JPH06122009A - Method for controlling shape of rolled stock - Google Patents

Method for controlling shape of rolled stock

Info

Publication number
JPH06122009A
JPH06122009A JP4273221A JP27322192A JPH06122009A JP H06122009 A JPH06122009 A JP H06122009A JP 4273221 A JP4273221 A JP 4273221A JP 27322192 A JP27322192 A JP 27322192A JP H06122009 A JPH06122009 A JP H06122009A
Authority
JP
Japan
Prior art keywords
rolling
shape
rolling mill
steel sheet
multiple regression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4273221A
Other languages
Japanese (ja)
Inventor
Naohiko Ishibashi
直彦 石橋
Junichi Nishizaki
純一 西崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4273221A priority Critical patent/JPH06122009A/en
Publication of JPH06122009A publication Critical patent/JPH06122009A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for controlling the shape of a rolled stock by which a proper manipulated variable is easily set. CONSTITUTION:In the method for controlling the shape of the rolled stock by which the shape such as sheet crown and flatness of a steel sheet 3 is controlled with a rolling mill 2 having a control operation terminal, manipulated variable is determined by a multiple regression model of given rolling conditions, the rolling of the steel sheet 3 is executed by giving this determined manipulated variable to the control operation terminal of the rolling mill 2 and the coefficients of the multiple regression model are successively corrected by successive least squares method based on the obtained actual data of rolling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、制御操作端を有する圧
延機によって鋼板の板クラウンや平坦度などの形状を制
御する圧延材の形状制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the shape of a rolled material by controlling the shape such as the plate crown and flatness of a steel sheet by a rolling mill having a control operation end.

【0002】[0002]

【従来の技術】圧延すべき鋼板を、例えば二つの圧延ロ
ールによって挟み込んで圧延する圧延機においては、上
記二つの圧延ロールをクロスさせると、圧延後の板クラ
ウンや平坦度が上記ロールのクロス角の値によって変化
することが知られている。このような圧延機について、
そのクロス角を調整操作して板クラウンや平坦度を制御
する方法がある。以下従来のクロス角設定計算法につい
て述べる。
2. Description of the Related Art In a rolling machine for rolling a steel sheet to be rolled by, for example, two rolling rolls, when the two rolling rolls are crossed with each other, the plate crown and the flatness after rolling are the cross angles of the rolls. It is known to change depending on the value of. For such a rolling mill,
There is a method of controlling the plate crown and flatness by adjusting the cross angle. The conventional cross angle setting calculation method will be described below.

【0003】mスタンドで構成される圧延機によって連
続的に鋼板を圧延する場合において、最終圧延後の鋼板
の板クラウン、平坦度が目標値となるように、各圧延機
のクロス角の組み合わせを設定する。板クラウン、平坦
度は最終スタンド出側のものだけを検出可能であるとし
て、クロス角設定演算を次のように定式化する。 目標関数 Clast=C* (目標板クラウン) …(1) 制約条件 |λi |≦λi max …(2) βi −ζi αi ≦Ci −ηi (Ci-1 −λi-1 i-1 )≦βi (1≦i≦m)…(3) ここで、 αi =(LB 2 tan2 θmaxi)/(2DW ) …(4) λi :圧延後の鋼板の平坦度 θi :第i圧延機のクロス角 θmaxi:第i圧延機のクロス角最大角 Ci :第i圧延機出側板クラウン Clast:最終圧延後の板クラウン βi :クロス角0(deg)、入側板クラウン0(μ
m)のときの第i圧延機出側板クラウン DW :ワークロール直径 LB :ロールバレル長 ζi ,ηi :補正係数 このような制約条件を満たし、かつ次の条件 {(Clast−C* 2 +Σλi 2 }→min …(5) を満たすような二次計画法等の最適化法によってCi
求め、さらに、 ζi si=βi −Ci …(6) Csi=(LB 2 tan2 θi )/(2DW ) …(7) Csi:第i圧延機のロールクロスによる等価メカニカル
クラウンによって求めたクロス角θi の組み合わせを適
正な組み合わせとする。
In the case of continuously rolling a steel sheet by a rolling mill composed of m stands, the combination of the cross angles of the rolling mills is set so that the plate crown and the flatness of the steel sheet after the final rolling have the target values. Set. Assuming that only the plate crown and flatness on the exit side of the final stand can be detected, the cross angle setting calculation is formulated as follows. Objective function Clast = C * (Target plate crown) (1) Constraint condition | λ i | ≦ λ i max (2) β i −ζ i α i ≦ C i −η i (C i-1 −λ i-1 h i-1 ) ≦ β i (1 ≦ i ≦ m) (3) where α i = (L B 2 tan 2 θ maxi ) / (2D W ) ... (4) λ i : Flatness of rolled steel plate θ i : Cross angle of i-th rolling mill θ maxi : Maximum cross angle of i-th rolling mill C i : i-th rolling Exit side plate crown Clast: Plate crown after final rolling β i : Cross angle 0 (deg), entrance side plate crown 0 (μ
The i rolling mill delivery side crown D W when the m): work roll diameter L B: roll barrel length zeta i, eta i: correction factor satisfying such a constraint, and the following conditions {(Clast-C * ) 2 + Σλ i 2 } → min ... (5) obtains a C i by the optimization method such as quadratic programming that satisfies, further, ζ i C si = β i -C i ... (6) C si = (L B 2 tan 2 θ i ) / (2D W ) ... (7) C si : A combination of the cross angles θ i obtained by the equivalent mechanical crown by the roll cross of the i-th rolling mill is set as an appropriate combination.

【0004】[0004]

【発明が解決しようとする課題】上記の方法による計算
は複雑であり、特に(3)式中に含まれるζi ,ηi
表されるパラメータを調整しなければならないため、適
正な形状制御を行うには多くの手間を要していた。ま
た、これらパラメータの調整は、任意の数の実績データ
が収集できるまで、人手によってオフラインで行なって
いた。従来の操作量設定モデルとして使用されてきた重
回帰モデルは、さまざまな圧延条件に対して適正な操作
量を設定するためには、全ての圧延条件に対する操作量
の実績データを与えなければならず、その実績データの
収集に多くの時間と手間を要するとともに、その調整を
オフラインにより実施していた。本発明の目的は、適正
な操作量を容易に設定することが可能な圧延材の形状制
御方法を提供することにある。
The calculation by the above method is complicated, and in particular, the parameters represented by ζ i and η i contained in the equation (3) must be adjusted. It took a lot of work to do. In addition, adjustment of these parameters was manually performed offline until an arbitrary number of actual data could be collected. The multiple regression model that has been used as a conventional operation amount setting model must provide actual data of operation amounts for all rolling conditions in order to set appropriate operation amounts for various rolling conditions. , It took a lot of time and effort to collect the result data, and the adjustment was performed offline. An object of the present invention is to provide a shape control method for a rolled material that can easily set an appropriate operation amount.

【0005】[0005]

【課題を解決するための手段】上記課題を解決し目的を
達成するために、次のような手段を講じた。制御操作端
を有する圧延機によって鋼板の板クラウンや平坦度など
の形状を制御する圧延材の形状制御方法において、
[Means for Solving the Problems] In order to solve the above problems and achieve the object, the following measures were taken. In the shape control method of the rolled material that controls the shape such as the plate crown and flatness of the steel plate by the rolling mill having the control operation end,

【0006】与えられた圧延条件の重回帰モデルによっ
て操作量を求め、この求めた操作量を上記圧延機の制御
操作端に与えて前記鋼板の圧延を行なわせ、得られた圧
延実績データに基づき逐次形最小自乗法により前記重回
帰モデルの係数を逐次修正するようにした。
An operation amount is obtained by a multiple regression model of given rolling conditions, the obtained operation amount is given to the control operation end of the rolling mill to cause the steel sheet to be rolled, and based on the obtained rolling performance data. The coefficient of the multiple regression model is sequentially corrected by the recursive least squares method.

【0007】つまり、本発明では圧延によって新たな実
績データが得られる毎に重回帰モデルの係数aj (j=
1,2,…N)を逐次形最小自乗法にしたがって逐次修
正したことを特徴としている。
That is, according to the present invention, the coefficient a j (j = j =
1, 2, ..., N) are sequentially modified according to the recursive least squares method.

【0008】[0008]

【作用】上記手段を講じた結果、次のような作用が生じ
る。一例として操作量がクロス角θの場合、N個の圧延
条件を示す物性値z=(
As a result of taking the above-mentioned means, the following effects occur. As an example, when the manipulated variable is the cross angle θ, the physical property value indicating N rolling conditions z = (

【0009】p1 ,p2 ,pN )とそれらに対応する操
作量の組(z,θ)がM個得られているものとする。こ
のとき重回帰モデルはi番目のデータ(i=1,2,
…,M)に対して、次のような関係が成り立つ。
It is assumed that M sets of sets (z, θ) of p 1 , p 2 , p N ) and their corresponding manipulated variables have been obtained. At this time, the multiple regression model uses the i-th data (i = 1, 2,
..., M), the following relationship holds.

【0010】[0010]

【数1】 M個の実績データに対して(1)式より AM M =BM …(9) ここで、[Equation 1] From equation (1) for M actual data, A M X M = B M (9) Here,

【0011】[0011]

【数2】 M>Nを満たすなら、Xについて解くと、 XM =(AM T M -1(AM T M ) …(10) (但し、AM T はAM の転置行列) 逐次型最小自乗法は、M個の実績値に基づいて作られた
行列ベクトルを次のように表す。
[Equation 2] If M> N is satisfied, solving for X yields X M = (A M T A M ) -1 (A M T B M ) ... (10) (However, A M T Is the transposed matrix of A M ) The recursive least squares method expresses a matrix vector created based on M actual values as follows.

【0012】[0012]

【数3】 [Equation 3]

【0013】[0013]

【数4】 また、[Equation 4] Also,

【0014】[0014]

【数5】 とおく。(8)式は、行列Aの最下行に相当するが、こ
れらより、 XM+1 =XM −PM+1 [zM+1 M+1 T M −zM+1 θM+1 2 ] …(14) PM+1 =PM −PM M+1 (1+zM+1 T M M+1 -1M+1 T M …(15) が導き出される。
[Equation 5] far. The expression (8) corresponds to the bottom row of the matrix A. From these, X M + 1 = X M −P M + 1 [z M + 1 z M + 1 T X M −z M + 1 θ M + 1 2 ] (14) P M + 1 = P M −P M z M + 1 (1 + z M + 1 T P M z M + 1 ) -1 z M + 1 T P M (15) is derived.

【0015】このように(14),(15)式より、新
たに圧延実績データ(zM ,θM )が得られると、設定
計算モデルの係数aj を修正し、逐次的に適正な操作量
を設定することができる。
As described above, when new rolling performance data (z M , θ M ) is obtained from the equations (14) and (15), the coefficient a j of the setting calculation model is corrected and the appropriate operation is sequentially performed. You can set the amount.

【0016】[0016]

【実施例】図1は本発明による操作量設定計算法の一実
施例を示す手順フロー図である。図1に示すように操作
量設定計算部1において、与えられた圧延条件の重回帰
モデル(設定計算モデル)により形状制御操作量を求め
る。この求めた操作量を制御対象である圧延機2の制御
操作端に与える。こうすることによりこの圧延機2によ
り鋼板3が所定状態に圧延される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a procedure flow chart showing an embodiment of a manipulated variable setting calculation method according to the present invention. As shown in FIG. 1, the operation amount setting calculation unit 1 obtains the shape control operation amount by a multiple regression model (setting calculation model) of given rolling conditions. The calculated operation amount is given to the control operation end of the rolling mill 2 which is the control target. By doing so, the steel plate 3 is rolled into a predetermined state by the rolling mill 2.

【0017】得られた圧延実績データに基づいて学習部
4では逐次形最小自乗法による演算を行ない、前記操作
量設定計算部1に与えられている設定計算モデルを逐次
修正する。
On the basis of the obtained rolling performance data, the learning unit 4 performs the calculation by the recursive least squares method, and sequentially corrects the setting calculation model given to the manipulated variable setting calculation unit 1.

【0018】なお、本実施例における圧延機2として
は、圧延ロール2a,2bをクロスさせて圧延する図2
に示すPC(Pair Cross)ミルを適用し、数
スタンドの圧延機から構成されるタンデム圧延機を用い
るものとする。以下PCミルのクロス角を操作量とする
場合を例にとって本計算法につき具体的に説明する。こ
こではPCミルにおいて、(8)式として次のようなク
ロス角設定計算モデルの一実施例を示す。 θ2 =a1 B+a2 C+a3 ε+a4 1 +a5 2 +a6 F …(16) θ:クロス角 B:板幅 C:最終圧延後の板クラウン ε:最終圧延後の平坦度 H:入側板厚 h:出側板厚 F:圧延荷重 a1 〜a6 :係数
As the rolling mill 2 in this embodiment, rolling rolls 2a and 2b are crossed and rolled as shown in FIG.
The PC (Pair Cross) mill shown in is applied, and the tandem rolling mill composed of rolling mills of several stands is used. The present calculation method will be specifically described below by taking the case where the cross angle of the PC mill is used as an operation amount as an example. Here, an example of the following cross angle setting calculation model is shown as the formula (8) in the PC mill. θ 2 = A 1 B + a 2 C + a 3 ε + a 4 H 1 + a 5 H 2 + a 6 F (16) θ: Cross angle B: Strip width C: Strip crown after final rolling ε: Flatness after final rolling H: Inlet strip Thickness h: Delivery side plate thickness F: Rolling load a 1 to a 6 : Coefficient

【0019】予めM個の圧延条件と、そのとき(圧延
時)のクロス角の実績データ(B,C,ε,H,h,
F,θ)とを与え(M>N)、(10)式から係数aj
(j=1,2,…,6)を求める。このようにして定ま
ったクロス角設定計算モデル式である(16)式を用い
て、そのときの設定した圧延条件(B,H,h,F)と
圧延後の鋼板の板クラウン、平坦度に対する目標値
(C,ε)を与え、そのときのクロス角を計算する。計
算されたクロス角と圧延条件を設定値として圧延を行な
い、圧延後に得られた実績データ(B,C,ε,H,
h,F,θ)から計算モデルの係数aj を、(14),
(15)式にしたがって修正する。
Preliminarily M rolling conditions and actual data (B, C, ε, H, h, etc.) of cross angles at that time (when rolling).
F, θ) and (M> N), the coefficient a j is calculated from the equation (10).
(J = 1, 2, ..., 6) is calculated. Using the equation (16), which is the cross angle setting calculation model equation determined in this way, for the rolling conditions (B, H, h, F) set at that time and the plate crown and flatness of the rolled steel plate, A target value (C, ε) is given and the cross angle at that time is calculated. Rolling is performed with the calculated cross angle and rolling conditions as set values, and the actual data (B, C, ε, H,
h, F, θ), the coefficient a j of the calculation model is (14),
Correct according to equation (15).

【0020】すなわち、本実施例においては、圧延後の
鋼板が目標とする板クラウンと平坦度となるように、1
回の圧延作業毎に、これらの実績値から逐次的に設定計
算モデルの学習を行うことによって、圧延条件から適正
な操作量を設定計算するものである。なお、本発明は上
記実施例に限定されるものではなく、本発明の要旨を逸
脱しない範囲で種々変形実施可能であるのは勿論であ
る。
That is, in the present embodiment, the rolled steel plate is set to have a target crown and flatness of 1
An appropriate amount of operation is set and calculated from the rolling conditions by sequentially learning the setting calculation model from these actual values for each rolling operation. The present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

【0021】[0021]

【発明の効果】本発明の圧延材の形状制御法によれば、
圧延する度に操作量設定計算モデルの修正が行われるた
め、大量の実績データを予め収集する必要がなく、適正
な操作量を容易に設定することのできる圧延材の形状制
御方法を提供できる。
According to the shape control method for rolled material of the present invention,
Since the operation amount setting calculation model is corrected each time rolling is performed, it is not necessary to collect a large amount of actual data in advance, and it is possible to provide a shape control method for a rolled material that can easily set an appropriate operation amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の制御手順を示すフロー図。FIG. 1 is a flowchart showing a control procedure of an embodiment of the present invention.

【図2】同実施例に適用される圧延機による圧延状態を
示す図。
FIG. 2 is a diagram showing a rolling state by a rolling mill applied to the embodiment.

【符号の説明】[Explanation of symbols]

1…操作量設定計算部 2…圧延機 2
a,2b…圧延ロール 3…鋼板 4…学習部
1 ... manipulated variable setting calculation unit 2 ... rolling mill 2
a, 2b ... rolling roll 3 ... steel plate 4 ... learning unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G05B 13/04 9131−3H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location G05B 13/04 9131-3H

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】制御操作端を有する圧延機によって鋼板の
板クラウンや平坦度などの形状を制御する圧延材の形状
制御方法において、 与えられた圧延条件の重回帰モデルによって操作量を求
め、この求めた操作量を上記圧延機の制御操作端に与え
て前記鋼板の圧延を行なわせ、得られた圧延実績データ
に基づき逐次形最小自乗法により前記重回帰モデルの係
数を逐次修正するようにしたことを特徴とする圧延材の
形状制御方法。
1. A shape control method for a rolled material in which the shape such as a plate crown and flatness of a steel sheet is controlled by a rolling mill having a control operation end, and an operation amount is obtained by a multiple regression model of given rolling conditions. The calculated operation amount is given to the control operation end of the rolling mill to perform the rolling of the steel sheet, and the coefficient of the multiple regression model is sequentially corrected by the successive least squares method based on the obtained rolling record data. A shape control method for a rolled material, comprising:
JP4273221A 1992-10-12 1992-10-12 Method for controlling shape of rolled stock Withdrawn JPH06122009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4273221A JPH06122009A (en) 1992-10-12 1992-10-12 Method for controlling shape of rolled stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4273221A JPH06122009A (en) 1992-10-12 1992-10-12 Method for controlling shape of rolled stock

Publications (1)

Publication Number Publication Date
JPH06122009A true JPH06122009A (en) 1994-05-06

Family

ID=17524804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4273221A Withdrawn JPH06122009A (en) 1992-10-12 1992-10-12 Method for controlling shape of rolled stock

Country Status (1)

Country Link
JP (1) JPH06122009A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211963A (en) * 2004-01-30 2005-08-11 Sumitomo Metal Ind Ltd Method for correcting model parameter in steel production process, and method for manufacturing hot rolled steel sheet using the same
JP2019104045A (en) * 2017-12-14 2019-06-27 東芝三菱電機産業システム株式会社 Shape control device of hot rolling line

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211963A (en) * 2004-01-30 2005-08-11 Sumitomo Metal Ind Ltd Method for correcting model parameter in steel production process, and method for manufacturing hot rolled steel sheet using the same
JP2019104045A (en) * 2017-12-14 2019-06-27 東芝三菱電機産業システム株式会社 Shape control device of hot rolling line

Similar Documents

Publication Publication Date Title
RU2078626C1 (en) Rolling process control method
US6418354B1 (en) Optimizing the band width at the band ends on a mill train
US6513358B2 (en) Method and device for controlling flatness
JPH06122009A (en) Method for controlling shape of rolled stock
AU719409B2 (en) Apparatus for controlling a rolling mill based on a strip crown of a strip and the same
US6438443B1 (en) Method and device for pre-setting the planeness of a roller strip
JPH0724512A (en) Method for controlling crown shape at the time of hot flying thickness change
CN111633038B (en) Hot continuous rolling rough rolling control method and system
JP2968644B2 (en) Strip width setup device in hot rough rolling
JP3520868B2 (en) Steel sheet manufacturing method
JPH07246408A (en) Initializing method of shape control in rolling mill
JP2755893B2 (en) Rolling control method and apparatus
JP3396774B2 (en) Shape control method
JPS6134886B2 (en)
JPH059166B2 (en)
JP4102267B2 (en) Sheet width control method in cold tandem rolling
JPH08243614A (en) Reversing rolling method excellent in accuracy of shape and thickness
JP2002282915A (en) Reverse rolling mill and rolling method
EP1030747B1 (en) Method and assembly for hot-rolling thin strips of steel
JPH06134508A (en) Device for setting manipulated variable of sheet shape in rolling mill
JP3770266B2 (en) Determining device for set value of plate crown and shape in rolling mill
JP3380430B2 (en) Short stroke pattern correction method and apparatus
JPH08300025A (en) Method for controlling plate crown in plate rolling
JP2003245706A (en) Method for re-pass scheduling under rolling in a plurality of pass rollings
JPH0780526A (en) Method for controlling edge drop in plate rolling

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104