 100 device, C housing, Dh dehumidifier, H heating section, ME1, ME2, ME3 metal refining device, P pump, p1 supply section, p2 Discharge part, R reaction space, WB impermeable layer, Gp gas pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

This dross generation suppression method involves: setting an environmental atmosphere, in which a metal-containing object is placed, to a condition of having a water content less than that of the air environment of the periphery of the environmental atmosphere; and heating and melting the metal-containing object.

Description

ドロスの発生抑制方法、金属の精錬方法および金属精錬装置Dross control method, metal refining method and metal refining equipment
 本発明は、ドロスの発生抑制方法、金属の精錬方法および金属精錬装置に関する。本願は、2019年4月23日に、日本に出願された特願2019-082166号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a method for suppressing the generation of dross, a method for refining a metal, and a metal refining apparatus. The present application claims priority based on Japanese Patent Application No. 2019-08216 filed in Japan on April 23, 2019, the contents of which are incorporated herein by reference.
 金属の生産プロセスでは、加熱溶融、溶湯処理が行われる。メッキ処理を行う際には、金属が溶融したメッキ浴を用い、金属の接合時には金属を溶融させる場合が多い。このような溶融処理を行った際の溶融物において主として大気との接触界面にはドロスが生じる。ドロスの主成分は、金属の酸化物である。溶融した金属は、溶融量の数%もの割合が酸化し、ドロス(酸化物)となる。ドロスは、金属の回収効率を低減させ、環境負荷が大きい。製品中にドロスが介在すると不具合の原因となる。例えば、非特許文献1には、ドロスから金属を効率的に分離する方法が記載されている。 In the metal production process, heat melting and molten metal treatment are performed. When performing the plating treatment, a plating bath in which the metal is melted is used, and when the metal is joined, the metal is often melted. Dross occurs mainly at the contact interface with the atmosphere in the melt obtained by such a melting treatment. The main component of dross is a metal oxide. The molten metal oxidizes as much as a few percent of the melted amount to become dross (oxide). Dross reduces the efficiency of metal recovery and has a large environmental load. If dross intervenes in the product, it may cause a malfunction. For example, Non-Patent Document 1 describes a method for efficiently separating a metal from dross.
 例えば非特許文献1は、ドロスの処理方法が記載されており、ドロスを根本的に減らすことについては記載されていない。原理的には、酸化剤となる酸素を完全に遮断すれば、ドロスの発生を抑制できるが、技術的にもコスト的にも現実的ではない。 For example, Non-Patent Document 1 describes a method for treating dross, and does not describe how to reduce dross fundamentally. In principle, if oxygen, which is an oxidant, is completely blocked, the generation of dross can be suppressed, but it is not realistic in terms of technology and cost.
 本発明は上記問題に鑑みてなされたものであり、ドロスの発生を容易に抑制できるドロスの発生抑制方法及び金属の精錬方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for suppressing the generation of dross and a method for refining a metal, which can easily suppress the generation of dross.
 本発明者らは、酸素共存下でも水分を減らすことができれば、ドロスの発生を飛躍的に抑制できることを見出した。すなわち、本発明は、上記課題を解決するため、以下の手段を提供する。 The present inventors have found that if water can be reduced even in the presence of oxygen, the occurrence of dross can be dramatically suppressed. That is, the present invention provides the following means for solving the above problems.
(1)第1の態様にかかるドロスの発生抑制方法は、金属含有物が配置される環境雰囲気を、前記環境雰囲気の周囲の大気環境より水分が少ない条件とし、前記金属含有物を加熱溶融させる。 (1) The method for suppressing the generation of dross according to the first aspect is to heat and melt the metal-containing material under the condition that the environmental atmosphere in which the metal-containing material is arranged has less moisture than the atmospheric environment surrounding the environmental atmosphere. ..
(2)上記態様にかかるドロスの発生抑制方法において、前記環境雰囲気の水分量の制御を行いつつ、前記金属含有物を加熱溶融させてもよい。 (2) In the method for suppressing the generation of dross according to the above aspect, the metal-containing material may be heated and melted while controlling the water content in the environmental atmosphere.
(3)上記態様にかかるドロスの発生抑制方法において、前記水分量の制御は、前記水分量が増加しないように行ってもよい。 (3) In the method for suppressing the generation of dross according to the above aspect, the water content may be controlled so that the water content does not increase.
(4)上記態様にかかるドロスの発生抑制方法において、前記加熱溶融の際の環境雰囲気における水分量が2000ppm以下であってもよい。 (4) In the method for suppressing the generation of dross according to the above aspect, the amount of water in the environmental atmosphere at the time of heating and melting may be 2000 ppm or less.
(5)上記態様にかかるドロスの発生抑制方法において、前記金属含有物が、アルミニウムの単体、又は、マグネシウム、亜鉛、リチウム、カリウム、ナトリウム、カルシウム、鉄、チタン、セリウム、トリウム、ベリリウムからなる群から選択される少なくとも一つ以上の元素とアルミニウムとの合金を含んでもよい。 (5) In the method for suppressing the generation of dross according to the above embodiment, the metal-containing substance is a simple substance of aluminum or a group consisting of magnesium, zinc, lithium, potassium, sodium, calcium, iron, titanium, cerium, thorium and beryllium. It may contain an alloy of at least one element selected from and aluminum.
(6)第2の態様にかかる金属の精錬方法は、金属含有物が配置される環境雰囲気を、前記環境雰囲気の周囲の大気環境より水分が少ない条件とし、前記金属含有物を加熱溶融させ、前記金属含有物から金属を取り出す。 (6) In the metal refining method according to the second aspect, the environmental atmosphere in which the metal-containing material is arranged is set to have less moisture than the atmospheric environment around the environmental atmosphere, and the metal-containing material is heated and melted. The metal is taken out from the metal-containing material.
(7)上記態様に係る金属の精錬方法において、前記加熱溶融を行った後に、溶湯処理を行い、前記溶湯処理を大気環境より水分が少ない条件で行ってもよい。 (7) In the metal refining method according to the above aspect, the molten metal treatment may be performed after the heating and melting, and the molten metal treatment may be performed under conditions where the water content is less than that in the atmospheric environment.
(8)第3の態様にかかる金属精錬装置は、内部に閉じられた反応空間を形成し、金属含有物を格納できる筐体と、格納された前記金属含有物を加熱する加熱部と、前記筐体に接続され、前記筐体内にガスを供給する供給部と、前記供給部に接続され、前記筐体内の水分を除湿する除湿部と、を備える。 (8) The metal refining apparatus according to the third aspect has a housing capable of forming a closed reaction space and storing the metal-containing material, a heating unit for heating the stored metal-containing material, and the above. It is provided with a supply unit connected to the housing and supplying gas into the housing, and a dehumidifying unit connected to the supply unit to dehumidify the moisture in the housing.
(9)上記態様にかかる金属精錬装置は、前記筐体に接続され、前記筐体からガスを排出する排出部をさらに備え、前記排出部は、前記除湿部と接続されていてもよい。 (9) The metal smelting device according to the above aspect may be connected to the housing and further include a discharge unit for discharging gas from the housing, and the discharge unit may be connected to the dehumidification unit.
(10)上記態様にかかる金属精錬装置は、金属含有物を格納する炉本体と、前記炉本体の開口面を覆う遮水層と、収容された前記金属含有物を加熱する加熱部と、を備えてもよい。 (10) The metal refining apparatus according to the above aspect includes a furnace body for storing the metal-containing material, a water-impervious layer covering the opening surface of the furnace body, and a heating unit for heating the stored metal-containing material. You may prepare.
 上記態様にかかるドロスの発生抑制方法及び金属の精錬方法によれば、ドロスの発生を容易に抑制できる。 According to the dross generation suppressing method and the metal refining method according to the above aspect, the dross generation can be easily suppressed.
アルミニウム合金を大気環境で加熱溶融させた後の溶融物の断面図である。It is sectional drawing of the melt after heating and melting an aluminum alloy in an atmospheric environment. ドロスの発生理由を模式的に示した図である。It is the figure which showed typically the reason why dross occurred. 金属精錬方法のフロー図である。It is a flow chart of a metal refining method. 本実施形態にかかる金属精錬装置の第1の例の模式図である。It is a schematic diagram of the 1st example of the metal refining apparatus which concerns on this embodiment. 本実施形態にかかる金属精錬装置の第2の例の模式図である。It is a schematic diagram of the 2nd example of the metal refining apparatus which concerns on this embodiment. 本実施形態にかかる金属精錬装置の第3の例の模式図である。It is a schematic diagram of the 3rd example of the metal refining apparatus which concerns on this embodiment. 本実施形態にかかる金属精錬装置の第4の例の模式図である。It is a schematic diagram of the 4th example of the metal refining apparatus which concerns on this embodiment. 本実施形態にかかる金属精錬装置の第5の例の模式図である。It is a schematic diagram of the 5th example of the metal refining apparatus which concerns on this embodiment. 実施例及び比較例に用いた装置の模式図である。It is a schematic diagram of the apparatus used in an Example and a comparative example. 実施例1の処理後のAlMgインゴットの表面を撮影した写真である。It is a photograph which photographed the surface of the AlMg ingot after the treatment of Example 1. 比較例1の処理後のAlMgインゴットの表面を撮影した写真である。It is a photograph of the surface of the AlMg ingot after the treatment of Comparative Example 1. 実施例2の結果を示す図である。It is a figure which shows the result of Example 2. FIG.
 以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, the present embodiment will be described in detail with reference to the figures as appropriate. The drawings used in the following description may be enlarged for convenience in order to make the features of the present invention easy to understand, and the dimensional ratios of the respective components may differ from the actual ones. is there. The materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and the present invention can be appropriately modified without changing the gist thereof.
「ドロスの発生抑制方法」
 まずドロスについて説明する。図1は、アルミニウム合金を大気環境で加熱溶融させた後の溶融物の断面図である。溶融物は、金属層Mとドロス層Dとを有する。金属層Mは、溶融した金属含有物に含まれる金属が固化した層である。ドロス層Dは、加熱溶融によって生じる副産物(ドロス)を含む層である。ドロスは、溶融した金属の酸化物を主成分とし、未回収の金属や窒化物、また実操業においては、ドロス層と金属層を分離する目的等で投入されるフラックス由来の塩化物、フッ化物等を含む。ドロスは、様々な金属を溶融、溶湯処理する際に生じる。ドロスは、スラグ、ノロ、灰と言われる場合がある。
"Method of suppressing the occurrence of dross"
First, dross will be described. FIG. 1 is a cross-sectional view of a melt after heating and melting an aluminum alloy in an atmospheric environment. The melt has a metal layer M and a dross layer D. The metal layer M is a layer in which the metal contained in the molten metal-containing material is solidified. The dross layer D is a layer containing a by-product (dross) produced by heating and melting. Dross is mainly composed of molten metal oxides, unrecovered metals and nitrides, and in actual operation, flux-derived chlorides and fluorides that are added for the purpose of separating the dross layer and the metal layer. Etc. are included. Dross occurs when various metals are melted and melted. Dross is sometimes referred to as slag, slag, or ash.
 溶融、溶湯処理時に生じるドロスは、様々な問題の原因となる。例えば、ドロスの発生量が増えると、溶融物から取り出せる金属量が減少する。またドロス層Dは、溶融物の表面側からの熱伝達を阻害し、溶融、溶湯処理に要するエネルギー量の増加の原因となる。またドロスは、溶解炉等の耐火れんが等に固着し、耐火れんがの劣化の原因となる。またドロスが金属層M内に介在すると、製品の品質低下の原因となる。またドロスにより溶融物から取り出せる金属量が減少すると、金属中に含まれる不純物濃度が濃化し、製品の品質低下の原因となる。 Dross generated during melting and molten metal treatment causes various problems. For example, as the amount of dross generated increases, the amount of metal that can be extracted from the melt decreases. Further, the dross layer D inhibits heat transfer from the surface side of the melt, which causes an increase in the amount of energy required for melting and molten metal treatment. Further, the dross adheres to the refractory bricks of the melting furnace or the like and causes deterioration of the refractory bricks. Further, if dross intervenes in the metal layer M, it causes deterioration of product quality. Further, when the amount of metal that can be taken out from the melt is reduced due to dross, the concentration of impurities contained in the metal is increased, which causes deterioration of product quality.
 本実施形態に係るドロスの発生抑制方法は、金属含有物が配置される環境雰囲気を、環境雰囲気の周囲の大気環境より水分が少ない条件とし、金属含有物を加熱溶融させる。 In the method for suppressing the generation of dross according to the present embodiment, the environmental atmosphere in which the metal-containing material is arranged is set to have less moisture than the atmospheric environment around the environmental atmosphere, and the metal-containing material is heated and melted.
 金属含有物は、ドロスを発生させる金属を含む。金属含有物は、例えば、アルミニウムの単体金属、又は、マグネシウム、亜鉛、リチウム、カリウム、ナトリウム、カルシウム、鉄、チタン、セリウム、トリウム、ベリリウムからなる群から選択される少なく一つ以上の元素とアルミニウムとの合金である。金属含有物は、例えば、アルミニウム合金である。金属含有物がアルミニウム、マグネシウム、亜鉛、リチウム、カリウム、ナトリウム、カルシウム、鉄、チタン、セリウム、トリウム、ベリリウムからなる群から選択されるいずれかを含むと、水との反応で酸化し、ドロスを形成しやすくなる。またマグネシウムのように水素を吸蔵しやすい元素は、後述する図2に記した反応が促進され、ドロスの発生が促進する。 The metal-containing material contains a metal that causes dross. The metal-containing material is, for example, a simple substance metal of aluminum, or at least one element selected from the group consisting of magnesium, zinc, lithium, potassium, sodium, calcium, iron, titanium, cerium, thorium, and beryllium, and aluminum. It is an alloy with. The metal content is, for example, an aluminum alloy. If the metal content contains one selected from the group consisting of aluminum, magnesium, zinc, lithium, potassium, sodium, calcium, iron, titanium, cerium, thorium and beryllium, it will oxidize in reaction with water and cause dross. It becomes easy to form. Further, an element such as magnesium that easily occludes hydrogen promotes the reaction shown in FIG. 2 described later, and promotes the generation of dross.
 金属含有物の一例としてアルミニウム合金がある。アルミニウム合金は、ドロスが発生しやすく、ドロスの処理が問題となっている。 Aluminum alloy is an example of metal-containing material. Aluminum alloys are prone to dross, and the treatment of dross is a problem.
 アルミニウム合金は、純アルミニウム系合金(JIS規格における1000番系)、Al-Cu系合金(JIS規格における2000番系)、Al-Mn系合金(JIS規格における3000番系)、Al-Si系合金(JIS規格における4000番系)、Al-Mg系合金(JIS規格における5000番系)、Al-Mg-Si系合金(JIS規格における6000番系)、Al-Zn-Mg系合金(JIS規格における7000番系)、Al-Li系合金(JIS規格における8000番系)等のいずれの場合でもドロスが生じる。 Aluminum alloys are pure aluminum alloys (1000 series in JIS standard), Al—Cu alloys (2000 series in JIS standard), Al-Mn alloys (3000 series in JIS standard), Al—Si alloys. (4000 series in JIS standard), Al-Mg alloy (5000 series in JIS standard), Al-Mg-Si alloy (6000 series in JIS standard), Al-Zn-Mg alloy (5000 series in JIS standard) Dross occurs in any case of 7000 series), Al—Li alloy (8000 series in JIS standard) and the like.
 合金元素が、マグネシウムやリチウムの場合は、結晶構造内に水素を取り込みやすく、水との反応によりドロスが特に発生しやすい。例えば、Al-Mg系合金は、純アルミニウム系合金よりドロスが発生しやすい。合金元素は、例えば、合金中に数%のオーダーで含まれる。合金元素の存在比率は、例えば、重量パーセント濃度で10%以下である。マグネシウムのような合金元素の存在比率が多いと、ドロスは発生しやすくなる。 When the alloying element is magnesium or lithium, hydrogen is easily taken into the crystal structure, and dross is particularly likely to occur due to the reaction with water. For example, Al—Mg-based alloys are more prone to dross than pure aluminum-based alloys. Alloy elements are contained, for example, in alloys on the order of a few percent. The abundance ratio of the alloying elements is, for example, 10% or less in terms of weight percent concentration. If the abundance ratio of alloying elements such as magnesium is high, dross is likely to occur.
 金属含有物を加熱溶融させる際の温度は、金属含有物を構成する金属種によって決定される。金属含有物を加熱溶融させる際の温度は、金属含有物を加熱溶融できる範囲の中で低い方が、ドロスの発生を抑制できる。例えば金属含有物がアルミニウム合金の場合は、700℃以上1300℃以下とすることが好ましく、740℃以上800℃以下とすることがより好ましい。また例えば金属含有物がマグネシウム合金の場合は、600℃以上1200℃以下とすることが好ましい。例えば金属含有物が亜鉛合金の場合は、300℃以上800℃以下とすることが好ましい。温度が高いほど、ドロスは発生しやすくなる。 The temperature at which the metal-containing material is heated and melted is determined by the metal species constituting the metal-containing material. When the temperature at which the metal-containing material is heated and melted is lower than the range in which the metal-containing material can be heated and melted, the occurrence of dross can be suppressed. For example, when the metal-containing material is an aluminum alloy, the temperature is preferably 700 ° C. or higher and 1300 ° C. or lower, and more preferably 740 ° C. or higher and 800 ° C. or lower. Further, for example, when the metal-containing material is a magnesium alloy, the temperature is preferably 600 ° C. or higher and 1200 ° C. or lower. For example, when the metal content is a zinc alloy, the temperature is preferably 300 ° C. or higher and 800 ° C. or lower. The higher the temperature, the more likely it is that dross will occur.
 加熱溶融の際の環境雰囲気は、大気環境より水分が少ない条件とする。例えば、環境雰囲気における水分量は、好ましくは体積分率で2000ppm以下であり、より好ましくは1500ppmであり、さらに好ましくは1000ppm以下であり、特に好ましくは500ppm以下である。水分量は、露点計で測定される露点温度から換算できる。水分量2000ppmは露点温度-13℃程度であり、水分量1200ppmは露点温度-18℃程度である。加熱温度が高いほど環境雰囲気における水分量は少ないことが好ましい。例えば、加熱温度を740℃以上800℃以下とする場合は、環境雰囲気における水分量を好ましくは5000ppm以下とし、より好ましくは4000ppm以下とし、さらに好ましくは2000ppm以下とする。 The environmental atmosphere at the time of heating and melting shall be a condition where the water content is less than the atmospheric environment. For example, the water content in the environmental atmosphere is preferably 2000 ppm or less, more preferably 1500 ppm, still more preferably 1000 ppm or less, and particularly preferably 500 ppm or less in terms of volume fraction. The water content can be converted from the dew point temperature measured by the dew point meter. A water content of 2000 ppm is a dew point temperature of about -13 ° C., and a water content of 1200 ppm is a dew point temperature of about -18 ° C. It is preferable that the higher the heating temperature, the smaller the amount of water in the environmental atmosphere. For example, when the heating temperature is 740 ° C. or higher and 800 ° C. or lower, the water content in the environmental atmosphere is preferably 5000 ppm or less, more preferably 4000 ppm or less, and further preferably 2000 ppm or less.
 金属含有物には、ベリリウムを添加してもよい。ベリリウムは、溶融した金属の表面に緻密な表面酸化膜を形成する。表面酸化膜は、金属含有物と酸素又は水素とが接することを阻害するバリアであり、金属含有物と酸素又は水素との反応を抑制する。 Beryllium may be added to the metal-containing material. Beryllium forms a dense surface oxide film on the surface of the molten metal. The surface oxide film is a barrier that inhibits contact between the metal-containing material and oxygen or hydrogen, and suppresses the reaction between the metal-containing material and oxygen or hydrogen.
 本実施形態に係るドロスの発生抑制方法によれば、酸素共存環境下にもかかわらず、予想を超えてドロスの発生を抑制できる。 According to the method for suppressing the generation of dross according to the present embodiment, the generation of dross can be suppressed beyond expectations even in an oxygen coexisting environment.
 例えば、金属含有物がアルミニウム合金の場合、アルミニウムの酸化は以下の2つの反応式により生じる。
 4Al+3O→2Al・・・(1)
 2Al+3HO→3H+Al・・・(2)
 すなわち、アルミニウムは酸素又は水分と反応し、ドロスを生み出す。
For example, when the metal content is an aluminum alloy, the oxidation of aluminum occurs by the following two reaction formulas.
4Al + 3O 2 → 2Al 2 O 3 ... (1)
2Al + 3H 2 O → 3H 2 + Al 2 O 3 ... (2)
That is, aluminum reacts with oxygen or moisture to produce dross.
 本実施形態に係るドロスの発生抑制方法は、反応式(1)が起こりうる環境下にもかかわらず、反応式(2)を抑制することで、ドロスの発生を効果的に抑制できる。ドロス(酸化物)の生成に酸素と水分が影響することは予想できるが、酸素が存在する環境下にも関わらず、水分量を減らすことでドロスの発生量が大幅に低減することは、当業者の予想を超えるものである。この理由は明確ではないが以下の点が関係しているのではないかと考えられる。 The method for suppressing the generation of dross according to the present embodiment can effectively suppress the generation of dross by suppressing the reaction formula (2) even in an environment where the reaction formula (1) can occur. It can be expected that oxygen and water will affect the formation of dross (oxide), but it is true that reducing the amount of water significantly reduces the amount of dross generated despite the presence of oxygen. It exceeds the expectations of the vendor. The reason for this is not clear, but it is thought that the following points are related.
 図2は、ドロスの発生理由を模式的に示した図である。図2は、溶融した溶融液の断面のイメージであり、溶融液は溶融領域Meと表面領域Sとを有する。ドロスの発生の原因となる酸素や水は、表面領域S側から溶融液に侵入する。侵入した酸素や水は、アルミニウムと反応し、酸化物を生み出す。 FIG. 2 is a diagram schematically showing the reason for the occurrence of dross. FIG. 2 is an image of a cross section of the molten melt, and the melt has a melt region Me and a surface region S. Oxygen and water that cause the generation of dross invade the melt from the surface region S side. The invading oxygen and water react with aluminum to produce oxides.
 アルミニウムと酸素との反応は反応式(1)で表され、酸化アルミニウムのみが生じる。反応式(1)は副生成物を生み出さず、反応は表面領域Sで完結すると考えられる。これに対し、アルミニウムと水との反応は反応式(2)で表され、酸化アルミニウムと、副生成物として水素が生じる。水素は、溶融液中に広がる。反応式(2)の場合、副生成物として生じた水素が溶融領域Meまで影響を及ぼす。この関係は、金属種がアルミニウムの場合に限られるものではなく、他の金属元素の場合においても同様である。 The reaction between aluminum and oxygen is represented by the reaction formula (1), and only aluminum oxide is produced. The reaction equation (1) does not produce a by-product, and the reaction is considered to be completed in the surface region S. On the other hand, the reaction between aluminum and water is represented by the reaction formula (2), and aluminum oxide and hydrogen as a by-product are generated. Hydrogen spreads in the melt. In the case of the reaction formula (2), hydrogen generated as a by-product affects the molten region Me. This relationship is not limited to the case where the metal species is aluminum, and the same applies to the case of other metal elements.
 酸素によるドロスの発生は表面領域Sで収まるのに対し、水によるドロスの発生は溶融領域Meまで影響を及ぼしていると考えられる。すなわち、環境中における水分を抑制すれば、ドロスが発生する反応を表面領域Sで留めることができ、酸素共存環境下でもドロスの発生を効果的に抑制できているのではないかと考えられる。 It is considered that the generation of dross due to oxygen is contained in the surface region S, while the generation of dross due to water affects the molten region Me. That is, it is considered that if the water content in the environment is suppressed, the reaction in which dross is generated can be stopped in the surface region S, and the generation of dross can be effectively suppressed even in an oxygen coexisting environment.
 例えば、マグネシウムは、水素吸蔵合金に挙げられるように、水素と反応しやすい。アルミニウム合金がマグネシウムを含む場合に、ドロスが発生しやすくなるということは、上記考察とも矛盾しない。マグネシウムが反応式(2)で生じた水素をより溶融領域Meの深部まで引き寄せ、反応が促進されていると考えられるためである。 For example, magnesium easily reacts with hydrogen, as mentioned in hydrogen storage alloys. It is consistent with the above consideration that dross is likely to occur when the aluminum alloy contains magnesium. This is because it is considered that magnesium attracts the hydrogen generated in the reaction formula (2) to the deeper part of the molten region Me, and the reaction is promoted.
 また本実施形態にかかる方法によれば、溶融体における気泡の発生を抑制できる。本実施形態にかかる方法によると、環境中における水分が抑制されており、上記の反応式(2)が抑制される。すなわち、溶融体の内部において水素が発生しにくく、溶融体に水素が取り込まれにくい。溶融体に取り込まれた水素は、凝固時に気泡の発生の原因となる。気泡は、精錬された金属における欠陥となる。 Further, according to the method according to the present embodiment, the generation of bubbles in the melt can be suppressed. According to the method according to the present embodiment, the water content in the environment is suppressed, and the above reaction formula (2) is suppressed. That is, hydrogen is less likely to be generated inside the melt, and hydrogen is less likely to be incorporated into the melt. Hydrogen incorporated into the melt causes the generation of bubbles during solidification. Bubbles become defects in refined metal.
「金属の精錬方法」
 本実施形態に係る金属の精錬方法は、上記のドロスの発生抑制方法を用いる。図3は、金属精錬方法のフロー図である。金属の精錬方法は、原料を加熱溶融する溶融処理と、加熱溶融した溶融物(溶湯)を調整する溶湯処理と、溶融物を鋳造する鋳造処理と、を有する。本実施形態に係る金属の精錬方法は、スクラップ等から金属を製造する方法である。
"Metal refining method"
As the metal refining method according to the present embodiment, the above-mentioned dross generation suppressing method is used. FIG. 3 is a flow chart of a metal refining method. The metal refining method includes a melting process of heating and melting a raw material, a molten metal treatment of adjusting a molten metal (melted metal) melted by heating, and a casting process of casting the molten metal. The metal refining method according to the present embodiment is a method for producing a metal from scrap or the like.
 溶融処理は、原料を加熱溶融する工程である。溶融処理は、ドロスが発生する工程である。本実施形態に係る溶融処理は、上記のドロスの発生抑制方法を適用する。溶融処理は、原料を大気環境より水分が少ない条件で加熱溶融させる。 The melting process is a process of heating and melting the raw material. The melting process is a process in which dross is generated. The above method for suppressing the generation of dross is applied to the melting treatment according to the present embodiment. In the melting process, the raw material is heated and melted under conditions where the water content is less than that in the atmospheric environment.
 原料は、例えば、切削屑、スクラップ、インゴット等の金属含有物である。金属含有物は、ドロスの発生抑制方法において提示したものと同様である。加熱溶融温度、加熱溶融の際の環境雰囲気も、ドロスの発生抑制方法において提示したものと同様である。 The raw material is, for example, a metal-containing substance such as cutting chips, scrap, and ingot. The metal-containing material is the same as that presented in the method for suppressing the generation of dross. The heating and melting temperature and the environmental atmosphere at the time of heating and melting are the same as those presented in the method for suppressing the generation of dross.
 溶湯処理は、溶融液(溶湯)にフラックスや合金元素を添加し、溶湯を調整する工程である。溶湯処理は、ドロスが発生する工程である。本実施形態に係る溶湯処理は、上記のドロスの発生抑制方法を適用する。溶湯処理は、大気環境より水分が少ない条件で行う。溶湯処理の際の環境雰囲気は、ドロスの発生抑制方法において提示したものと同様である。 The molten metal treatment is a process of adjusting the molten metal by adding flux and alloying elements to the molten liquid (molten metal). The molten metal treatment is a process in which dross is generated. The above-mentioned method for suppressing the generation of dross is applied to the molten metal treatment according to the present embodiment. The molten metal treatment is performed under conditions where the water content is less than that of the atmospheric environment. The environmental atmosphere during the molten metal treatment is the same as that presented in the method for suppressing the generation of dross.
 鋳造工程は、溶湯を冷やし再度固める工程である。溶湯を固めることで、固体の金属が生成される。 The casting process is the process of cooling the molten metal and hardening it again. By solidifying the molten metal, a solid metal is produced.
 上述のように、本実施形態に係る金属の精錬方法によれば、各工程で発生するドロスを抑制できる。そのため、ドロスの生成に伴うエネルギー損失及びコストの増加を抑制できる。またドロスの生成に伴う不純物の濃化や介在物の増加が抑制され、製品の品質を向上することができる。さらに、溶湯と大気中の窒素等との反応により生成した窒化物と水との反応を抑制し、悪臭の原因となるアンモニアの発生を抑制することができる。さらに、溶融体への水素の取り込みが抑制され、気泡欠陥の発生を抑制することができる。 As described above, according to the metal refining method according to the present embodiment, dross generated in each step can be suppressed. Therefore, the energy loss and the increase in cost due to the generation of dross can be suppressed. In addition, the concentration of impurities and the increase of inclusions due to the formation of dross are suppressed, and the quality of the product can be improved. Further, the reaction between the nitride generated by the reaction between the molten metal and nitrogen in the atmosphere and water can be suppressed, and the generation of ammonia which causes a foul odor can be suppressed. Further, the uptake of hydrogen into the melt is suppressed, and the generation of bubble defects can be suppressed.
「金属精錬装置」
 本実施形態にかかる金属精錬装置は、上述の溶融処理、溶湯処理に用いられる装置であり、金属含有物を大気環境より水分が少ない条件で加熱溶融できる。
"Metal refining equipment"
The metal refining apparatus according to the present embodiment is an apparatus used for the above-mentioned melting treatment and molten metal treatment, and can heat and melt metal-containing substances under conditions where the water content is less than that in the atmospheric environment.
 図4は、本実施形態にかかる金属精錬装置の第1の例の模式図である。第1の例にかかる金属精錬装置ME1は、筐体Cと加熱部Hと供給部p1と除湿部Dhと排出部p2とポンプPと露点計Dpを有する。 FIG. 4 is a schematic view of a first example of the metal refining apparatus according to the present embodiment. The metal refining apparatus ME1 according to the first example includes a housing C, a heating unit H, a supply unit p1, a dehumidifying unit Dh, a discharge unit p2, a pump P, and a dew point meter Dp.
 筐体Cは、内部に閉じられた反応空間Rを形成する。筐体C内には、金属含有物mを格納できる。金属含有物mは、例えば、坩堝CR内に収容され、坩堝CR内で溶融する。加熱部Hは、金属含有物mを加熱する。加熱部Hは、例えば、ヒータ、バーナー等である。加熱部Hは、例えば、筐体Cの外側から金属含有物mを加熱する。加熱部Hは、加熱により自身から水分を放出しないものであれば、筐体C内に設置してもよい。 The housing C forms a reaction space R closed inside. The metal-containing material m can be stored in the housing C. The metal-containing material m is housed in the crucible CR, for example, and melts in the crucible CR. The heating unit H heats the metal-containing material m. The heating unit H is, for example, a heater, a burner, or the like. The heating unit H heats the metal-containing material m from the outside of the housing C, for example. The heating unit H may be installed in the housing C as long as it does not release moisture from itself by heating.
 供給部p1及び排出部p2は、筐体Cに接続されている。供給部p1は、筐体C内にガスを供給する。排出部p2は、ポンプPに接続され、筐体Cからガスを排出する。供給部p1は、例えば、筐体C内にガスを供給する送気管である。排出部p2は、例えば、筐体Cからガスを吸い出す吸気管である。第1の例にかかる金属精錬装置ME1において、供給部p1及び排出部p2は、除湿部Dhに接続されている。第1の例にかかる金属精錬装置ME1は、除湿部Dhを介してガスが循環する。除湿部Dhは、反応空間R内の水分量を低減する。除湿部Dhは、例えば、シリカゲル等の乾燥剤を有する。 The supply unit p1 and the discharge unit p2 are connected to the housing C. The supply unit p1 supplies gas into the housing C. The discharge unit p2 is connected to the pump P and discharges gas from the housing C. The supply unit p1 is, for example, an air supply pipe that supplies gas into the housing C. The discharge unit p2 is, for example, an intake pipe that sucks out gas from the housing C. In the metal refining apparatus ME1 according to the first example, the supply unit p1 and the discharge unit p2 are connected to the dehumidification unit Dh. In the metal refining apparatus ME1 according to the first example, gas circulates through the dehumidifying portion Dh. The dehumidifying section Dh reduces the amount of water in the reaction space R. The dehumidifying section Dh has a desiccant such as silica gel.
 図5は、本実施形態にかかる金属精錬装置の第2の例の模式図である。第2の例にかかる金属精錬装置ME2は、筐体Cと加熱部Hと供給部p1と除湿部Dhと排出部p2とポンプPと露点計Dpを有する。第2の例にかかる金属精錬装置ME2は、排出部p2が除湿部Dhに接続されていない点が、第1の例と異なる。第2の例において、第1の例と同様の構成については説明を省く。反応空間R内の空気は循環せず、一方向にフローしている。加熱部Hで生じた熱は、筐体Cの壁面を介し、坩堝CR内の金属含有物mに伝わり、金属含有物mが溶融する。加熱部Hは、多量の水分を排ガスに含む天然ガスバーナー等でもよい。 FIG. 5 is a schematic view of a second example of the metal refining apparatus according to the present embodiment. The metal refining apparatus ME2 according to the second example includes a housing C, a heating unit H, a supply unit p1, a dehumidifying unit Dh, a discharge unit p2, a pump P, and a dew point meter Dp. The metal refining apparatus ME2 according to the second example is different from the first example in that the discharge portion p2 is not connected to the dehumidifying portion Dh. In the second example, the same configuration as in the first example will not be described. The air in the reaction space R does not circulate but flows in one direction. The heat generated in the heating portion H is transferred to the metal-containing material m in the crucible CR via the wall surface of the housing C, and the metal-containing material m is melted. The heating unit H may be a natural gas burner or the like containing a large amount of water in the exhaust gas.
 図6は、本実施形態にかかる金属精錬装置の第3の例の模式図である。第3の例にかかる金属精錬装置ME3は、筐体Cと加熱部Hと供給部p1と除湿部Dhと排出部p2とポンプPと露点計Dpを有する。第3の例にかかる金属精錬装置ME3は、加熱部Hが供給部p1する間接加熱方式である点が、第2の例と異なる。第3の例において、第2の例と同様の構成については説明を省く。供給部p1内には、除湿部Dhで除湿された乾燥気体が流れる。乾燥気体は、加熱部Hで加熱され、金属含有物mに送られる。加熱された乾燥気体は、金属含有物mを加熱し、溶融する。 FIG. 6 is a schematic view of a third example of the metal refining apparatus according to the present embodiment. The metal refining apparatus ME3 according to the third example includes a housing C, a heating unit H, a supply unit p1, a dehumidifying unit Dh, a discharge unit p2, a pump P, and a dew point meter Dp. The metal refining apparatus ME3 according to the third example is different from the second example in that the heating unit H is an indirect heating method in which the supply unit p1 is provided. In the third example, the same configuration as in the second example will not be described. The dry gas dehumidified by the dehumidifying unit Dh flows in the supply unit p1. The dry gas is heated by the heating unit H and sent to the metal-containing material m. The heated dry gas heats the metal-containing material m and melts it.
 図7は、本実施形態にかかる金属精錬装置の第4の例の模式図である。第4の例にかかる金属精錬装置ME4は、炉本体CRと遮水層WBと加熱部Hとを有する。炉本体とは、少なくとも金属含有物と、該金属含有物を周辺環境から隔離するための境界部材とからなる。金属含有物mは、炉本体CR内に収容される。遮水層WBは、炉本体CRの開口面を覆う。遮水層WBは、水分の透過を抑制する膜である。遮水層WBは、例えば、炭素板である。気相中の水分は、C+HO=CO+Hの反応により除去される。加熱部Hは、金属含有物mを加熱し、金属含有物mを溶融する。加熱部Hは、例えば、バーナーである。バーナーの排ガスに含まれる水分は、遮水層WBで反応し、金属含有物mまでは至りにくい。遮水層は、金属含有物の表面を乾燥状態に保つための層が形成されていればよく、たとえば加熱した乾燥気体を供給することで形成してもよい。加熱した乾燥気体を用いることにより、加熱部を兼ねることができる。 FIG. 7 is a schematic view of a fourth example of the metal refining apparatus according to the present embodiment. The metal refining apparatus ME4 according to the fourth example has a furnace body CR, an impermeable layer WB, and a heating unit H. The furnace body is composed of at least a metal-containing material and a boundary member for isolating the metal-containing material from the surrounding environment. The metal-containing material m is housed in the furnace body CR. The impermeable layer WB covers the opening surface of the furnace body CR. The impermeable layer WB is a film that suppresses the permeation of water. The impermeable layer WB is, for example, a carbon plate. Moisture in the gas phase is removed by the reaction of C + H 2 O = CO + H 2 . The heating unit H heats the metal-containing material m and melts the metal-containing material m. The heating unit H is, for example, a burner. Moisture contained in the exhaust gas of the burner reacts in the impermeable layer WB, and it is difficult to reach the metal content m. The impermeable layer may be formed as long as a layer for keeping the surface of the metal-containing material in a dry state is formed, and may be formed by supplying, for example, a heated dry gas. By using a heated dry gas, it can also serve as a heating unit.
 図8は、本実施形態にかかる金属精錬装置の第5の例の模式図である。第5の例にかかる金属精錬装置ME5は、加熱部Hとガス管Gpとを有する。加熱部Hは、例えば、バーナーである。ガス管Gpは、加熱部Hの周囲を覆い、加熱部Hとガス管Gpとの間に乾燥したシールドガスを供給する。シールドガスは、例えば、アルゴン、二酸化炭素、空気である。金属含有物m1、m2は、加熱部Hにより加熱され溶融体melとなる。ガス管Gpからシールドガスを供給することで、溶融体melに水分が供給されることを抑制できる。 FIG. 8 is a schematic view of a fifth example of the metal refining apparatus according to the present embodiment. The metal refining apparatus ME5 according to the fifth example has a heating unit H and a gas pipe Gp. The heating unit H is, for example, a burner. The gas pipe Gp covers the periphery of the heating portion H and supplies a dry shield gas between the heating portion H and the gas pipe Gp. The shield gas is, for example, argon, carbon dioxide, or air. The metal-containing substances m1 and m2 are heated by the heating unit H to form a melt mel. By supplying the shield gas from the gas pipe Gp, it is possible to suppress the supply of water to the melt mel.
 以上、本発明は上記の実施形態及び変形例に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 As described above, the present invention is not limited to the above-described embodiments and modifications, and various modifications and modifications can be made within the scope of the gist of the present invention described within the scope of claims.
 図9は、実施例及び比較例に用いた装置の模式図である。装置100は、反応管10と電気炉20とデータロガー30と加湿装置40とガス供給部50と露点計70とを有する。 FIG. 9 is a schematic view of the device used in the examples and comparative examples. The device 100 includes a reaction tube 10, an electric furnace 20, a data logger 30, a humidifying device 40, a gas supply unit 50, and a dew point meter 70.
 反応管10は、載置台11と熱電対12と支持台13と重量計14と窓15とを有する。反応管10は、縦型の石英反応管である。載置台11は坩堝60を載置する。載置台11は、支持台13で支持され、裏面に熱電対12が設置されている。熱電対12は、坩堝60の温度を測定する。重量計14は、坩堝60の重量変化を検知する。坩堝60内の溶融液の状態は、窓15から確認できる。 The reaction tube 10 has a mounting table 11, a thermocouple 12, a support table 13, a weighing scale 14, and a window 15. The reaction tube 10 is a vertical quartz reaction tube. The mounting table 11 mounts the crucible 60. The mounting table 11 is supported by the support table 13, and the thermocouple 12 is installed on the back surface. The thermocouple 12 measures the temperature of the crucible 60. The weight scale 14 detects a change in the weight of the crucible 60. The state of the melt in the crucible 60 can be confirmed from the window 15.
 電気炉20は、坩堝60の周囲に配置され、坩堝60を加熱する。電気炉20は、高周波誘導加熱炉を用いた。データロガー30は、坩堝60の温度変化及び重量変化を記録する。加湿装置40は、反応管10に接続され、反応管10に供給されるガスの水分量を決定する。ガス中の水分量は露点計70にて測定する。露点計はテクネ計測のTK-100を用いた。 The electric furnace 20 is arranged around the crucible 60 and heats the crucible 60. As the electric furnace 20, a high-frequency induction heating furnace was used. The data logger 30 records the temperature change and the weight change of the crucible 60. The humidifying device 40 is connected to the reaction tube 10 and determines the water content of the gas supplied to the reaction tube 10. The amount of water in the gas is measured with a dew point meter 70. The Tekne TK-100 was used as the dew point meter.
 ガス供給部50は、反応管10に接続され、反応管10にガスを供給する。ガス供給部50は、ボンベ51と脱水分カラム52と脱酸素カラム53とマスフローコントローラー54とを有する。ボンベ51は、G1グレードのアルゴン、窒素及び酸素のボンベをそれぞれ準備した。脱水分カラム52は、日化精工製脱水分カラムDC-A4を用いた。脱酸素カラム53は、アルゴンと窒素のボンベ51のみに接続される。脱酸素カラム53は、日化精工製脱酸素カラムGC-RXを用いた。マスフローコントローラー54は、反応管10へ供給するアルゴン量、窒素量、酸素量をそれぞれ調整する。 The gas supply unit 50 is connected to the reaction tube 10 and supplies gas to the reaction tube 10. The gas supply unit 50 includes a cylinder 51, a dehydration column 52, a deoxidizing column 53, and a mass flow controller 54. For the cylinder 51, G1 grade argon, nitrogen and oxygen cylinders were prepared respectively. As the dehydration column 52, a dehydration column DC-A4 manufactured by Nikka Seiko Co., Ltd. was used. The deoxidizing column 53 is connected only to the argon and nitrogen cylinders 51. As the deoxidizing column 53, a deoxidizing column GC-RX manufactured by Nikka Seiko Co., Ltd. was used. The mass flow controller 54 adjusts the amount of argon, the amount of nitrogen, and the amount of oxygen supplied to the reaction tube 10, respectively.
(実施例1)
 AlMgインゴットを2cm角程度に切断したものを約50g分秤量した。AlMgインゴットは、Mgを重量パーセント濃度で10%含む。この原料を坩堝60と同じ坩堝に投入し、アルゴンガス雰囲気にて高周波誘導加熱炉で予備溶融して塊状とし、表面にわずかに生成したドロスはカッターで切断した。得られた塊状サンプルを坩堝60内に投入して加熱溶融した。坩堝60は、緻密質アルミナるつぼを用いた。
(Example 1)
About 50 g of AlMg ingot cut into 2 cm squares was weighed. The AlMg ingot contains 10% of Mg in weight percent concentration. This raw material was put into the same crucible as the crucible 60, pre-melted in a high-frequency induction heating furnace in an argon gas atmosphere to form a lump, and the dross slightly formed on the surface was cut with a cutter. The obtained massive sample was put into a crucible 60 and melted by heating. For the crucible 60, a dense alumina crucible was used.
 ガスは、窒素の供給量を780cc/min、酸素の供給量を210cc/min、アルゴンの供給量を10cc/minとし、計1000cc/minのガスを供給した。ガスが合流後に、ガスの露点を10秒間隔で測定した。4回再現性試験を行い、露点は-15.2℃~-23.3℃の範囲内であった。これは、水分量換算で、761ppm~1631ppmに対応する。 As for the gas, the supply amount of nitrogen was 780 cc / min, the supply amount of oxygen was 210 cc / min, and the supply amount of argon was 10 cc / min, and a total of 1000 cc / min of gas was supplied. After the gas merged, the dew point of the gas was measured at 10 second intervals. The reproducibility test was performed four times, and the dew point was in the range of -15.2 ° C to -23.3 ° C. This corresponds to 761 ppm to 1631 ppm in terms of water content.
 上記条件で、Al-10%Mgインゴットを800℃で90分間、加熱した後、冷却した。図10は、実施例1の処理後のAlMgインゴットの表面を撮影した写真である。実施例1におけるインゴットの重量変化率は1%以下であった。 Under the above conditions, the Al-10% Mg ingot was heated at 800 ° C. for 90 minutes and then cooled. FIG. 10 is a photograph of the surface of the AlMg ingot after the treatment of Example 1. The weight change rate of the ingot in Example 1 was 1% or less.
(比較例1)
 合流後のガスを室温の超純水約500mLに吹き込み、加湿して供給した点が実施例1と異なる。加湿後の水分量は露点で約20℃(2.3%)であり大気環境の水分量と同等であった。図11は、比較例1の処理後のAlMgインゴットの表面を撮影した写真である。比較例1におけるインゴットの重量変化率は12.6%以下であった。
(Comparative Example 1)
The difference from Example 1 is that the merged gas is blown into about 500 mL of ultrapure water at room temperature, humidified and supplied. The water content after humidification was about 20 ° C. (2.3%) at the dew point, which was equivalent to the water content in the atmospheric environment. FIG. 11 is a photograph of the surface of the AlMg ingot after the treatment of Comparative Example 1. The weight change rate of the ingot in Comparative Example 1 was 12.6% or less.
 実施例1と比較例1とを比較すると、実施例1はインゴットの重量変化が少なく、見た目にもドロスは確認されなかった。実施例1は、Mgを重量パーセント濃度で10%含むにもかかわらず、ドロスの発生を顕著に抑制している。 Comparing Example 1 and Comparative Example 1, the weight change of the ingot was small in Example 1, and no dross was confirmed in appearance. In Example 1, although the Mg is contained in an amount of 10% by weight, the occurrence of dross is remarkably suppressed.
(実施例2)
 実施例2は、反応空間内の水分量と加熱温度を変えて、ドロスの発生傾向を求めた。
 図12は、約40gのAl-4.5質量%Mg合金溶湯を、異なる水分量の空気雰囲気(N:79vol%、O:21vol%)下で、所定の温度で90分加熱した際の重量増加率(図12におけるカッコ内の数値:質量%)を求めた。反応空間内の水分量と加熱温度とは、実験により条件を変えた。図12には、重量増加率が0.1%、1.0%、5.0%となる仮想線を点線で示した。
(Example 2)
In Example 2, the tendency of dross to occur was determined by changing the amount of water in the reaction space and the heating temperature.
FIG. 12 shows when about 40 g of an Al-4.5 mass% Mg alloy molten metal is heated at a predetermined temperature for 90 minutes under an air atmosphere (N 2 : 79 vol%, O 2 : 21 vol%) having different water contents. (Numerical value in parentheses in FIG. 12: mass%) was determined. The conditions of the amount of water in the reaction space and the heating temperature were changed by experiments. In FIG. 12, virtual lines having weight increase rates of 0.1%, 1.0%, and 5.0% are shown by dotted lines.
 実験した反応空間内の水分量と加熱温度の関係を以下に示す。坩堝に設置された合金溶湯は、予め乾燥アルゴン雰囲気下で加熱溶解されており、その比表面積は約2.0cm/gである。
 加熱温度:800℃、水分量:10734ppm、重量増加率:6.2質量%
 加熱温度:800℃、水分量:6232ppm、重量増加率:3.0質量%
 加熱温度:800℃、水分量:3396ppm、重量増加率:0.53質量%
 加熱温度:750℃、水分量:8492ppm、重量増加率:5.7質量%
 加熱温度:750℃、水分量:4941ppm、重量増加率:3.3質量%
 加熱温度:730℃、水分量:8732ppm、重量増加率:1.1質量%
 加熱温度:730℃、水分量:4504ppm、重量増加率:0.16質量%
The relationship between the amount of water in the experimental reaction space and the heating temperature is shown below. The alloy molten metal installed in the crucible is previously heated and melted in a dry argon atmosphere, and its specific surface area is about 2.0 cm 2 / g.
Heating temperature: 800 ° C., Moisture content: 10734ppm, Weight increase rate: 6.2% by mass
Heating temperature: 800 ° C, water content: 6232ppm, weight increase rate: 3.0% by mass
Heating temperature: 800 ° C, water content: 3396ppm, weight increase rate: 0.53% by mass
Heating temperature: 750 ° C, water content: 8492 ppm, weight increase rate: 5.7 mass%
Heating temperature: 750 ° C, water content: 4941 ppm, weight increase rate: 3.3 mass%
Heating temperature: 730 ° C, water content: 8732 ppm, weight increase rate: 1.1 mass%
Heating temperature: 730 ° C, water content: 4504 ppm, weight increase rate: 0.16 mass%
 図12に示すように、水分濃度が高いほど重量増加率が高くなり、ドロスの発生が増加する傾向にあった。またその傾向は、加熱温度が高いほど顕著であった。 As shown in FIG. 12, the higher the water concentration, the higher the weight increase rate, and the occurrence of dross tended to increase. The tendency was more remarkable as the heating temperature was higher.
10 反応管、11 載置台、12 熱電対、13 支持台、14 重量計、15 窓、20 電気炉、30 データロガー、40 加湿装置、50 ガス供給部、51 ボンベ、52 脱水分カラム、53 脱酸素カラム、54 マスフローコントローラー、60,CR 坩堝、70,Dp 露点計、100 装置、C 筐体、Dh 除湿部、H 加熱部、ME1,ME2,ME3 金属精錬装置、P ポンプ、p1 供給部、p2 排出部、R 反応空間、WB 遮水層、Gp ガス管 10 reaction tube, 11 mounting table, 12 thermocouple, 13 support table, 14 mass flow controller, 15 window, 20 electric furnace, 30 data logger, 40 humidifier, 50 gas supply unit, 51 cylinder, 52 dehydration column, 53 removal Oxygen column, 54 mass flow controller, 60, CR crucible, 70, Dp dew point meter, 100 device, C housing, Dh dehumidifier, H heating section, ME1, ME2, ME3 metal refining device, P pump, p1 supply section, p2 Discharge part, R reaction space, WB impermeable layer, Gp gas pipe

Claims (10)

  1.  金属含有物が配置される環境雰囲気を、前記環境雰囲気の周囲の大気環境より水分が少ない条件とし、前記金属含有物を加熱溶融させる、ドロスの発生抑制方法。 A method for suppressing the generation of dross, in which the environmental atmosphere in which the metal-containing material is arranged is set to have less moisture than the atmospheric environment surrounding the environmental atmosphere, and the metal-containing material is heated and melted.
  2.  前記環境雰囲気の水分量の制御を行いつつ、前記金属含有物を加熱溶融させる、請求項1に記載のドロスの発生抑制方法。 The method for suppressing the generation of dross according to claim 1, wherein the metal-containing material is heated and melted while controlling the amount of water in the environmental atmosphere.
  3.  前記水分量の制御は、前記水分量が増加しないように行われる、請求項2に記載のドロスの発生抑制方法。 The method for suppressing the generation of dross according to claim 2, wherein the control of the water content is performed so that the water content does not increase.
  4.  前記加熱溶融の際の環境雰囲気における水分量が2000ppm以下である、請求項1~3のいずれか一項に記載のドロスの発生抑制方法。 The method for suppressing the generation of dross according to any one of claims 1 to 3, wherein the water content in the environmental atmosphere at the time of heating and melting is 2000 ppm or less.
  5.  前記金属含有物が、アルミニウムの単体、又は、マグネシウム、亜鉛、リチウム、カリウム、ナトリウム、カルシウム、鉄、チタン、セリウム、トリウム、ベリリウムからなる群から選択される少なく一つ以上の元素とアルミニウムとの合金を含む、請求項1~4のいずれか一項に記載のドロスの発生抑制方法。 The metal-containing substance is a simple substance of aluminum, or at least one element selected from the group consisting of magnesium, zinc, lithium, potassium, sodium, calcium, iron, titanium, cerium, thorium, and beryllium, and aluminum. The method for suppressing the generation of dross according to any one of claims 1 to 4, which comprises an alloy.
  6.  金属含有物が配置される環境雰囲気を、前記環境雰囲気の周囲の大気環境より水分が少ない条件とし、前記金属含有物を加熱溶融させ、前記金属含有物から金属を取り出す、金属の精錬方法。 A metal refining method in which the environmental atmosphere in which the metal-containing material is arranged is set to have less moisture than the atmospheric environment surrounding the environmental atmosphere, the metal-containing material is heated and melted, and the metal is taken out from the metal-containing material.
  7.  前記加熱溶融を行った後に、溶湯処理を行い、
     前記溶湯処理を大気環境より水分が少ない条件で行う、請求項6に記載の金属の精錬方法。
    After the heat melting, the molten metal treatment is performed.
    The metal refining method according to claim 6, wherein the molten metal treatment is performed under conditions where the water content is less than that of the atmospheric environment.
  8.  内部に閉じられた反応空間を形成し、金属含有物を格納できる筐体と、
     格納された前記金属含有物を加熱する加熱部と、
     前記筐体に接続され、前記筐体内にガスを供給する供給部と、
     前記供給部に接続され、前記筐体内の水分を低減する除湿部と、を備える、金属精錬装置。
    A housing that forms a closed reaction space inside and can store metal-containing materials,
    A heating unit that heats the stored metal-containing material,
    A supply unit connected to the housing and supplying gas into the housing,
    A metal smelting device including a dehumidifying unit connected to the supply unit and reducing water content in the housing.
  9.  前記筐体に接続され、前記筐体からガスを排出する排出部をさらに備え、
     前記排出部は、前記除湿部と接続されている、請求項8に記載の金属精錬装置。
    Further provided with a discharge unit connected to the housing and discharging gas from the housing,
    The metal smelting apparatus according to claim 8, wherein the discharge unit is connected to the dehumidification unit.
  10.  金属含有物を収容する炉本体と、
     前記炉本体の開口面を覆う遮水層と、
     収容された前記金属含有物を加熱する加熱部と、を備える、金属精錬装置。
    The furnace body that houses the metal-containing material and
    An impermeable layer that covers the opening surface of the furnace body and
    A metal refining apparatus including a heating unit for heating the contained metal-containing material.
PCT/JP2020/017050 2019-04-23 2020-04-20 Dross generation suppression method, metal refinement method, and metal refinement apparatus WO2020218237A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021516100A JPWO2020218237A1 (en) 2019-04-23 2020-04-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019082166 2019-04-23
JP2019-082166 2019-04-23

Publications (1)

Publication Number Publication Date
WO2020218237A1 true WO2020218237A1 (en) 2020-10-29

Family

ID=72942736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017050 WO2020218237A1 (en) 2019-04-23 2020-04-20 Dross generation suppression method, metal refinement method, and metal refinement apparatus

Country Status (2)

Country Link
JP (1) JPWO2020218237A1 (en)
WO (1) WO2020218237A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921653B (en) * 2022-05-24 2023-08-11 湖南顶立科技有限公司 Ternary lithium battery material reduction device, control method and lithium recovery method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240724A (en) * 1986-04-11 1987-10-21 Showa Alum Corp Treating apparatus for molten metal
JPH10195554A (en) * 1996-11-15 1998-07-28 Kobe Steel Ltd Treatment of aluminum-containing material and treating apparatus therefor
US5917114A (en) * 1996-11-01 1999-06-29 The Ohio State University Degassing of liquid aluminum and other metals
JP2003089825A (en) * 2001-09-14 2003-03-28 Nisshin Steel Co Ltd Method for producing high purity metal and alloy
JP2003129143A (en) * 2001-10-16 2003-05-08 Nisshin Steel Co Ltd Method for melting high-purity metal or alloy
JP2005059023A (en) * 2003-08-20 2005-03-10 Mitsubishi Materials Corp Method for manufacturing copper ingot with high-density oxygen
WO2005046912A1 (en) * 2003-11-12 2005-05-26 Cabotsupermetals K.K. Method for producing metallic tantalum or niobium
CN102492862A (en) * 2011-11-30 2012-06-13 云南省化工研究院 Method of preparing aluminum-silicon alloy and cryolite from sodium fluorosilicate
CN109055770A (en) * 2018-09-30 2018-12-21 重庆钢铁(集团)有限责任公司 A kind of electroslag remelting slag and it is used for electroslag remelting 40CrNiMoA low hydrogen control method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240724A (en) * 1986-04-11 1987-10-21 Showa Alum Corp Treating apparatus for molten metal
US5917114A (en) * 1996-11-01 1999-06-29 The Ohio State University Degassing of liquid aluminum and other metals
JPH10195554A (en) * 1996-11-15 1998-07-28 Kobe Steel Ltd Treatment of aluminum-containing material and treating apparatus therefor
JP2003089825A (en) * 2001-09-14 2003-03-28 Nisshin Steel Co Ltd Method for producing high purity metal and alloy
JP2003129143A (en) * 2001-10-16 2003-05-08 Nisshin Steel Co Ltd Method for melting high-purity metal or alloy
JP2005059023A (en) * 2003-08-20 2005-03-10 Mitsubishi Materials Corp Method for manufacturing copper ingot with high-density oxygen
WO2005046912A1 (en) * 2003-11-12 2005-05-26 Cabotsupermetals K.K. Method for producing metallic tantalum or niobium
CN102492862A (en) * 2011-11-30 2012-06-13 云南省化工研究院 Method of preparing aluminum-silicon alloy and cryolite from sodium fluorosilicate
CN109055770A (en) * 2018-09-30 2018-12-21 重庆钢铁(集团)有限责任公司 A kind of electroslag remelting slag and it is used for electroslag remelting 40CrNiMoA low hydrogen control method

Also Published As

Publication number Publication date
JPWO2020218237A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
JPS5844730B2 (en) Gustiyuuniyuuhouhououoyobisouchi
JP2007167863A (en) Method for manufacturing aluminum ingot, aluminum ingot, and protective gas for manufacturing aluminum ingot
US4099965A (en) Method of using MgCl2 -KCl flux for purification of an aluminum alloy preparation
WO2020218237A1 (en) Dross generation suppression method, metal refinement method, and metal refinement apparatus
CN101643855B (en) Method for refining aluminum and aluminum alloy melt through in-situ reduction
US8302657B2 (en) Casting process for aluminum alloys
CN107557604A (en) Aluminum refining agent and preparation method thereof
CN107289782A (en) A kind of many stove association type smelting-casting equipments and technique for producing high-cleanness, high magnesium or magnesium alloy
JP4048505B2 (en) Method for melting magnesium and magnesium alloy
EP0726114A2 (en) Method and apparatus for reducing moisture and hydrogen pick up of hygroscopic molten salts during aluminum-lithium alloy ingot casting
JP3740131B2 (en) Refining method for molten aluminum alloy and refining flux for molten aluminum alloy
RU2048568C1 (en) Method for production of aluminium-lithium alloys
JPH02175047A (en) Treatment of molten steel for casting by high-purity magnesium
JP2009114532A (en) Manufacturing method of magnesium alloy material
US2965477A (en) Treatment of molten metals
JP3766363B2 (en) Method for refining molten aluminum alloy
US1160430A (en) Process of melting aluminum or aluminum alloys.
JP4311175B2 (en) Method for producing silver ingot
JP2007111721A (en) Heat-retaining material for molten steel surface, and continuous casting method for steel using the same
JP3681292B2 (en) Gas bubbling method for crucible induction furnace
CN110885935B (en) Casting method suitable for Mg-Al alloy grain refinement
RU2190679C1 (en) Magnesium alloy ingot production method
Li et al. Revealing the structure and evolution of entrained oxide film in Mg–Y alloy castings
Neff Degassing
JP4555512B2 (en) Slag reforming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516100

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795630

Country of ref document: EP

Kind code of ref document: A1