JPH0612264B2 - Magnetic recording medium for magnetic encoder - Google Patents

Magnetic recording medium for magnetic encoder

Info

Publication number
JPH0612264B2
JPH0612264B2 JP63211795A JP21179588A JPH0612264B2 JP H0612264 B2 JPH0612264 B2 JP H0612264B2 JP 63211795 A JP63211795 A JP 63211795A JP 21179588 A JP21179588 A JP 21179588A JP H0612264 B2 JPH0612264 B2 JP H0612264B2
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
weight
magnetic recording
encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63211795A
Other languages
Japanese (ja)
Other versions
JPH0261519A (en
Inventor
健三郎 飯島
昭仁 猪木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP63211795A priority Critical patent/JPH0612264B2/en
Publication of JPH0261519A publication Critical patent/JPH0261519A/en
Publication of JPH0612264B2 publication Critical patent/JPH0612264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は磁気式エンコーダ用磁気記録媒体に関し、特
に、一定の割合よりも小さい結晶粒径のFe-Cr-Co
合金を用いることにより、均一な磁力線を得ることがで
きるものに関する。
The present invention relates to a magnetic recording medium for a magnetic encoder, and more particularly to Fe-Cr-Co having a crystal grain size smaller than a certain ratio.
The present invention relates to a material that can obtain uniform lines of magnetic force by using an alloy.

「従来の技術」 従来から、優秀な磁石特性と良好な塑性加工性と切削加
工性を併せ持つ優れた磁石材料として、Fe-Cr-Co
系合金が知られており、この系の合金はロータリーエン
コーダの磁気記録媒体用などとして利用されている。
"Conventional technology" Fe-Cr-Co has been used as an excellent magnet material with excellent magnet characteristics and good plastic and machinability.
System alloys are known, and these system alloys are used as magnetic recording media for rotary encoders.

「発明が解決しようとする課題」 従来知られているロータリーエンコーダに用いられてい
るFe-Cr-Co系の合金は、平均粒径が0.5〜2.
0mm程度のものであったが、従来のロータリーエンコー
ダに用いられている磁気記録媒体から放出される磁力線
は不均一でエンコーダとしての精度向上に限界があっ
た。これは、以下に説明する理由によるものと推定され
る。
"Problems to be Solved by the Invention" The Fe-Cr-Co alloys used in conventionally known rotary encoders have an average particle size of 0.5 to 2.
Although it was about 0 mm, the magnetic field lines emitted from the magnetic recording medium used in the conventional rotary encoder were non-uniform, and there was a limit to the improvement in accuracy as an encoder. It is presumed that this is due to the reason explained below.

まず、磁性を有する元素の単結晶の磁化変化を調べてみ
ると特定の結晶軸方向に磁化しやすく、特定の結晶軸方
向に磁化されにくい性質がある。即ち、例えば、鉄の単
結晶に種々の方向から磁場を印加して磁化させた場合、
第6図に示すように、単結晶の[100]方向と[110]
方向と[111]方向で磁化の大きさが異なることが知ら
れている。
First, when the change in magnetization of a single crystal of a magnetic element is examined, it has a property that it is easily magnetized in a specific crystal axis direction and is hard to be magnetized in a specific crystal axis direction. That is, for example, when magnetizing a single crystal of iron by applying magnetic fields from various directions,
As shown in FIG. 6, [100] direction and [110] direction of single crystal
It is known that the magnitude of magnetization differs between the [111] direction and the [111] direction.

従ってこのような観点から前記従来のロータリーエンコ
ーダに用いられているFe-Cr-Co系合金について検
討すると、この合金の結晶粒の数が少ないときは、個々
の結晶粒の磁化の大きさの差が現れてきて発生する磁場
の大きさにバラツキが生じるために、磁力線が不均一に
なり、エンコーダとしての精度向上に限界を生じるもの
と思われる。
Therefore, when the Fe-Cr-Co alloy used for the conventional rotary encoder is examined from such a viewpoint, when the number of crystal grains of this alloy is small, the difference in the magnitude of magnetization of each crystal grain is considered. Appears, and the magnitude of the generated magnetic field varies, which makes the lines of magnetic force non-uniform and limits the improvement in accuracy as an encoder.

