JPH0261519A - Magnetic recording medium for magnetic encoder - Google Patents

Magnetic recording medium for magnetic encoder

Info

Publication number
JPH0261519A
JPH0261519A JP63211795A JP21179588A JPH0261519A JP H0261519 A JPH0261519 A JP H0261519A JP 63211795 A JP63211795 A JP 63211795A JP 21179588 A JP21179588 A JP 21179588A JP H0261519 A JPH0261519 A JP H0261519A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetic recording
encoder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63211795A
Other languages
Japanese (ja)
Other versions
JPH0612264B2 (en
Inventor
Kenzaburo Iijima
健三郎 飯島
Akihito Inoki
猪木 昭仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP63211795A priority Critical patent/JPH0612264B2/en
Publication of JPH0261519A publication Critical patent/JPH0261519A/en
Publication of JPH0612264B2 publication Critical patent/JPH0612264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To uniformize a line of magnetic force being discharged and to enhance the accuracy of an encoder by setting the composition of a magnetic recording medium to a specific one and also setting a mean crystal particle size to a definite size or less. CONSTITUTION:A magnetic recording medium is constituted of a composition consisting of 10-45wt.% of Cr, 3-35wt.% of Co, 0.1-2.0wt.% of one or more kind of Ti, Zr or Al and the remainder of Fe. Further, when the area of the magnetic recording medium (e.g., the area of the detection part of an MR element) participating in a magnetic detection element (e.g., a reading head such as the MR element) is set to S and the mean particle size of the magnetic recording medium is set to (d), the relation of d<=1/10.S<1/2> is satisfied. By this method, the magnetic recording medium excellent in magnetic characteristics, composition processability and cutting processability and discharging a uniform line of magnetic force is obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は磁気式エンコーダ用磁気記録媒体に関し、特
に、一定の割合よりも小さい結晶粒径のF [!−Cr
−Co合金を用いろことにより、均一な磁力線を得るこ
とができろものに関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a magnetic recording medium for a magnetic encoder, and in particular, the present invention relates to a magnetic recording medium for a magnetic encoder, and in particular, F [! -Cr
- By using a Co alloy, uniform lines of magnetic force can be obtained.

「従来の技術」 従来から、浸秀な磁石特性と良好な塑性加工性と切削加
工性を併せ持つ優れた磁石材料として、1;’ Q−C
r−G o系合金が知られており、この系の合金はロー
タリーエンコーダの磁気記録媒体用などとして利用され
ている。
``Conventional technology''1;' Q-C has been used as an excellent magnet material that has both excellent magnetic properties and good plastic workability and cutting workability.
An r-Go type alloy is known, and this type of alloy is used for magnetic recording media of rotary encoders.

「発明が解決しようとする課題」 従来知られているロータリーエンコーダに用L1られて
いるF e−Cr−Co系の合金は、平均粒径が05〜
2.0mm程度のらのであったが、従来のロータリーエ
ンコーダに用いられている磁気記録媒体から放出される
磁力線は不均一でエンコーダとしての精度向上に限界が
あった。これは、以下に説明する理由による乙のと推定
される。
"Problems to be Solved by the Invention" The Fe-Cr-Co alloy used in conventionally known rotary encoders has an average grain size of
Although the radius was approximately 2.0 mm, the lines of magnetic force emitted from the magnetic recording medium used in conventional rotary encoders were non-uniform, and there was a limit to the improvement of accuracy as an encoder. This is presumed to be due to the reasons explained below.

まず、磁性を存する元素の単結晶の磁化変化を調べてみ
ると特定の結晶軸方向に磁化しやすく、特定の結晶軸方
向に磁化されにくい性質かある。
First, if we examine the change in magnetization of a single crystal of an element that has magnetism, we will find that it tends to be easily magnetized in a specific crystal axis direction, and is less likely to be magnetized in a specific crystal axis direction.

即ち、例えば、鉄の単結晶に種々の方向から磁場を印加
して磁化させた場合、第6図に示すように、単結晶の[
+00]方向とCll0]方向と[111]方向で磁化
の大きさが異なることが知られている。
That is, for example, when a single crystal of iron is magnetized by applying a magnetic field from various directions, as shown in FIG.
It is known that the magnitude of magnetization is different in the +00] direction, the Cll0] direction, and the [111] direction.

従ってこのような観点から前記従来のロータリーエンコ
ーダに用いられているF e−Cr−Co系合金につい
て検討すると、この合金の結晶粒の数が少ないときは、
個々の結晶粒の磁化の大きさの差が現れてきて発生ずる
磁場の大きさにバラツキが生じるために、磁力線が不均
一になり、エンコーダとしての精度向上に限界を生じる
ものと思われる。
Therefore, when considering the Fe-Cr-Co alloy used in the conventional rotary encoder from this perspective, when the number of crystal grains in this alloy is small,
Differences in the magnitude of magnetization of individual crystal grains appear, causing variations in the magnitude of the generated magnetic field, making the lines of magnetic force non-uniform, which seems to place a limit on the improvement of accuracy as an encoder.

この発明は前記課題を解決するためになされた乙ので、
放出される磁力線を均一にすることができ、エンコーダ
の精度を高めることができる磁気式エンコーダ用磁気記
録媒体を提供ずろことを目的とする。
Since this invention was made to solve the above problem,
It is an object of the present invention to provide a magnetic recording medium for a magnetic encoder that can make emitted lines of magnetic force uniform and improve the accuracy of the encoder.

[課題を解決するための手段」 請求項Iに記載した発明は前記課題を解決するために、 Cr  lo〜45重fi% Go   3〜35重徂% ’ri、Zr,Alのうし1種又は2種以上を0.1〜
20重量% F e  残部 の組成を有し、 磁気検出素子に関与する媒体の面積をSとし、平均粒径
をdとした場合、 d ≦ 1710・5 の関係とした乙のである。
[Means for Solving the Problems] In order to solve the above problems, the invention described in claim I provides the following methods: Cr lo~45wt% Go 3~35wt% 2 or more types from 0.1
The medium has a composition of 20% by weight with the remainder being F e , where S is the area of the medium involved in the magnetic sensing element, and d is the average particle size, the relationship d≦1710·5 is established.

請求項2に記載した発明は前記課題を解決するために、 Cr  I O〜45重量%、 Co   3〜35重槓%、 Ti、Zr,Alのうち1種又は2種以上を0.1〜2
0玉虫%、 V 、Mn、N i、Cu、Nb、Mo、Wのうち1種
または2種以上を5重量%以下、 Fe 残部 の組成を有し、 磁気検出素子に関与する媒体の面積をSとし、平均粒径
をdとした場合、 d≦ l/10・B の関係としたものであ−る。
In order to solve the above problem, the invention described in claim 2 includes the following: Cr IO ~45% by weight, Co 3~35% by weight, and 0.1~45% of one or more of Ti, Zr, and Al. 2
0% by weight, one or more of V, Mn, Ni, Cu, Nb, Mo, and W at 5% by weight or less, the balance being Fe, and the area of the medium involved in the magnetic detection element is When S is the average particle diameter and d is the average particle diameter, the relationship is d≦l/10·B.

「作用 」 特定の組成のF e−Cr−Co系の合金を用い、平均
結晶粒度を特別の大きさにすることにより、検出素子に
関与する結晶粒の数が十分に多くなり、結晶粒の結晶方
位に起因する磁化の大きさの差が緩和されて放出される
磁力線が均一になる。
``Effect'' By using Fe-Cr-Co alloy with a specific composition and making the average grain size a special size, the number of crystal grains involved in the detection element can be sufficiently increased, and the number of crystal grains can be increased. Differences in magnetization magnitude due to crystal orientation are relaxed, and the emitted lines of magnetic force become uniform.

以下に本願発明を更に詳細に説明する。The present invention will be explained in more detail below.

請求項1に記載した発明においては、Cr(クロム)1
0.〜45重量%、Co(コバルト93〜35重rlt
%、1゛i(ヂタン)、Zr(ジルコニウム)、Al(
アルミニウム)のうち1種以上を0.l〜20重積%、
Fc(鉄)残部の組成を仔することによって優れた磁石
特性と塑性加工性と切削加工性を併仕持fこせることが
できる。しから、磁気検出素子(例えばMR素子などの
読み取りヘッド)に関与する媒体の面積(例えばM R
素子の検出部の面積)をSとし、磁気記録媒体の平均粒
度をdとした場合、d≦171O√Sの関係を満たずよ
うにされている。
In the invention described in claim 1, Cr (chromium) 1
0. ~45% by weight, Co (Co93~35wt rlt
%, 1゛i (ditane), Zr (zirconium), Al(
0.0. l ~ 20 weight%,
By adjusting the composition of the Fc (iron) remainder, it is possible to have excellent magnetic properties, plastic workability, and cutting workability. Therefore, the area of the medium (e.g. M R
When S is the area of the detection part of the element and d is the average grain size of the magnetic recording medium, the relationship d≦171O√S is not satisfied.

このような磁気記録媒体を製造するには、例えば、Fe
−25Cr−12Co−0,1’l’iの組成比の粉末
を作成し、この粉末を加圧成形した後に、1000〜1
300℃で加熱して焼結し、焼結体を900〜!200
℃で加熱した後に水冷処理などによって急冷する溶体化
処理を施し、次いて700℃から温度を制御しつつ冷却
して時効する処理を行えば良い。また、磁気記録媒体を
製造する他の手段としては、前記組成の合金溶湯を溶製
し、鋳造して所定の組成比の鋳造品を作成し、この鋳造
品に熱間鍛造と熱間加工と冷間加工を施すといった塑性
加工を行い、塑性加工後に前述と同等の条件で温度と加
熱時間を制御しつつ溶体化処理を行い、次いて時効処理
を行うといった処理を行っても良い。
To manufacture such magnetic recording media, for example, Fe
A powder with a composition ratio of -25Cr-12Co-0,1'l'i is prepared, and after pressure molding this powder,
Heating and sintering at 300℃ produces a sintered body with a temperature of 900~! 200
It is sufficient to perform a solution treatment in which the material is heated at a temperature of 0.degree. In addition, as another means of manufacturing magnetic recording media, a molten alloy having the above composition is melted and cast to create a cast product having a predetermined composition ratio, and this cast product is subjected to hot forging and hot working. Plastic working such as cold working may be performed, and after the plastic working, solution treatment may be performed under the same conditions as described above while controlling the temperature and heating time, followed by aging treatment.

以上の工程を経ることにより平均結晶粒径0゜05〜2
mmの種々の磁気記録媒体を得ることができる。
By going through the above steps, the average crystal grain size is 0°05~2
mm various magnetic recording media can be obtained.

なお、前述の工程を行う場合には、Mn(マンガン)、
Si(ケイ素)、Nb(ニオブ)、Mo(モリブデン)
■(バナジウム)、N iにッケル)、Cu(銅)のう
らから選択される1種または2種以上の元素を合計5重
用%以下添加して磁気記録媒体を製造しても良い。ここ
てSi、Nb、Zr、Mo、V、Niなどの元素を添加
ずろことにより、磁気記録媒体の結晶粒を微細化するこ
とができる。
In addition, when performing the above-mentioned process, Mn (manganese),
Si (silicon), Nb (niobium), Mo (molybdenum)
A magnetic recording medium may be manufactured by adding one or more elements selected from the group consisting of (vanadium), Ni (vanadium), and Cu (copper) in a total of 5% or less. By adding elements such as Si, Nb, Zr, Mo, V, and Ni, the crystal grains of the magnetic recording medium can be made finer.

以上説明したように得られた磁気記録媒体は、結晶粒が
十分に小さく、放出される磁力線が均一であるので、ロ
ータリーエンコーダ用として使用した場合に従来より特
性を向上できる効果がある。
The magnetic recording medium obtained as described above has sufficiently small crystal grains and emitted lines of magnetic force are uniform, so that when used in a rotary encoder, it has the effect of improving characteristics compared to conventional media.

「実施例」 Fe−25Cr−12Go−0、I Tiの組成の合金
粉末を作成し、この合金粉末を2 ton/ amlの
加圧力で加圧成形して成形体を形成し、更にこの成形体
を1200℃で焼結し、次いで1100°Cに加熱した
後に水冷する溶体化処理を施した。続いてこの処理品を
700°Cから温度制御しつつ制御冷却(5〜b た。
"Example" An alloy powder having a composition of Fe-25Cr-12Go-0 and ITi was prepared, and this alloy powder was pressure-molded with a pressure of 2 ton/aml to form a compact, and further this compact was was sintered at 1200°C, then subjected to solution treatment by heating to 1100°C and cooling with water. Subsequently, the treated product was cooled under controlled temperature control from 700°C (5 to 50°C).

次に第1図に示すように検出部の寸法が縦3 mm。Next, as shown in Fig. 1, the size of the detection part is 3 mm in length.

12mm、その面積か6 mm’のMR素子(M ag
net。
An MR element (Mag
net.

Re5isLive IE lement) fを用き
するとともに、nfj記時効処理後に得られた処理品を
機械加工して円盤状のディスクを作成し、このディスク
の外周面に着磁して第2図に示すような回転ディスク2
を得た。
Re5isLive IE element) f is used, and the processed product obtained after nfj aging treatment is machined to create a disk-shaped disk, and the outer peripheral surface of this disk is magnetized as shown in Figure 2. rotating disc 2
I got it.

この回転ディスク2を所定の速度で回転させてMR素子
1を第2図に示すように回転ディスク2の外周部近傍に
設置して作動さL+几場合、M rz素子lから第3図
に示4′ような波形出力が得られろ。
When the rotating disk 2 is rotated at a predetermined speed and the MR element 1 is installed near the outer circumference of the rotating disk 2 as shown in FIG. You should be able to get a waveform output like 4'.

そしてこの波形出力の最大値と最小値の港の値をAとし
た場合、回転ディスク全周でのAの平均値を八とし、Δ
の最大値をA max、最小値をA minとした場合
に、 リ  ソ プ ル − ((A  max  −A  
m1n)/  A )X   I   OOで示すこと
ができる。
If the port values of the maximum and minimum values of this waveform output are A, then the average value of A over the entire circumference of the rotating disk is 8, and Δ
When the maximum value of is A max and the minimum value is A min, the solution − ((A max − A
m1n)/A)XIOO.

ここで前記のように製造された回転ディスク2において
、平均結晶粒径とリップルの関係を求めた。なお、前記
の工程を行う場合に、焼結’IL度、焼結時間などの条
件を種々変更して種々の平均結晶粒径の回転ディスクを
作成し、平均結晶粒径と前記リップルの関係を求め、そ
の結果を第4図に示した。更に、リップルとN(センサ
と結晶断面の面積比)の関係を求め第5図に示した。こ
の場合N = S /d”の関係が成立ずろとと乙に、
第5図に示すリップルを5%以下にするには、Nを10
0以上とすれば良いので前記式にこの値を代入し、更に
MR素子の検出部の面積であろ6を代入すると、d≦1
/10・√Sの関係が導きだける。
Here, in the rotating disk 2 manufactured as described above, the relationship between the average crystal grain size and ripple was determined. In addition, when performing the above process, various conditions such as sintering 'IL degree and sintering time are changed to create rotating disks with various average crystal grain sizes, and the relationship between the average crystal grain size and the ripple is determined. The results are shown in Figure 4. Furthermore, the relationship between the ripple and N (area ratio between the sensor and the crystal cross section) was determined and shown in FIG. In this case, the relationship "N = S / d" is established, and
To reduce the ripple shown in Figure 5 to 5% or less, N is 10
It only needs to be 0 or more, so by substituting this value into the above equation and further substituting 6, which is the area of the detection part of the MR element, d≦1.
/10・√S relationship can be derived.

従って磁気記録媒体の平均結晶粒径dをI / l O
、/U以下にずろならば、リップルを5%以下にてさる
ことが判明した。
Therefore, the average grain size d of the magnetic recording medium is I / l O
, /U or less, it has been found that the ripple can be reduced to 5% or less.

「発明の効果」 以」二説明したようにこの発明の磁気記録媒体は、特別
な組成を灯し、平均結晶粒径を一定の大きさ以下にして
いるので、磁石特性と組成加工性と切削1+oT性に優
れた旧に、放出される磁力線が従来の磁気記録媒体より
更に均一な特徴がある。従ってこの発明の磁気記録媒体
を用いてエンコーダを製造することにより、従来のエン
コーダより精度高いエンコーダを製造できる効果がある
``Effects of the Invention'' As explained hereinafter, the magnetic recording medium of the present invention has a special composition and the average crystal grain size is kept below a certain level, so that it has improved magnetic properties, composition processability, and machinability. Although it has excellent 1+oT properties, it has the characteristic that the lines of magnetic force emitted are more uniform than those of conventional magnetic recording media. Therefore, by manufacturing an encoder using the magnetic recording medium of the present invention, it is possible to manufacture an encoder with higher accuracy than conventional encoders.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMR素子の側面図、 第2図はM[X子による回転ディスクの情報読み取り状
態を示す斜視図、 第3図は回転ディスクの回転方向とMR素子の出力の関
係を示すグラフ、 第4図はリップルと平均結晶粒径の関係を示すグラフ、 第5図はリップルとNの関係を示すグラフ、第6図は鉄
の単結晶に対する磁場の方向による磁化の状態を示すグ
ラフである。
Fig. 1 is a side view of the MR element, Fig. 2 is a perspective view showing the state of information reading of the rotating disk by the M[X element, Fig. 3 is a graph showing the relationship between the rotation direction of the rotating disk and the output of the MR element, Figure 4 is a graph showing the relationship between ripple and average grain size, Figure 5 is a graph showing the relationship between ripple and N, and Figure 6 is a graph showing the state of magnetization of iron single crystals depending on the direction of the magnetic field. .

Claims (2)

【特許請求の範囲】[Claims] (1)Cr10〜45重量%、 Co3〜35重量%、 Ti,Zr,Alのうち1種又は2種以上を0.1〜2
.0重量%、 Fe残部 の組成を有し、 磁気検出素子に関与する磁気記録媒体の面積をSとし、
平均結晶粒径をdとした場合、 d≦1/10・√S の関係としたことを特徴とする磁気式エンコーダ用磁気
記録媒体。
(1) 10 to 45% by weight of Cr, 3 to 35% by weight of Co, and 0.1 to 2% of one or more of Ti, Zr, and Al.
.. It has a composition of 0% by weight and the remainder is Fe, and the area of the magnetic recording medium involved in the magnetic detection element is S,
A magnetic recording medium for a magnetic encoder, characterized in that, where d is an average crystal grain size, the relationship d≦1/10·√S is satisfied.
(2)Cr10〜45重量%、 Co3〜35重量%、 Ti,Zr,Alのうち1種又は2種以上を0.1〜2
.0重量%、 V,Mn,Ni,Cu,Nb,Mo,Wのうち1種また
は2種以上を5重量%以下、 Fe残部 の組成を有し、 磁気検出素子に関与する媒体の面積をSとし、平均結晶
粒径をdとした場合、 d≦1/10・√S の関係としたことを特徴とする磁気式エンコーダ用磁気
記録媒体。
(2) 10 to 45% by weight of Cr, 3 to 35% by weight of Co, and 0.1 to 2% of one or more of Ti, Zr, and Al.
.. 0% by weight, 5% by weight or less of one or more of V, Mn, Ni, Cu, Nb, Mo, and W, and the remainder Fe, and the area of the medium involved in the magnetic sensing element is S. A magnetic recording medium for a magnetic encoder, characterized in that, where d is an average crystal grain size, the relationship d≦1/10·√S is satisfied.
JP63211795A 1988-08-26 1988-08-26 Magnetic recording medium for magnetic encoder Expired - Fee Related JPH0612264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63211795A JPH0612264B2 (en) 1988-08-26 1988-08-26 Magnetic recording medium for magnetic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63211795A JPH0612264B2 (en) 1988-08-26 1988-08-26 Magnetic recording medium for magnetic encoder

Publications (2)

Publication Number Publication Date
JPH0261519A true JPH0261519A (en) 1990-03-01
JPH0612264B2 JPH0612264B2 (en) 1994-02-16

Family

ID=16611733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63211795A Expired - Fee Related JPH0612264B2 (en) 1988-08-26 1988-08-26 Magnetic recording medium for magnetic encoder

Country Status (1)

Country Link
JP (1) JPH0612264B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0514038A2 (en) * 1991-05-16 1992-11-19 Mitsubishi Steel Mfg. Co., Ltd. Printing machine
WO2006075572A1 (en) * 2005-01-11 2006-07-20 Ntn Corporation Magnetic encoder and wheel bearing comprising same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0514038A2 (en) * 1991-05-16 1992-11-19 Mitsubishi Steel Mfg. Co., Ltd. Printing machine
WO2006075572A1 (en) * 2005-01-11 2006-07-20 Ntn Corporation Magnetic encoder and wheel bearing comprising same

Also Published As

Publication number Publication date
JPH0612264B2 (en) 1994-02-16

Similar Documents

Publication Publication Date Title
CN104081458B (en) Co-cr-pt-based sputtering target and method for producing same
US5756191A (en) Exchange coupling film and magnetoresistance effect element
JPS6020882B2 (en) Manufacturing method of magnetic head using high magnetic permeability amorphous alloy
US4639278A (en) Method of manufacturing an amorphous magnetic alloy
JPH0261519A (en) Magnetic recording medium for magnetic encoder
US4609593A (en) Magnetic recording medium
JPH01123487A (en) Torque sensor
JPS5996518A (en) Magnetic head for vertical magnetic recording
JPS6273604A (en) Ferromagnetic thin film
JPH0316203A (en) Heat-resistant high saturation magnetic flux density film
JPS5948822A (en) Vertical magnetic recording medium and its production
JPS5837379B2 (en) magnetic material
JPH09102418A (en) Iron-based soft magnetic material
JPS62124262A (en) Method for modifying magnetic characteristic of high permeability amorphous alloy
JPS62100630A (en) Torque sensor
JPH01132757A (en) Production of co-ni-cr system alloy target material
JPS5921088B2 (en) Magnetic disk manufacturing method
JPS633406A (en) Magnetically soft thin film
JP2002117531A5 (en)
JPH0246650B2 (en)
JPS6059531A (en) Magnetic disc
JPH05327061A (en) Magnetoresistance element
JPS6292305A (en) Soft magnetic thin film
JPH01253848A (en) Information recording carrier
JPS6254167B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees