JPH06212300A - Manufacture of low oxygen copper containing p by using shaft furnace - Google Patents

Manufacture of low oxygen copper containing p by using shaft furnace

Info

Publication number
JPH06212300A
JPH06212300A JP538193A JP538193A JPH06212300A JP H06212300 A JPH06212300 A JP H06212300A JP 538193 A JP538193 A JP 538193A JP 538193 A JP538193 A JP 538193A JP H06212300 A JPH06212300 A JP H06212300A
Authority
JP
Japan
Prior art keywords
copper
oxygen
molten metal
ppm
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP538193A
Other languages
Japanese (ja)
Other versions
JP3235237B2 (en
Inventor
Kenji Osumi
研治 大隅
Kiyomasa Oga
清正 大賀
Motohiro Arai
基浩 新井
Katsuhiro Yokochi
克洋 横地
Takanori Wada
孝憲 和田
Keiichi Kumagai
啓一 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP538193A priority Critical patent/JP3235237B2/en
Publication of JPH06212300A publication Critical patent/JPH06212300A/en
Application granted granted Critical
Publication of JP3235237B2 publication Critical patent/JP3235237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To efficiently manufacture low oxygen copper containing P in a series of processes involving the shaft furnace holding furnace (oxidation treatment) continuous transfer by a moving spout casting. CONSTITUTION:Electric copper or pure copper scrap are used as a raw material and melted in a shaft furnace. This molten metal is continuously supplied to a mold 4 through a moving spout. P content is adjusted in the moving runner, and at the same time, low oxygen copper containing P is manufactured by executing deoxidation while blowing inert gas into the molten metal and stirring the molten metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はP含有低酸素銅の製法に
関し、詳細には、シャフト炉→保持炉(酸化処理)→移
湯樋による連続移送→鋳造を含めた一連の工程でP含有
低酸素銅を製造する方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing P-containing low-oxygen copper, and more specifically, it contains P in a series of steps including a shaft furnace → holding furnace (oxidation treatment) → continuous transfer by a transfer gutter → casting. The present invention relates to a method for producing low oxygen copper.

【0002】[0002]

【従来の技術】銅系製品はその組成により純銅系と銅合
金系に大別されており、純銅系はJIS規格により酸素
含有量で次の3種に分類される。 無酸素銅:酸素量10ppm以下 P脱酸銅:酸素量20〜50ppm タフピッチ銅:酸素量250〜350ppm
2. Description of the Related Art Copper-based products are roughly classified into pure copper-based products and copper alloy-based products according to their composition. The pure copper-based products are classified into the following three types according to JIS standard based on oxygen content. Oxygen-free copper: oxygen content of 10 ppm or less P deoxidized copper: oxygen content of 20 to 50 ppm Tough pitch copper: oxygen content of 250 to 350 ppm

【0003】このうち無酸素銅は最も高純度であり、熱
伝導度や電気伝導度において最良のものであるが、強度
不足であるため汎用性に問題がある。そこで強度不足の
問題を解消するため、無酸素銅に少量のPを含有させた
ものが市販されている。即ちPは、無酸素銅の熱的・電
気的特性をあまり変化させることなく強度を高める作用
を有しているからである。
Of these, oxygen-free copper has the highest purity and is the best in terms of thermal conductivity and electrical conductivity, but it lacks strength and is problematic in versatility. Therefore, in order to solve the problem of insufficient strength, oxygen-free copper containing a small amount of P is commercially available. That is, P has the function of increasing the strength without significantly changing the thermal and electrical characteristics of oxygen-free copper.

【0004】P含有無酸素銅の製法として現在実用化さ
れているのは、真空炉や雰囲気(H2,CO等の還元性ガス)
炉を用いて無酸素銅を溶製し、これに必要量のPを添加
する方法であり、無酸素銅製造設備が不可欠となる。
Currently used as a process for producing P-containing oxygen-free copper is a vacuum furnace and an atmosphere (reducing gas such as H 2 and CO).
This is a method of melting oxygen-free copper using a furnace and adding a necessary amount of P to this, and an oxygen-free copper manufacturing facility is indispensable.

【0005】P含有無酸素銅の他の製法として上記の
P脱酸銅を使用する方法も考えられるが、P脱酸銅は以
下に詳述する如く無酸素銅に比べて酸素含有率が高く
(酸素量:20〜50ppm)、これをP含有無酸素銅
として実用可能にするには、酸素量を10ppmレベル
以下に低減する必要がある。
As another method for producing P-containing oxygen-free copper, a method of using the above-mentioned P-deoxidized copper can be considered. However, P-deoxidized copper has a higher oxygen content than oxygen-free copper as described in detail below. (Oxygen amount: 20 to 50 ppm). To make it practical as a P-containing oxygen-free copper, it is necessary to reduce the oxygen amount to 10 ppm level or less.

【0006】即ちP脱酸銅は、電気銅地金もしくはこれ
を純銅系屑を原料としてシャフト炉を用いて還元性雰囲
気で溶解し、その後必要により保持炉を経て鋳造する際
に、保持炉以降・鋳造前の段階でPを添加することによ
り脱酸を行なうが、このP脱酸処理によって達成し得る
酸素レベルは20〜40ppmで十分とされており、無
酸素銅レベル(酸素量:10ppm以下)までの脱酸は
行なわれていない。通常の無酸素銅製造設備には、極低
酸素レベルまでの脱酸を可能にするため真空炉或はH2
やCO等の気体還元炉等の如く脱酸を高度に進めるため
の専用設備が設けられているが、P脱酸銅製造設備には
この様な専用設備が付設されていないので、P脱酸銅製
造設備をP含有無酸素銅の製造に有効に活用するには、
その製造ライン内でP脱酸銅の酸素量を無酸素銅レベル
まで低減する技術を確立しなければならない。
That is, P deoxidized copper is obtained by melting electrolytic copper ingot or pure copper-based scrap as a raw material in a reducing atmosphere in a shaft furnace and then casting through a holding furnace, if necessary, after the holding furnace. Deoxidation is carried out by adding P at the stage before casting, but the oxygen level attainable by this P deoxidation treatment is said to be sufficient at 20 to 40 ppm, and the oxygen-free copper level (oxygen amount: 10 ppm or less ) Has not been deoxidized. Ordinary oxygen-free copper production facilities have a vacuum furnace or H 2 to enable deoxidation to extremely low oxygen levels.
Although special equipment such as a gas reduction furnace for CO, CO, etc. is provided for advanced deoxidation, since P deoxidation copper production equipment is not equipped with such special equipment, P deoxidation is performed. To effectively utilize the copper manufacturing equipment for the production of P-containing oxygen-free copper,
A technique for reducing the oxygen content of P-deoxidized copper to the oxygen-free copper level must be established within the production line.

【0007】またP脱酸銅では、脱酸に用いたPが10
〜20ppm程度混入してくるが、P含有低酸素銅では
約20ppm以上のPが要求されることもあるので、場
合によってはP含有量を積極的に高める方策も考慮しな
ければならない。
In P deoxidized copper, P used for deoxidation is 10
Although about 20 ppm is mixed, about 20 ppm or more of P may be required for P-containing low-oxygen copper. Therefore, it is necessary to consider a method of positively increasing the P content in some cases.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、シャ
フト炉を備えた従来のP脱酸銅製造設備を活用し、酸素
量10ppm以下、P含有量10〜140ppmといっ
たP含有低酸素銅を生産性良く製造することのできる技
術を確立しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to utilize a conventional P-deoxidized copper production facility equipped with a shaft furnace to obtain oxygen. It is intended to establish a technique capable of producing P-containing low oxygen copper having an amount of 10 ppm or less and a P content of 10 to 140 ppm with high productivity.

【0009】[0009]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係るP含有低酸素銅の製法とは、電気
銅地金もしくはこれと純銅系屑を原料として、これらを
シャフト炉により還元性雰囲気で溶解し、該溶湯を移湯
樋を通して連続的に鋳型へ供給することとし、該移湯樋
においてP含有量を調整すると共に、該溶湯中に不活性
ガスを吹込んで溶湯を撹拌しながら脱酸するところに要
旨を有するものである。このとき、シャフト炉で得た溶
湯を保持炉で酸化処理(精錬)し、水素をはじめとする
酸化性不純元素を除去してから移湯樋へ送り、P含有量
の調整および脱酸処理を行なえば、一層高品質のP含有
低酸素銅を得ることができる。また上記においては、最
終的に得られるP含有酸素銅中のP含有量を調整するこ
とによって、P含有による障害を殆ど生じることなくそ
の添加効果(特に高強度化)を有効に発揮させることが
できる。
The method for producing P-containing low-oxygen copper according to the present invention, which has been able to solve the above-mentioned problems, is to use electrolytic copper ingot or pure copper-based scrap as a raw material, and use them in a shaft furnace. The molten metal is melted in a reducing atmosphere, and the molten metal is continuously supplied to the mold through the molten metal transfer gutter. The P content is adjusted in the molten metal transfer gutter, and an inert gas is blown into the molten metal to stir the molten metal. However, it has the gist of deoxidizing. At this time, the molten metal obtained in the shaft furnace is oxidized (refined) in a holding furnace to remove hydrogen and other oxidizing impurities, and then sent to a transfer trough to adjust the P content and deoxidize. If done, a higher quality P-containing low oxygen copper can be obtained. Moreover, in the above, by adjusting the P content in the finally obtained P-containing oxygen copper, the effect of addition (particularly high strength) can be effectively exhibited with almost no trouble due to P content. it can.

【0010】[0010]

【作用】本発明では、元々不純物含量の少ない電気銅地
金もしくはこれと純銅系屑を原料とし、これをシャフト
炉により還元性雰囲気で溶解した後、通常はこの溶湯を
一旦保持炉へ送り、該保持炉から移湯樋を通して連続的
に鋳型へ供給して鋳造を行なう際に、該移湯樋上でP含
有量を調整すると共に、無酸素銅の酸素量レベルまでの
脱酸を連続的に行なってP含有低酸素銅が得られる様に
したものであり、これにより、シャフト炉を用いたP脱
酸銅製造設備をうまく活用してP含有低酸素銅を効率良
く製造することを可能にしたものである。従って本発明
では、移湯樋上で無酸素銅の酸素レベルまで脱酸を行な
うところに最大の特徴があるので、以下この脱酸工程を
主体にして説明を進める。
In the present invention, electrolytic copper ingot originally having a small amount of impurities or pure copper waste is used as a raw material, and this is melted in a reducing atmosphere in a shaft furnace, and then this molten metal is usually sent to a holding furnace. When continuously feeding from the holding furnace to the mold through the transfer trough, the P content is adjusted on the transfer trough and deoxidation of oxygen-free copper to the oxygen level is continuously performed. By doing so, it is possible to obtain P-containing low oxygen copper, which enables efficient production of P-containing low oxygen copper by making good use of the P deoxidized copper production equipment using a shaft furnace. It was done. Therefore, the present invention is most characterized in that deoxidation is carried out to the oxygen level of oxygen-free copper on the transfer trough, and therefore the description will be made mainly on this deoxidation step.

【0011】前述の如くシャフト炉を用いた従来のP脱
酸銅製造工程では、脱酸剤としてPを添加することによ
り溶湯中の酸素をP25 として除去される。このとき
溶湯中にはPの一部が混入するので、Pは脱酸剤として
作用するだけでなく、強度向上のためのP源としても有
効に活用される。ところがこのP脱酸法で達成すること
のできる酸素含有量はせいぜい20〜40ppmまでで
あり、無酸素銅に求められる10ppm以下の酸素量を
達成することはできない。
As described above, in the conventional process for producing P-deoxidized copper using the shaft furnace, oxygen in the molten metal is removed as P 2 O 5 by adding P as a deoxidizing agent. At this time, since a part of P is mixed in the molten metal, P not only acts as a deoxidizing agent, but is also effectively utilized as a P source for improving strength. However, the oxygen content that can be achieved by this P deoxidation method is at most 20 to 40 ppm, and the oxygen content of 10 ppm or less required for oxygen-free copper cannot be achieved.

【0012】そこで移湯樋を用いた移湯過程で酸素量を
10ppmレベル以下に低減することのできる方法を確
立すべく研究を進めた。そして先ず、鉄鋼材よりなる溶
湯の還元法として汎用されている固体還元剤(木炭粉
等)を使用し、これを移湯樋を流れる銅溶湯に添加する
ことによって脱酸する方法を試みた。即ち鉄鋼溶湯に固
体還元剤を添加して該溶湯を撹拌すると、溶湯中の酸素
は下記の反応によってCO2 となった後、更にCと反応
してCOとなり、 O2 +C→CO2 CO2 +C→2CO↑ 生成したCOは順次溶鋼表面で溶鋼熱により燃焼して上
方空間へ放散されていく。即ち溶湯中の酸素は、固体還
元剤との反応によりCO2 からCOに変化して順次放散
されていくため、比較的短時間の内に酸素量は急速に低
減する。
Therefore, research was conducted to establish a method capable of reducing the amount of oxygen to a level of 10 ppm or less in a transfer process using a transfer gutter. Then, first, a solid reducing agent (charcoal powder or the like) generally used as a method for reducing a molten metal made of iron and steel was used, and an attempt was made to add it to a copper molten metal flowing through a transfer trough to deoxidize it. That is, when a solid reducing agent is added to the molten steel and the molten metal is stirred, oxygen in the molten metal becomes CO 2 by the following reaction, and then further reacts with C to become CO, and O 2 + C → CO 2 CO 2 + C → 2CO ↑ The generated CO is sequentially burned on the surface of the molten steel by the heat of the molten steel and is diffused to the upper space. That is, the oxygen in the molten metal changes from CO 2 to CO due to the reaction with the solid reducing agent and is sequentially diffused, so that the oxygen amount rapidly decreases within a relatively short time.

【0013】ところが銅溶湯の脱酸状況は、上記鉄鋼溶
湯の脱酸状況とはかなり異なっている。すなわち、銅溶
湯中のガス成分を分圧平衡法により調べた結果による
と、C+O2 →CO2 への反応は速やかに進行するが、
CO2 +C→2COの反応は非常に遅く、銅溶湯中には
多量のCO2 が溶存していることが明らかとなった。こ
れは銅溶湯へのCO2 の溶解度が高いためと思われ、こ
のため固体還元剤を用いた銅溶湯の脱酸は、数千〜数万
ppmといった高酸素レベルから数百ppmの酸素量ま
で脱酸処理には有効であるが、それ以上の脱酸に利用す
ることはできず、従って10ppm以下が到達目標酸素
レベルである本発明には適用できない。
However, the deoxidation situation of the molten copper is quite different from the deoxidation situation of the above-mentioned molten steel. That is, according to the result of examining the gas component in the molten copper by the partial pressure equilibrium method, the reaction of C + O 2 → CO 2 proceeds rapidly,
The reaction of CO 2 + C → 2CO was very slow, and it became clear that a large amount of CO 2 was dissolved in the molten copper. This is thought to be due to the high solubility of CO 2 in the molten copper, and therefore deoxidation of the molten copper using the solid reducing agent is from a high oxygen level of several thousands to several tens of thousands ppm to an oxygen amount of several hundreds of ppm. Although effective for deoxidation treatment, it cannot be used for further deoxidation, and therefore cannot be applied to the present invention in which the target oxygen level to be reached is 10 ppm or less.

【0014】そこで銅溶湯中に溶存しているCO2 を効
率良く除去して酸素含量を10ppmレベル以下にまで
低減させるべく更に研究を進めた結果、銅溶湯内に不活
性ガスを吹込み、この不活性ガス気泡内に溶湯中のCO
2 を拡散移行させてから該ガス気泡と共に溶湯表面に浮
上させる方法を採用すれば、銅溶湯が移湯樋を移送され
る比較的短時間の内に酸素量を10ppm以下に低減し
得ることが分かった。
Therefore, as a result of further research aimed at efficiently removing CO 2 dissolved in the copper melt and reducing the oxygen content to a level of 10 ppm or less, an inert gas was blown into the copper melt. CO in the molten metal in the inert gas bubbles
By adopting a method of diffusing and transferring 2 and then floating it onto the surface of the molten metal together with the gas bubbles, it is possible to reduce the amount of oxygen to 10 ppm or less within a relatively short time when the molten copper is transferred through the transfer gutter. Do you get it.

【0015】またこの不活性ガス吹込みは、回転ノズル
を用いて行ない、その回転により溶湯を撹拌して不活性
ガスを樋内の銅溶湯全体に行き渡らせると共に、その回
転によりノズル先端部で吹込みガス気泡を剪断して該気
泡を微細化してやれば、不活性ガス気泡の表面積拡大に
よってCO2 捕捉効果が高められ、脱酸を一層効率良く
進め得ることが分かった。そしてこうした不活性ガス吹
込みノズルの回転による脱酸促進効果は、該吹込みノズ
ルを、先端開口部の周速度が120m/分、より好まし
くは300m/分、更に好ましくは400m/分以上と
なる様に回転させることによって確実に発揮されること
が確認された。しかもこの様な条件設定の下では、銅溶
湯中に含まれる他のガス成分、例えば水素等も微細な不
活性ガス気泡に拡散捕捉されて効率良く除去されるので
好ましい。
This inert gas is blown by using a rotary nozzle, and the rotation thereof agitates the molten metal to spread the inert gas over the entire copper molten metal in the trough, and the rotation blows it at the tip of the nozzle. It has been found that if the gas bubbles are sheared to make the bubbles finer, the surface area of the inert gas bubbles is increased to enhance the CO 2 trapping effect and the deoxidation can be proceeded more efficiently. The deoxidizing effect of the rotation of the inert gas blowing nozzle is such that the peripheral velocity of the tip opening of the blowing nozzle is 120 m / min, more preferably 300 m / min, and further preferably 400 m / min or more. It was confirmed that it can be surely exhibited by rotating like this. Moreover, under such condition setting, other gas components contained in the molten copper, such as hydrogen, are diffused and trapped by the fine inert gas bubbles and are efficiently removed, which is preferable.

【0016】従って本発明で使用する不活性ガス吹込み
ノズルとしては、その回転により吹込みガス気泡が微細
化すると共に、溶湯を撹拌して該微細気泡を溶湯全体に
拡散せしめ得る様な構造のものが好ましく、たとえば図
2(A),(B)に示す様な先端構造のものが用いられ
る。即ち図2(A)はノズル先端部を下方から見た図、
図2(B)は先端部の縦断面図であり、ノズル先端を十
字状に形成すると共にその下面側にスリットSを設け、
その回転により撹拌力が生じると共に、吹込みガスが回
転による剪断力によって分断され微細化される様に構成
されている。
Therefore, the inert gas blowing nozzle used in the present invention has a structure in which the blowing gas bubbles are made fine by its rotation, and the molten metal can be agitated to diffuse the fine bubbles throughout the molten metal. Those having a tip structure as shown in FIGS. 2A and 2B are used, for example. That is, FIG. 2A is a view of the tip of the nozzle seen from below,
FIG. 2B is a vertical cross-sectional view of the tip portion. The nozzle tip is formed in a cross shape and the slit S is provided on the lower surface side thereof.
The rotation causes a stirring force, and the blown gas is divided by the shearing force due to the rotation to be finely divided.

【0017】ところで、上記不活性ガス吹込みによる還
元を行なうに当たり、その前工程でP脱酸を行なってい
る場合は、該P脱酸工程で銅溶湯中の酸素量は数百〜数
十ppmにまで低減しているため、不活性ガスの吹込み
だけで酸素量を10ppmレベル以下にまで低減するこ
とができる。しかし、P脱酸処理を行なっていない場
合、あるいは後述する如く保持炉で精錬のための酸化処
理を行なった場合の様に、銅溶湯中の酸素含有量が10
00ppmを超える多量である場合は、木炭等の固体還
元剤粉末の添加を併用し、Cによる脱酸反応を平行して
行なうのがよい。また固体還元剤を併用して脱酸を行な
う場合、固体還元剤粉末を溶湯表面に添加する方法のほ
か、移湯樋内面に固体還元剤を内張りしたり板状固体還
元剤を固定して銅溶湯と接触させる方法等を採用するこ
ともできる。
By the way, when P is deoxidized in the preceding step in carrying out the reduction by blowing the above-mentioned inert gas, the amount of oxygen in the molten copper in the P deoxidation step is several hundreds to several tens ppm. Since the amount of oxygen is reduced to 1, the amount of oxygen can be reduced to a level of 10 ppm or less simply by blowing an inert gas. However, when the P deoxidation treatment is not performed, or when the oxidation treatment for refining is performed in the holding furnace as described later, the oxygen content in the molten copper is 10% or less.
When the amount is more than 00 ppm, it is preferable to add a solid reducing agent powder such as charcoal together and perform the deoxidation reaction with C in parallel. In addition, when performing deoxidation using a solid reducing agent together, in addition to the method of adding the solid reducing agent powder to the surface of the molten metal, the solid reducing agent is lined on the inner surface of the transfer trough or the plate-like solid reducing agent is fixed and copper It is also possible to employ a method of contacting with the molten metal.

【0018】またP含有量の調整は、不活性ガス吹込み
による上記脱酸の前・後任意の時期に行なうことがで
き、最も簡単なのは目標P含量に応じた量のPをCu−
Pとして添加する方法である。また不活性ガス吹込み脱
酸の前にP脱酸を実施した場合は、原料にもよるが脱酸
に用いるPの量によっては銅溶湯内に10ppm以下程
度のPが混入してくる。従って得られるP含有低酸素銅
の目標P含有量がこの値未満であるときは、P脱酸処理
後のP含有量が目標P量を超えない様にP添加量を少な
めに抑えるべきである。このとき、P脱酸の為のP源と
してCu−Pを用いることも勿論可能である。またP含
有量を更に低減したい場合、移湯樋上で脱Pを行なうこ
とはむつかしいので、溶製原料段階で電気銅地金の配合
比率を高めること等によりP含有量を抑えることが望ま
れる。
The P content can be adjusted at any time before or after the above-mentioned deoxidation by blowing an inert gas, and the simplest is to adjust the amount of P according to the target P content to Cu-
This is a method of adding P. When P deoxidation is performed before the inert gas blowing deoxidation, depending on the raw material, depending on the amount of P used for deoxidation, P of about 10 ppm or less is mixed in the molten copper. Therefore, when the target P content of the obtained P-containing low oxygen copper is less than this value, the P content should be kept small so that the P content after P deoxidation treatment does not exceed the target P content. . At this time, it is of course possible to use Cu-P as a P source for P deoxidation. Further, when it is desired to further reduce the P content, it is difficult to perform P removal on the transfer trough, so it is desirable to suppress the P content by increasing the blending ratio of electrolytic copper metal in the melting raw material stage.

【0019】いずれにしても本発明では、Pを積極的に
含有させることによって強度向上を図るところに一つの
目的があり、こうしたPの含有効果を有効に発揮させる
には、鋳造物としてP含有量を10ppm以上とすべき
であるが、多過ぎると脆化の原因になるので、140p
pm以下に抑えるのがよい。
In any case, the present invention has one purpose in order to improve the strength by positively containing P, and in order to effectively exert such a P containing effect, P is contained as a cast product. The amount should be 10 ppm or more, but if it is too large, it will cause embrittlement.
It is better to keep it below pm.

【0020】ところで本発明ではシャフト炉溶解原料と
して元々高純度の電気銅地金や純銅系屑を使用するの
で、移湯樋での上記脱酸に先立って精錬等の処理は特に
不要であるが、原料事情やシャフト炉溶解条件等によっ
ては若干量の不純物元素が混入したり、あるいは水素が
含まれてくることもある。この様な場合は、シャフト炉
で溶解した銅溶湯を一旦保持炉に溜め、この部分で固体
酸化剤(Cu2 O,CuO等)や気体酸化剤(空気や酸
素等)を用いて精錬し、酸化性不純物や水素を低減する
ことが望まれる。
By the way, in the present invention, since high-purity electrolytic copper metal or pure copper-based scrap is originally used as the raw material for melting the shaft furnace, a refining treatment or the like is not particularly necessary prior to the above deoxidation in the transfer trough, though. Depending on the raw material circumstances, the shaft furnace melting conditions, etc., some impurities may be mixed or hydrogen may be contained. In such a case, the molten copper melted in the shaft furnace is temporarily stored in a holding furnace, and in this portion, it is refined using a solid oxidizer (Cu 2 O, CuO, etc.) or a gaseous oxidizer (air, oxygen, etc.), It is desired to reduce oxidizing impurities and hydrogen.

【0021】たとえば無酸素銅の水素含有量は1ppm
程度未満に抑えることが望まれており、本願発明に係る
P含有低酸素銅においても水素含有量を1ppm程度未
満に低減するのがよい。そして本発明によれば、前述の
如く移湯樋での不活性ガス吹込みによる脱酸工程で、銅
溶湯中の水素も微細化された不活性ガス気泡に拡散捕集
されて同時に除去される。しかし銅溶湯中に多量の水素
が含まれている場合は、移湯樋での処理に先立って保持
炉で上記の精錬(酸化)処理を行なえば、この時点で大
部分の水素が除去されるので、移湯樋での水素除去に要
する時間が短縮され、極低水素量のP含有低酸素銅を得
ることができる。この場合、精錬工程で銅溶湯中に多量
の酸素が取り込まれるので、移湯樋での脱酸工程では不
活性ガス吹込みと固体還元剤の添加を併用することが望
まれる。
For example, the oxygen content of oxygen-free copper is 1 ppm.
It is desired to suppress the content to less than about 10%, and it is preferable to reduce the hydrogen content to less than about 1 ppm even in the P-containing low oxygen copper according to the present invention. According to the present invention, as described above, in the deoxidizing step by blowing the inert gas in the transfer trough, hydrogen in the copper melt is also diffused and collected in the finely divided inert gas bubbles and simultaneously removed. . However, if a large amount of hydrogen is contained in the molten copper, most of the hydrogen will be removed at this point if the above refining (oxidation) treatment is performed in the holding furnace prior to the treatment in the transfer gutter. Therefore, the time required for hydrogen removal in the transfer trough is shortened, and a P-containing low oxygen copper having an extremely low hydrogen content can be obtained. In this case, since a large amount of oxygen is taken into the molten copper in the refining step, it is desirable to use the inert gas blowing and the addition of the solid reducing agent together in the deoxidizing step in the transfer trough.

【0022】[0022]

【発明の効果】本発明は以上の様に構成されており、シ
ャフト炉溶解設備を有効に活用し、あるいはP脱酸銅を
原料として使用し、移湯樋で不活性ガス吹込みによるガ
ス成分の拡散捕捉もしくはこれと固形脱酸剤添加を併用
し、且つP含有量を調整することにより、熱的・電気的
特性および強度特性に優れたP含有低酸素銅を効率良く
製造し得ることになった。
EFFECTS OF THE INVENTION The present invention is configured as described above, and effectively utilizes a shaft furnace melting facility or uses P deoxidized copper as a raw material, and a gas component by blowing an inert gas in a transfer trough. In order to efficiently produce P-containing low oxygen copper having excellent thermal / electrical properties and strength properties, it is possible to efficiently produce P-containing low-oxygen copper by diffusion-capturing or using a solid deoxidizing agent together with it and adjusting the P content. became.

【0023】[0023]

【実施例】以下、実施例を挙げて本発明をより具体的に
説明するが、本発明はもとより下記実施例によって制限
を受けるものではなく、前・後記の趣旨に適合し得る範
囲で適当に変更して実施することも勿論可能であり、そ
れらはいずれも本発明の技術的範囲に含まれる。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and may be appropriately applied within a range compatible with the gist of the preceding and the following. Modifications can of course be made, and all of them are included in the technical scope of the present invention.

【0024】図1に略示する装置を使用し、下記実施例
1,2に示す条件でP含有低酸素銅の溶製と鋳造を行な
った。図1において1はシャフト炉、2は保持炉、3は
移湯樋、4は連続鋳造装置を示す。
Using the apparatus schematically shown in FIG. 1, P-containing low oxygen copper was melted and cast under the conditions shown in Examples 1 and 2 below. In FIG. 1, 1 is a shaft furnace, 2 is a holding furnace, 3 is a transfer gutter, and 4 is a continuous casting apparatus.

【0025】シャフト炉1上部から電気銅地金と純銅系
屑(溶製原料)を装入し、シャフト炉1から出湯される
銅溶湯を一旦保持炉2に溜めた後、引き続いて移湯樋3
を経て連続鋳造装置4へ送る。移湯樋3には、図2に示
した様な回転式の不活性ガス吹込みノズル5を浸漬配置
して該ノズル5を回転させながら不活性ガス(Ar)を
微細気泡として吹込むと共に、溶湯を撹拌することによ
って該気泡を溶湯全体に拡散せしめ、また湯面には固体
還元剤(木炭)粉末6を散布する。そして該移湯樋3の
適所で銅溶湯をサンプリングしてP含有量を測定し、得
られるP含有低酸素銅の目標P含有量に対して不足分の
PをCu−Pとして添加することにより、P含有量を調
整した。
Electric copper ingot and pure copper waste (melting raw material) are charged from the upper part of the shaft furnace 1 and the molten copper discharged from the shaft furnace 1 is once stored in the holding furnace 2 and subsequently transferred. Three
And sent to the continuous casting device 4. A rotary inert gas blowing nozzle 5 as shown in FIG. 2 is immersed in the transfer trough 3, and the inert gas (Ar) is blown as fine bubbles while the nozzle 5 is rotated. By stirring the molten metal, the bubbles are diffused throughout the molten metal, and the solid reducing agent (charcoal) powder 6 is sprayed on the molten metal surface. Then, the molten copper is sampled at a suitable position of the transfer gutter 3 to measure the P content, and P is added as Cu-P to the target P content of the obtained P-containing low oxygen copper. , P content was adjusted.

【0026】実施例1 下記の条件でP含有低酸素銅の溶製と鋳造を行なった。 (溶製原料):電気銅地金(50%)+P脱酸銅屑(5
0%) (処理条件): シャフト炉溶解:15トン/時間、1250℃ 保持炉 :20トン容量、1250℃、LNG焚
き 移湯樋 :加熱源なしで移湯、15トン/時間 固体還元剤(木炭粉、20kg/トン、湯面添加) 不活性ガス吹込み:ノズル半径10cmφ、回転数60
0rpm(周速度:370m/分)、40Nリットル/
分でAr吹込み P量調整 :溶湯分析で不足分をCu−Pとして添
加 (鋳造):半連続鋳造、300mmφビレット、4本取
り 得られた鋳造品の品質は下記の通りであり、P含有低酸
素銅としての品質を十分に満たすものであった。 (品質) P:30ppm、O2 :0.1ppm以下、H2 :0.
3ppm以下 N2:0.1ppm以下、CO2:0.1ppm以下、C
O:0.1ppm以下
Example 1 P-containing low oxygen copper was melted and cast under the following conditions. (Melting raw material): electrolytic copper metal (50%) + P deoxidized copper scrap (5
0%) (Treatment conditions): Shaft furnace melting: 15 tons / hour, 1250 ° C. Holding furnace: 20 tons capacity, 1250 ° C., LNG-fired transfer bath trough: Transfer without heating source, 15 tons / hour Solid reducing agent ( Charcoal powder, 20 kg / ton, addition of molten metal) Inert gas injection: Nozzle radius 10 cmφ, rotation speed 60
0 rpm (peripheral speed: 370 m / min), 40 N liters /
Ar blown in minutes P amount adjustment: Add insufficient amount as Cu-P in molten metal analysis (casting): Semi-continuous casting, 300 mmφ billet, 4 pieces The quality of the obtained cast product is as follows, and P content is included. The quality of the low oxygen copper was sufficiently satisfied. (Quality) P: 30 ppm, O 2 : 0.1 ppm or less, H 2 : 0.
3 ppm or less N 2 : 0.1 ppm or less, CO 2 : 0.1 ppm or less, C
O: 0.1 ppm or less

【0027】実施例2 下記の条件でP含有低酸素銅の溶製と鋳造を行なった。 (溶製原料):電気銅地金(90%)+P脱酸銅屑(1
0%) (処理条件): シャフト炉溶解:15トン/時間、1250℃ 保持炉 :20トン容量、1250℃、LNG焚
き 精錬(酸化)処理:空気吹込み又はCuO添加により、
溶湯中のO2 量を50ppmから1000ppmに増大
し、それにより溶湯中のH2 量を2.0ppmから0.
3ppmに低減した。 移湯樋 :加熱源なしで移湯、15トン/時間 固体還元剤(木炭粉、20kg/トン、湯面添加) 不活性ガス吹込み:ノズル半径10cmφ、回転数60
0rpm(周速度:370m/分)、40Nリットル/
分でAr吹込み P量調整 :溶湯分析で不足分をCu−Pとして添
加 得られた鋳造品の品質は下記の通りであり、P含有低酸
素銅としての品質を十分に満たすものであった。 (品質) P:10ppm、O2 :0.1ppm以下、H2 :0.
3ppm以下 N2:0.1ppm以下、CO2:0.1ppm以下、C
O:0.1ppm以下
Example 2 P-containing low oxygen copper was melted and cast under the following conditions. (Melting raw material): electrolytic copper metal (90%) + P deoxidized copper scrap (1
0%) (Treatment conditions): Shaft furnace melting: 15 tons / hour, 1250 ° C Holding furnace: 20 tons capacity, 1250 ° C, LNG-fired Refining (oxidation) treatment: By blowing air or adding CuO
The amount of O 2 in the molten metal was increased from 50 ppm to 1000 ppm, whereby the amount of H 2 in the molten metal was increased from 2.0 ppm to 0.
It was reduced to 3 ppm. Transfer gutter: Transfer without heating source, 15 tons / hour Solid reducing agent (charcoal powder, 20 kg / ton, addition of molten metal surface) Inert gas blowing: Nozzle radius 10 cmφ, rotation speed 60
0 rpm (peripheral speed: 370 m / min), 40 N liters /
Ar blowing P amount adjustment by minute: Addition of deficient amount as Cu-P in molten metal analysis The quality of the cast product obtained is as follows, and sufficiently satisfied the quality as P-containing low oxygen copper. . (Quality) P: 10 ppm, O 2 : 0.1 ppm or less, H 2 : 0.
3 ppm or less N 2 : 0.1 ppm or less, CO 2 : 0.1 ppm or less, C
O: 0.1 ppm or less

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で用いたP含有低酸素銅の製造装置を示
す説明図である。
FIG. 1 is an explanatory view showing an apparatus for producing P-containing low oxygen copper used in Examples.

【図2】本発明で使用される不活性ガス吹込みノズルの
好ましい例を示す説明図である。
FIG. 2 is an explanatory view showing a preferred example of an inert gas blowing nozzle used in the present invention.

【符号の説明】[Explanation of symbols]

1 シャフト炉 2 保持炉 3 移湯樋 4 鋳造装置 5 不活性ガス吹込みノズル 6 固体還元剤 1 Shaft Furnace 2 Holding Furnace 3 Transfer Tank 4 Casting Device 5 Inert Gas Injection Nozzle 6 Solid Reducing Agent

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横地 克洋 神奈川県秦野市平沢65番地 株式会社神戸 製鋼所秦野工場内 (72)発明者 和田 孝憲 神奈川県秦野市平沢65番地 株式会社神戸 製鋼所秦野工場内 (72)発明者 熊谷 啓一 神奈川県秦野市平沢65番地 株式会社神戸 製鋼所秦野工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuhiro Yokochi 65 Hirasawa, Hadano City, Kanagawa Prefecture Kobe Steel Works, Ltd. Hadano Plant (72) Inventor Takanori Wada 65 Hirasawa, Hadano City, Kanagawa Kobe Steel Works Hadano Plant (72) Inventor Keiichi Kumagai 65 Hirasawa, Hadano City, Kanagawa Prefecture Kobe Steel Works Hadano Plant

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電気銅地金もしくはこれと純銅系屑を原
料として、これらをシャフト炉により溶解し、該溶湯を
移湯樋を通して連続的に鋳型へ供給することとし、該移
湯樋においてP含有量を調整すると共に、該溶湯中に不
活性ガスを吹込んで溶湯を撹拌しながら脱酸することを
特徴とする、シャフト炉を用いたP含有低酸素銅の製
法。
1. An electrolytic copper ingot or pure copper-based scraps as raw materials are melted in a shaft furnace, and the molten metal is continuously supplied to a mold through a transfer gutter. A method for producing P-containing low oxygen copper using a shaft furnace, which comprises adjusting the content and blowing an inert gas into the molten metal to deoxidize the molten metal while stirring.
【請求項2】 シャフト炉で溶解した原料を、保持炉で
酸化処理してから移湯樋へ送る請求項1に記載のP含有
低酸素銅の製法。
2. The method for producing P-containing low oxygen copper according to claim 1, wherein the raw material melted in the shaft furnace is subjected to an oxidation treatment in a holding furnace and then sent to a transfer gutter.
【請求項3】 Cu−Pを添加することによりP含有量
を調整する請求項1又は2に記載の製法。
3. The method according to claim 1, wherein the P content is adjusted by adding Cu—P.
【請求項4】 鋳造されるP含有低酸素銅中のP含有量
を10〜140ppmとする請求項1〜3に記載の製
法。
4. The method according to claim 1, wherein the P content in the cast P-containing low oxygen copper is 10 to 140 ppm.
JP538193A 1993-01-14 1993-01-14 Production method of P-containing low oxygen copper using shaft furnace Expired - Fee Related JP3235237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP538193A JP3235237B2 (en) 1993-01-14 1993-01-14 Production method of P-containing low oxygen copper using shaft furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP538193A JP3235237B2 (en) 1993-01-14 1993-01-14 Production method of P-containing low oxygen copper using shaft furnace

Publications (2)

Publication Number Publication Date
JPH06212300A true JPH06212300A (en) 1994-08-02
JP3235237B2 JP3235237B2 (en) 2001-12-04

Family

ID=11609594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP538193A Expired - Fee Related JP3235237B2 (en) 1993-01-14 1993-01-14 Production method of P-containing low oxygen copper using shaft furnace

Country Status (1)

Country Link
JP (1) JP3235237B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0987338A1 (en) * 1998-09-09 2000-03-22 MANNESMANN Aktiengesellschaft Method for producing welded copper pipes
EP1127947A2 (en) * 2000-02-24 2001-08-29 Mitsubishi Materials Corporation Method for manufacturing low-oxygen copper wire rod
WO2007015491A1 (en) * 2005-08-02 2007-02-08 The Furukawa Electric Co., Ltd. Process for producing oxygen-free copper wire rod by continuous casting rolling process using rotational transfer mold
CN100349671C (en) * 2000-02-24 2007-11-21 三菱综合材料株式会社 Method for producing phosphorus-contained copper base material and method for producing low-oxygen copper alloy wire
JP2008169461A (en) * 2006-12-14 2008-07-24 Hitachi Cable Ltd Solder plated wire for solar battery and method for producing the same
WO2014034782A1 (en) * 2012-08-31 2014-03-06 三菱マテリアル株式会社 Copper wire rod and winding
CN105813778A (en) * 2014-03-14 2016-07-27 三菱综合材料株式会社 Copper Ingot, Copper Wire Rod, and Method For Producing Copper Ingot
CN107955883A (en) * 2017-10-24 2018-04-24 镇江市丹徒区华发五金有限公司 A kind of waste cupron regenerates recovery method
CN113878101A (en) * 2021-07-07 2022-01-04 浙江海亮股份有限公司 Shaft furnace-horizontal continuous casting copper casting blank device
CN114561554A (en) * 2021-07-07 2022-05-31 浙江海亮股份有限公司 Vertical furnace-horizontal continuous casting copper casting blank process

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0987338A1 (en) * 1998-09-09 2000-03-22 MANNESMANN Aktiengesellschaft Method for producing welded copper pipes
CN100349671C (en) * 2000-02-24 2007-11-21 三菱综合材料株式会社 Method for producing phosphorus-contained copper base material and method for producing low-oxygen copper alloy wire
EP1127947A2 (en) * 2000-02-24 2001-08-29 Mitsubishi Materials Corporation Method for manufacturing low-oxygen copper wire rod
US7524356B2 (en) 2000-02-24 2009-04-28 Mitsubishi Materials Corporation Method for manufacturing low-oxygen copper
EP1127947A3 (en) * 2000-02-24 2002-07-17 Mitsubishi Materials Corporation Method for manufacturing low-oxygen copper wire rod
US6589473B2 (en) 2000-02-24 2003-07-08 Mitsubishi Materials Corporation Apparatus for manufacturing low-oxygen copper
US6944930B2 (en) 2000-02-24 2005-09-20 Mitsubishi Materials Corporation Method for manufacturing low-oxygen copper
EP1598433A1 (en) * 2000-02-24 2005-11-23 Mitsubishi Materials Corporation Method for continuously producing low-oxygen copper wire
EP1127946A2 (en) * 2000-02-24 2001-08-29 Mitsubishi Materials Corporation Installation for producing continuously cast low-oxygen copper ingots
EP1127946A3 (en) * 2000-02-24 2002-07-10 Mitsubishi Materials Corporation Installation for producing continuously cast low-oxygen copper ingots
KR100690253B1 (en) * 2000-02-24 2007-03-12 미츠비시 마테리알 가부시키가이샤 Method for manufacturing low-oxygen copper
KR100690257B1 (en) * 2000-02-24 2007-03-12 미츠비시 마테리알 가부시키가이샤 Apparatus for manufacturing low-oxygen copper
WO2007015491A1 (en) * 2005-08-02 2007-02-08 The Furukawa Electric Co., Ltd. Process for producing oxygen-free copper wire rod by continuous casting rolling process using rotational transfer mold
JP2007038252A (en) * 2005-08-02 2007-02-15 Furukawa Electric Co Ltd:The Method for manufacturing oxygen-free copper wire rod by continuous casting and rolling method using rotation shifting mold
JP4593397B2 (en) * 2005-08-02 2010-12-08 古河電気工業株式会社 Method for producing oxygen-free copper wire by continuous casting and rolling using rotary moving mold
JP2008169461A (en) * 2006-12-14 2008-07-24 Hitachi Cable Ltd Solder plated wire for solar battery and method for producing the same
US20150213921A1 (en) * 2012-08-31 2015-07-30 Mitsubishi Materials Corporation Copper wire rod and magnet wire
JP2014047401A (en) * 2012-08-31 2014-03-17 Mitsubishi Materials Corp Rough-drawn copper wire and winding
CN104508161A (en) * 2012-08-31 2015-04-08 三菱综合材料株式会社 Copper wire rod and winding
US9679676B2 (en) 2012-08-31 2017-06-13 Mitsubishi Materials Corporation Copper wire rod and magnet wire
WO2014034782A1 (en) * 2012-08-31 2014-03-06 三菱マテリアル株式会社 Copper wire rod and winding
CN105813778A (en) * 2014-03-14 2016-07-27 三菱综合材料株式会社 Copper Ingot, Copper Wire Rod, and Method For Producing Copper Ingot
EP3117932A4 (en) * 2014-03-14 2017-07-19 Mitsubishi Materials Corporation Copper ingot, copper wire rod, and method for producing copper ingot
US10646917B2 (en) 2014-03-14 2020-05-12 Mitsubishi Materials Corporation Copper ingot, copper wire material, and method for producing copper ingot
CN107955883A (en) * 2017-10-24 2018-04-24 镇江市丹徒区华发五金有限公司 A kind of waste cupron regenerates recovery method
CN114561554A (en) * 2021-07-07 2022-05-31 浙江海亮股份有限公司 Vertical furnace-horizontal continuous casting copper casting blank process
CN113878101A (en) * 2021-07-07 2022-01-04 浙江海亮股份有限公司 Shaft furnace-horizontal continuous casting copper casting blank device

Also Published As

Publication number Publication date
JP3235237B2 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
EP2248916B1 (en) Process for removal of copper contained in steel scraps
US4832911A (en) Method of alloying aluminium
JP3235237B2 (en) Production method of P-containing low oxygen copper using shaft furnace
JP2002120050A (en) Method for producing oxygen-free copper wire rod with belt and wheel type continuous casting and rolling method for producing copper alloy wire rod
JPH021897B2 (en)
US4652299A (en) Process for treating metals and alloys for the purpose of refining them
CA2122421A1 (en) Purification of molten aluminum using upper and lower impellers
WO2018155658A1 (en) Method for producing ti-al alloy
JPH1192837A (en) Refinement of copper alloy
US3975187A (en) Treatment of carbothermically produced aluminum
EP0007890B1 (en) A method of manufacturing and refining crude lead from arsenic-containing lead raw-materials
CN111518990B (en) Method for controlling alloy elements in free-cutting steel to be uniformly distributed
JPH06299261A (en) Method for cleaning copper or copper alloy
JP3203848B2 (en) Melting method of copper or copper alloy
EP0292992B1 (en) Non-ferrous metal recovery
JPH0693351A (en) Production of tough pitch copper
JP4882249B2 (en) Manufacturing method of high clean steel
JP2005144492A (en) Method for producing chromium-zirconium-aluminum-series copper alloy wire rod
JPS61217538A (en) Method for continuously melting and casting copper
US1660220A (en) Copper refining
RU2782193C1 (en) Method for smelting khn33kv alloy
JPH0820829A (en) Method for melting copper or copper alloy having low sulfur content
JP3006799B2 (en) Dissolution method of copper or copper alloy scrap
JPH05271819A (en) Method for refining copper or copper alloy raw material
JPH0397814A (en) Nitrogen-air blast in ni-cu converter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010828

LAPS Cancellation because of no payment of annual fees