この発明は前記課題を解決するためになされたもので、
放出される磁力線を均一にすることができ、エンコーダ
の精度を高めることができる磁気式エンコーダ用磁気記
録媒体を提供することを目的とする。
This invention has been made to solve the above problems,
An object of the present invention is to provide a magnetic recording medium for a magnetic encoder, which can make the emitted magnetic force lines uniform and enhance the accuracy of the encoder.

「課題を解決するための手段」 請求項1に記載した発明は前記課題を解決するために、 Cr 10〜45重量% Co 3〜35重量% Ti,Zr,Alのうち1種又は2種以上を0.1〜
2.0重量% Fe 残部 の組成を有し、 磁気検出素子に関与する媒体の面積をSとし、平均粒径
をdとした場合、 の関係としたものである。
"Means for Solving the Problems" In order to solve the problems, the invention described in claim 1 is one or more of Cr 10 to 45% by weight Co 3 to 35% by weight Ti, Zr, Al. 0.1 to
When the area of the medium having the composition of 2.0 wt% Fe 2 balance and the magnetic sensing element is S and the average particle diameter is d, It is a relationship.

請求項2に記載した発明は前記課題を解決するために、 Cr 10〜45重量%、 Co 3〜35重量%、 Ti,Zr,Alのうち1種又は2種以上を0.1〜
2.0重量%、 V,Mn,Ni,Cu,Nb,Mo,Wのうち1種また
は2種以上を5重量%以下、 Fe 残部 の組成を有し、 磁気検出素子に関与する媒体の面積をSとし、平均粒径
をdとした場合、 の関係としたものである。
In order to solve the above-mentioned problems, the invention described in claim 2 comprises one or more of Cr 10 to 45% by weight, Co 3 to 35% by weight, Ti, Zr and Al in an amount of 0.1 to 2%.
2.0% by weight, 5% by weight or less of one or more of V, Mn, Ni, Cu, Nb, Mo, and W, and the composition of the balance Fe, and the area of the medium involved in the magnetic sensing element. Is S and the average particle size is d, It is a relationship.

「作用」 特定の組成のFe-Cr-Co系の合金を用い、平均結晶
粒度を特別の大きさにすることにより、検出素子に関与
する結晶粒の数が十分に多くなり、結晶粒の結晶方位に
起因する磁化の大きさの差が緩和されて放出される磁力
線が均一になる。
"Function" By using a Fe-Cr-Co alloy of a specific composition and setting the average grain size to a special size, the number of grains involved in the detection element is sufficiently increased, and the crystals of grains are formed. The difference in the magnitude of magnetization due to the azimuth is relaxed and the magnetic field lines emitted are made uniform.

以下に本願発明を更に詳細に説明する。The present invention will be described in more detail below.

請求項1に記載した発明においては、Cr(クロム)10
〜45重量%、Co(コバルト)3〜35重量%、Ti
(チタン),Zr(ジルコニウム),Al(アルミニウム)の
うち1種以上を0.1〜2.0重量%、Fe(鉄)残部の
組成を有することによって優れた磁石特性と塑性加工性
と切削加工性を併せ持たせることができる。しかも、磁
気検出素子(例えばMR素子などの読み取りヘッド)に関
与する媒体の面積(例えばMR素子の検出の面積)をSと
し、磁気記録媒体の平均粒度をdとした場合、 の関係を満たすようにされている。
In the invention described in claim 1, Cr (chromium) 10
~ 45 wt%, Co (cobalt) 3 ~ 35 wt%, Ti
(Titanium), Zr (zirconium), and Al (aluminum) have excellent magnet characteristics, plastic workability, and cutting by having a composition of 0.1 to 2.0% by weight and the balance of Fe (iron). It can also have workability. Moreover, when the area of the medium involved in the magnetic detection element (for example, the read head such as the MR element) (for example, the detection area of the MR element) is S and the average grain size of the magnetic recording medium is d, To meet the relationship.

このような磁気記録媒体を製造するには、例えば、Fe
-25Cr-12Co-0.1Tiの組成比の粉末を作成
し、この粉末を加圧成形した後に、1000〜1300
℃で加熱して焼結し、焼結体を900〜1200℃で加
熱した後に水冷処理などによって急冷する溶体化処理を
施し、次いで700℃から温度を制御しつつ冷却して時
効する処理を行えば良い。また、磁気記録媒体を製造す
る他の手段としては、前記組成の合金溶湯を溶製し、鋳
造して所定の組成比の鋳造品を作成し、この鋳造品に熱
間鍛造と熱間加工と冷間加工を施すといった塑性加工を
行い、塑性加工後に前述と同等の条件で温度と加熱時間
を制御しつつ溶体化処理を行い、次いで時効処理を行う
といった処理を行っても良い。
To manufacture such a magnetic recording medium, for example, Fe
After forming a powder having a composition ratio of -25Cr-12Co-0.1Ti and press-molding this powder, 1000-1300
Sintered by heating at ℃, heat the sintered body at 900 ~ 1200 ℃, and then subject it to solution treatment by quenching by water cooling, etc., and then perform aging treatment by cooling while controlling the temperature from 700 ℃. I'm fine. Further, as another means for producing a magnetic recording medium, molten alloy of the above composition is melted and cast to produce a cast product having a predetermined composition ratio, and hot forging and hot working are performed on the cast product. It is also possible to perform plastic working such as cold working, and after plastic working, perform solution treatment while controlling temperature and heating time under the same conditions as described above, and then perform aging treatment.

以上の工程を経ることにより平均結晶粒径0.05〜2
mmの種々の磁気記録媒体を得ることができる。
By the above steps, the average crystal grain size is 0.05 to 2
Various magnetic recording media of mm can be obtained.

なお、前述の工程を行う場合には、Mn(マンガン),S
i(ケイ素),Nb(ニオブ),Mo(モリブデン),V(バ
ナジウム),Ni(ニッケル),Cu(銅)のうちから選択
される1種または2種以上の元素を合計5重量%以下添
加して磁気記録媒体を製造しても良い。ここでSi,N
b,Zr,Mo,V,Niなどの元素を添加することに
より、磁気記録媒体の結晶粒を微細化することができ
る。
In addition, when performing the above-mentioned process, Mn (manganese), S
Addition of 5% by weight or less in total of one or more elements selected from i (silicon), Nb (niobium), Mo (molybdenum), V (vanadium), Ni (nickel), Cu (copper) Then, a magnetic recording medium may be manufactured. Where Si, N
By adding elements such as b, Zr, Mo, V and Ni, the crystal grains of the magnetic recording medium can be made finer.

以上説明したように得られた磁気記録媒体は、結晶粒が
十分に小さく、放出される磁力線が均一であるので、ロ
ータリーエンコーダ用として使用した場合に従来より特
性を向上できる効果がある。
In the magnetic recording medium obtained as described above, the crystal grains are sufficiently small and the magnetic field lines emitted are uniform, so that when used as a rotary encoder, the characteristics can be improved more than before.

「実施例」 Fe-25Cr-12Co-0.1Tiの組成の合金粉末
を作成し、この合金粉末を2ton/cm2の加圧力で加圧成
形して成形体を形成し、更にこの成形体を1200℃で
焼結し、次いで1100℃に加熱した後に水冷する溶体
化処理を施した。続いてこの処理品を700℃から温度
制御しつつ制御冷却(5〜40℃/hrの冷却速度)して時
効処理を施した。
[Example] An alloy powder having a composition of Fe-25Cr-12Co-0.1Ti was prepared, and the alloy powder was pressure-molded with a pressing force of 2 ton / cm 2 to form a molded body. The solution treatment was performed by sintering at 1200 ° C., then heating at 1100 ° C., and then cooling with water. Subsequently, this treated product was subjected to an aging treatment by controlled cooling (cooling rate of 5 to 40 ° C./hr) while controlling the temperature from 700 ° C.

次に第1図に示すように検出部の寸法が縦3mm、横2m
m、その面積が6mm2のMR素子(Magneto Resistive
Element)1を用意するとともに、前記時効処理後に
得られた処理品を機械加工して円盤状のディスクを作成
し、このディスクの外周面に着磁して第2図に示すよう
な回転ディスク2を得た。
Next, as shown in Fig. 1, the size of the detector is 3mm in height and 2m in width.
MR element (Magneto Resistive) with an area of 6 mm 2
Element) 1 is prepared, and the processed product obtained after the aging treatment is machined to form a disc-shaped disc, and the outer peripheral surface of the disc is magnetized to form a rotating disc 2 as shown in FIG. Got

この回転ディスク2を所定の速度で回転させてMR素子
1を第2図に示すように回転ディスク2の外周部近傍に
設置して作動させた場合、MR素子1から第3図に示す
ような波形出力が得られる。そしてこの波形出力の最大
値と最小値の差の値をAとした場合、回転ディスク全周
でのAの平均値をとし、Aの最大値をAmax、最小値
をAminとした場合に、 リップル={(Amax−Amin)/}×100 で示すことができる。
When this rotating disk 2 is rotated at a predetermined speed and the MR element 1 is installed near the outer peripheral portion of the rotating disk 2 and operated as shown in FIG. Waveform output is obtained. When the value of the difference between the maximum value and the minimum value of this waveform output is A, the average value of A over the entire circumference of the rotating disk is defined as A, the maximum value of A is defined as Amax, and the minimum value is defined as Amin. = {(Amax-Amin) /} × 100.

ここで前記のように製造された回転ディスク2におい
て、平均結晶粒径とリップルの関係を求めた。なお、前
記の工程を行う場合に、焼結温度、焼結時間などの条件
を種々変更して種々の平均結晶粒径の回転ディスクを作
成し、平均結晶粒径と前記リップルの関係を求め、その
結果を第4図に示した。更に、リップルとN(センサと
結晶断面の面積比)の関係を求め第5図に示した。この
場合N=S/d2の関係が成立するとともに、第5図に
示すリップルを5%以下にするには、Nを100以上と
すれば良いので前記式にこの値を代入し、更にMR素子
の検出部の面積である6を代入すると、 の関係が導きだせる。
Here, in the rotating disk 2 manufactured as described above, the relationship between the average crystal grain size and the ripple was obtained. When performing the above-mentioned step, various conditions such as sintering temperature and sintering time are changed to create rotating disks having various average crystal grain sizes, and the relationship between the average crystal grain size and the ripple is obtained, The results are shown in FIG. Further, the relationship between ripple and N (area ratio of sensor and crystal cross section) was determined and shown in FIG. In this case, the relationship of N = S / d 2 is established, and in order to reduce the ripple shown in FIG. 5 to 5% or less, N may be set to 100 or more. Substituting 6 which is the area of the detector of the element, The relationship can be derived.

従って磁気記録媒体の平均結晶粒径dを 以下にするならば、リップルを5%以下にできることが
判明した。
Therefore, the average crystal grain size d of the magnetic recording medium is It has been found that the ripple can be reduced to 5% or less if it is set to the following.

「発明の効果」 以上説明したようにこの発明の磁気記録媒体は、特別な
組成を有し、平均結晶粒径を一定の大きさ以下にしてい
るので、磁石特性と組成加工性と切削加工性に優れた上
に、放出される磁力線が従来の磁気記録媒体より更に均
一な特徴がある。従ってこの発明の磁気記録媒体を用い
てエンコーダを製造することにより、従来のエンコーダ
より精度高いエンコーダを製造できる効果がある。
"Effects of the Invention" As described above, the magnetic recording medium of the present invention has a special composition and has an average crystal grain size of a certain size or less. In addition, the magnetic field lines emitted are more uniform than those of the conventional magnetic recording medium. Therefore, by manufacturing an encoder using the magnetic recording medium of the present invention, it is possible to manufacture an encoder with higher accuracy than the conventional encoder.

【図面の簡単な説明】[Brief description of drawings]

第1図はMR素子の側面図、 第2図はMR素子による回転ディスクの情報読み取り状
態を示す斜視図、 第3図は回転ディスクの回転方向とMR素子の出力の関
係を示すグラフ、 第4図はリップルと平均結晶粒径の関係を示すグラフ、 第5図はリップルとNの関係を示すグラフ、 第6図は鉄の単結晶に対する磁場の方向による磁化の状
態を示すグラフである。
FIG. 1 is a side view of the MR element, FIG. 2 is a perspective view showing the information reading state of the rotating disk by the MR element, and FIG. 3 is a graph showing the relationship between the rotating direction of the rotating disk and the output of the MR element. FIG. 6 is a graph showing the relationship between ripple and average crystal grain size, FIG. 5 is a graph showing the relationship between ripple and N, and FIG. 6 is a graph showing the state of magnetization of iron single crystals depending on the direction of the magnetic field.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Cr 10〜45重量%、 Co 3〜35重量%、 Ti,Zr,Alのうち1種又は2種以上を0.1〜
2.0重量%、 Fe 残部 の組成を有し、 磁気検出素子に関与する磁気記録媒体の面積をSとし、
平均結晶粒径をdとした場合、 の関係としたことを特徴とする磁気式エンコーダ用磁気
記録媒体。
1. A Cr content of 10 to 45% by weight, a Co content of 3 to 35% by weight, a Ti content, a Zr content, and a Al content of 0.1 or more.
An area of a magnetic recording medium having a composition of 2.0% by weight and a balance of Fe and related to the magnetic sensing element is S,
When the average grain size is d, A magnetic recording medium for a magnetic encoder, characterized in that
【請求項2】Cr 10〜45重量%、 Co 3〜35重量%、 Ti,Zr,Alのうち1種又は2種以上を0.1〜
2.0重量%、 V,Mn,Ni,Cu,Nb,Mo,Wのうち1種また
は2種以上を5重量%以下、 Fe 残部 の組成を有し、 磁気検出素子に関与する媒体の面積をSとし、平均結晶
粒径をdとした場合、 の関係としたことを特徴とする磁気式エンコーダ用磁気
記録媒体。
2. Cr in an amount of 10 to 45% by weight, Co in an amount of 3 to 35% by weight, and one or more of Ti, Zr, and Al in an amount of 0.1 to 0.1% by weight.
2.0% by weight, 5% by weight or less of one or more of V, Mn, Ni, Cu, Nb, Mo, and W, and the composition of the balance Fe, and the area of the medium involved in the magnetic sensing element. Is S and the average crystal grain size is d, A magnetic recording medium for a magnetic encoder, characterized in that
JP63211795A 1988-08-26 1988-08-26 Magnetic recording medium for magnetic encoder Expired - Fee Related JPH0612264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63211795A JPH0612264B2 (en) 1988-08-26 1988-08-26 Magnetic recording medium for magnetic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63211795A JPH0612264B2 (en) 1988-08-26 1988-08-26 Magnetic recording medium for magnetic encoder

Publications (2)

Publication Number Publication Date
JPH0261519A JPH0261519A (en) 1990-03-01
JPH0612264B2 true JPH0612264B2 (en) 1994-02-16

Family

ID=16611733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63211795A Expired - Fee Related JPH0612264B2 (en) 1988-08-26 1988-08-26 Magnetic recording medium for magnetic encoder

Country Status (1)

Country Link
JP (1) JPH0612264B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339670A (en) * 1991-05-16 1992-11-26 Mitsubishi Steel Mfg Co Ltd Printing machine in printer
JP4633480B2 (en) * 2005-01-11 2011-02-16 Ntn株式会社 Magnetic encoder and wheel bearing provided with the same

Also Published As

Publication number Publication date
JPH0261519A (en) 1990-03-01

Similar Documents

Publication Publication Date Title
US4710243A (en) Wear-resistant alloy of high permeability and method of producing the same
JPH06104120A (en) Sputtering target for magnetic recording medium and its production
JPS6020882B2 (en) Manufacturing method of magnetic head using high magnetic permeability amorphous alloy
US4440720A (en) Magnet alloy useful for a magnetic recording and reproducing head and a method of manufacturing thereof
US4639278A (en) Method of manufacturing an amorphous magnetic alloy
JPH0612264B2 (en) Magnetic recording medium for magnetic encoder
JPS61243152A (en) High magnetic premeability amorphous alloy and its production
US4007066A (en) Material having a high magnetic permeability
JPS6212296B2 (en)
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JP2002226970A (en) Co TARGET AND PRODUCTION METHOD THEREFOR
JPS5947346A (en) Production of high alloy powder and sintered alloy and sintered alloy
JPH04276070A (en) Target for magnetron sputtering
JPH0255498B2 (en)
JPH0645847B2 (en) Manufacturing method of wear resistant high permeability alloy.
JP3019400B2 (en) Amorphous soft magnetic material
JPS6325688B2 (en)
JPH11222671A (en) Target for sputtering and its production
JPS5854486B2 (en) permanent magnet
JPH03158440A (en) Magnetic alloy for magnetic head core and its production
JP2001262327A (en) Sputtering target material for forming magnetic recording medium and magnetic recording medium
JPH0645849B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0255494B2 (en)
JPS62100630A (en) Torque sensor
JPH0645846B2 (en) Manufacturing method of wear resistant high permeability alloy.

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees